

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-(5-methyl-3-methylsulfinyl-1benzofuran-2-yl)acetate

Hong Dae Choi,^a Pil Ja Seo,^a Byeng Wha Son^b and Uk Lee^b*

^aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and ^bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Received 27 July 2008; accepted 1 August 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.124; data-to-parameter ratio = 13.5.

The title compound, $C_{13}H_{14}O_4S$, was prepared by oxidation of methyl 2-(5-methyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate with 3-chloroperoxybenzoic acid. The O atom and methyl group of the methylsulfinyl substituent lie on opposite sides of the plane of the benzofuran system. The crystal structure is stabilized by intermolecular aromatic π - π interactions between the benzene rings of neighbouring molecules, with a centroid-centroid separation of 3.841 (3) Å.

Related literature

For the crystal structures of similar ethyl 2-(3-methylsulfinyl-1benzofuran-2-yl)acetate derivatives, see: Choi *et al.* (2007*a*,*b*).

organic compounds

Experimental

Crvstal data

erystat aana	
$\begin{array}{l} C_{13}H_{14}O_4S\\ M_r = 266.30\\ \text{Triclinic, } P\overline{1}\\ a = 7.9331 \ (6) \ \text{\AA}\\ b = 8.1097 \ (6) \ \text{\AA}\\ c = 10.7017 \ (8) \ \text{\AA}\\ \alpha = 71.601 \ (1)^{\circ}\\ \beta = 81.107 \ (1)^{\circ} \end{array}$	$\gamma = 84.303 (1)^{\circ}$ $V = 644.51 (8) \text{ Å}^{3}$ Z = 2 Mo K α radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 298 (2) K $0.40 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Absorption correction: none 3414 measured reflections	2237 independent reflections 1788 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.123$ S = 1.03 2237 reflections	166 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34$ e Å ⁻³ $\Delta \rho_{\rm min} = -0.35$ e Å ⁻³

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2186).

References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007*a*). Acta Cryst. E63, o3832. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007*b*). Acta Cryst. E63, o3839. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1711 [doi:10.1107/S1600536808024689]

Methyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate

Hong Dae Choi, Pil Ja Seo, Byeng Wha Son and Uk Lee

S1. Comment

This work is related to our previous communications on the synthesis and structures of ethyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, *viz*. ethyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi *et al.*, 2007*a*) and ethyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi *et al.*, 2007*b*). Here we report the crystal structure of the title compound, methyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The packing structure is stabilized by aromatic π - π stacking interactions between adjacent benzene units, with a Cg··· Cg^i distance is 3.841 (3) Å (Fig. 2).

S2. Experimental

77% 3-Chloroperoxybenzoic acid (359 mg, 1.6 mmol) was added in small portions to a stirred solution of methyl 2-(5methyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate (375 mg, 1.5 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 79%, m.p. 380–381 K; $R_f = 0.58$ (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in ethyl acetate at room temperature. Spectroscopic analysis: ¹H NMR (CDCl₃, 400 MHz) δ 2.45 (s, 3H), 3.07 (s, 3H), 3.74 (s, 3H), 4.04 (s, 2H), 7.17 (dd, J = 8.44 Hz and J = 1.08 Hz, 1H), 7.38 (d, J = 8.40 Hz, 1H), 7.71 (s, 1H); EI–MS 266 [M^+].

S3. Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for methyl H atoms and 0.97 Å for methylene H atoms, respectively, and with $U_{iso}(H) = 1.2Ueq(C)$ for aromatic and methylene H atoms and 1.5Ueq(C) for methyl H atoms.

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Figure 2

Intermolecular π - π interactions (dotted lines) in the title compound. *Cg* denotes ring centroid. Symmetry code: (i) 1-*x*, 2-*y*, -*z*.

Methyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate

Crystal data $C_{13}H_{14}O_4S$

 $M_r = 266.30$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.9331 (6) Å b = 8.1097 (6) Å c = 10.7017 (8) Å $\alpha = 71.601 (1)^{\circ}$ $\beta = 81.107 (1)^{\circ}$ $\gamma = 84.303 (1)^{\circ}$ V = 644.51 (8) Å³

Data collection

Bruker SMART CCD	2237 independent reflections
diffractometer	1788 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.052$
Graphite monochromator	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Detector resolution: 10.0 pixels mm ⁻¹	$h = -9 \longrightarrow 9$
φ and ω scans	$k = -9 \longrightarrow 9$
3414 measured reflections	$l = -9 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.04	H-atom parameters constrained
2237 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0647P)^2 + 0.1924P]$
166 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.34 \ m e \ m \AA^{-3}$

Z = 2

F(000) = 280

 $\theta = 2.6 - 27.3^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

Block, colorless

 $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.40 \times 0.20 \times 0.20 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.372 \text{ Mg m}^{-3}$

Melting point = 380-381 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1817 reflections

Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S	0.22227 (8)	0.36975 (8)	0.45695 (6)	0.0430 (2)	
01	0.16435 (19)	0.5432 (2)	0.07927 (16)	0.0392 (4)	
O2	-0.1560 (3)	0.0853 (3)	0.3071 (3)	0.0850 (8)	
03	0.1251 (2)	0.0969 (2)	0.2923 (2)	0.0565 (5)	
O4	0.2489 (3)	0.5059 (3)	0.51807 (19)	0.0597 (5)	
C1	0.2418 (3)	0.4676 (3)	0.2838 (2)	0.0348 (5)	
C2	0.3713 (3)	0.5757 (3)	0.1944 (2)	0.0342 (5)	
C3	0.5246(3)	0.6396 (3)	0.2059 (3)	0.0410 (6)	
Н3	0.5647	0.6111	0.2877	0.049*	
C4	0.6143 (3)	0.7457 (3)	0.0930 (3)	0.0445 (6)	
C5	0.5523 (3)	0.7870(3)	-0.0291 (3)	0.0486 (7)	
Н5	0.6147	0.8592	-0.1038	0.058*	
C6	0.4028 (3)	0.7256 (3)	-0.0442 (3)	0.0460 (6)	

H6	0.3628	0.7534	-0.1260	0.055*
C7	0.3168 (3)	0.6199 (3)	0.0709 (2)	0.0366 (5)
C8	0.1227 (3)	0.4533 (3)	0.2103 (2)	0.0352 (5)
C9	-0.0416 (3)	0.3635 (3)	0.2452 (3)	0.0404 (6)
H9A	-0.1049	0.4071	0.1697	0.048*
H9B	-0.1081	0.3975	0.3181	0.048*
C10	-0.0307 (3)	0.1679 (3)	0.2841 (3)	0.0447 (6)
C11	0.1449 (4)	-0.0918 (4)	0.3298 (4)	0.0801 (11)
H11A	0.0761	-0.1409	0.4132	0.120*
H11B	0.2627	-0.1280	0.3382	0.120*
H11C	0.1090	-0.1312	0.2629	0.120*
C12	0.7804 (3)	0.8174 (4)	0.1000 (3)	0.0616 (8)
H12A	0.8119	0.7677	0.1878	0.092*
H12B	0.7661	0.9416	0.0797	0.092*
H12C	0.8685	0.7884	0.0369	0.092*
C13	0.4142 (4)	0.2333 (4)	0.4661 (3)	0.0573 (7)
H13A	0.5112	0.3042	0.4396	0.086*
H13B	0.4176	0.1635	0.4080	0.086*
H13C	0.4167	0.1588	0.5556	0.086*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0403 (4)	0.0487 (4)	0.0362 (4)	-0.0034 (3)	-0.0055 (3)	-0.0072 (3)
01	0.0378 (9)	0.0428 (9)	0.0376 (9)	-0.0039 (7)	-0.0099 (7)	-0.0104 (7)
O2	0.0557 (13)	0.0589 (13)	0.135 (2)	-0.0209 (11)	-0.0173 (13)	-0.0150 (14)
O3	0.0415 (10)	0.0357 (9)	0.0832 (14)	-0.0039 (8)	0.0035 (9)	-0.0100 (9)
O4	0.0708 (13)	0.0711 (13)	0.0456 (11)	0.0066 (10)	-0.0141 (10)	-0.0297 (10)
C1	0.0363 (12)	0.0338 (12)	0.0349 (12)	-0.0017 (9)	-0.0056 (10)	-0.0110 (10)
C2	0.0354 (12)	0.0307 (11)	0.0377 (13)	0.0006 (9)	-0.0047 (10)	-0.0128 (10)
C3	0.0376 (13)	0.0413 (13)	0.0482 (15)	-0.0020 (10)	-0.0082 (11)	-0.0182 (12)
C4	0.0369 (13)	0.0363 (13)	0.0611 (17)	-0.0010 (10)	-0.0039 (12)	-0.0175 (12)
C5	0.0433 (14)	0.0415 (14)	0.0517 (16)	-0.0044 (11)	0.0054 (12)	-0.0060 (12)
C6	0.0492 (15)	0.0442 (14)	0.0397 (14)	-0.0006 (12)	-0.0058 (12)	-0.0065 (11)
C7	0.0337 (12)	0.0341 (12)	0.0435 (14)	0.0006 (9)	-0.0065 (10)	-0.0139 (10)
C8	0.0354 (12)	0.0317 (11)	0.0381 (13)	-0.0004 (9)	-0.0038 (10)	-0.0110 (10)
C9	0.0317 (12)	0.0448 (14)	0.0466 (15)	-0.0027 (10)	-0.0082 (11)	-0.0152 (11)
C10	0.0423 (14)	0.0478 (15)	0.0453 (15)	-0.0094 (11)	-0.0040 (11)	-0.0148 (12)
C11	0.070 (2)	0.0385 (16)	0.115 (3)	-0.0043 (15)	0.006 (2)	-0.0086 (17)
C12	0.0427 (15)	0.0532 (16)	0.088 (2)	-0.0115 (12)	-0.0069 (15)	-0.0182 (16)
C13	0.0571 (17)	0.0524 (16)	0.0596 (18)	0.0078 (13)	-0.0169 (14)	-0.0116 (14)

Geometric parameters (Å, °)

S04	1.495 (2)	C5—H5	0.9300
S—C1	1.759 (2)	C6—C7	1.381 (3)
S-C13	1.788 (3)	С6—Н6	0.9300
O1—C8	1.366 (3)	С8—С9	1.495 (3)

O1—C7	1.392 (3)	C9—C10	1.505 (3)
O2—C10	1.204 (3)	С9—Н9А	0.9700
O3—C10	1.315 (3)	С9—Н9В	0.9700
O3—C11	1.453 (3)	C11—H11A	0.9600
C1 - C8	1 354 (3)	C11—H11B	0.9600
C1 - C2	1.331(3) 1.444(3)	C11_H11C	0.9600
$C_2 = C_7$	1.382(3)	C12H12A	0.9600
$C_2 C_3$	1.302(3)	C12 H12R	0.9600
$C_2 = C_3$	1.405(5)	C12— $H12C$	0.9000
$C_3 = U_2$	1.301 (4)	C12— $H12C$	0.9000
	0.9300		0.9600
C4—C3	1.397 (4)	C13—H13B	0.9600
C4—C12	1.513 (3)	С13—Н13С	0.9600
C5—C6	1.382 (4)		
O4—S—C1	107.63 (11)	O1—C8—C9	116.0 (2)
O4—S—C13	105.85 (13)	C8—C9—C10	117.4 (2)
C1—S—C13	98.82 (13)	С8—С9—Н9А	108.0
C8—O1—C7	106.00 (17)	С10—С9—Н9А	108.0
C10—O3—C11	117.3 (2)	С8—С9—Н9В	108.0
C8—C1—C2	107.3 (2)	С10—С9—Н9В	108.0
C8—C1—S	122.09 (18)	H9A—C9—H9B	107.2
$C_{2}-C_{1}-S_{1}$	130.59 (18)	02 - C10 - O3	123.6(2)
C7 - C2 - C3	119.0 (2)	0^{2} - C10 - C9	121.9(2)
$C_{7} - C_{2} - C_{1}$	104 91 (19)	02 - 010 - 09	121.9(2) 1144(2)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	1361(2)	03 - C11 - H11A	109.5
C_{4} C_{3} C_{2}	130.1(2) 118 5 (2)	$O_2 C_{11} H_{11} R$	109.5
$C_{4} = C_{3} = C_{2}$	110.5 (2)		109.5
$C_4 - C_5 - H_5$	120.8		109.5
$C_2 = C_3 = H_3$	120.8		109.5
C_{3} $-C_{4}$ $-C_{5}$	120.0 (2)	HIIA—CII—HIIC	109.5
C3—C4—C12	120.5 (3)	HIIB—CII—HIIC	109.5
C5—C4—C12	119.4 (2)	C4—C12—H12A	109.5
C6—C5—C4	123.0 (2)	C4—C12—H12B	109.5
C6—C5—H5	118.5	H12A—C12—H12B	109.5
C4—C5—H5	118.5	C4—C12—H12C	109.5
C7—C6—C5	115.3 (2)	H12A—C12—H12C	109.5
С7—С6—Н6	122.4	H12B—C12—H12C	109.5
С5—С6—Н6	122.4	S—C13—H13A	109.5
C6—C7—C2	124.2 (2)	S—C13—H13B	109.5
C6—C7—O1	125.2 (2)	H13A—C13—H13B	109.5
C2—C7—O1	110.58 (19)	S-C13-H13C	109.5
C1—C8—O1	111.21 (19)	H13A—C13—H13C	109.5
C1—C8—C9	132.8 (2)	H13B—C13—H13C	109.5
04 - 5 - C1 - C8	-129.6(2)	C1_C2_C7_C6	179.0(2)
C_{13} S_{-} C_{1-} C_{8}	129.0(2) 120.6(2)	$C_1 = C_2 = C_7 = C_0$	170.36(10)
C_{13} $ S_{-}$ C_{1} $ C_{0}$	120.0(2)	$C_{1} = C_{2} = C_{7} = O_{1}$	-11(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.3(2)	$C_1 - C_2 - C_7 - C_1$	1.1(2) -1788(3)
C_{13} $ S$ $ C_{1}$ $ C_{2}$ C_{7}	-01.4(2)	$C_0 - C_1 - C_7 - C_0$	-1/8.8(2)
Lo-LI-L2-L/	0.5 (2)	U3-01-U/U2	1.2 (2)

S-C1-C2-C7	-177.78 (18)	C2C1C8O1	0.3 (3)	
C8—C1—C2—C3	180.0 (3)	S-C1-C8-O1	178.70 (15)	
S—C1—C2—C3	1.7 (4)	C2-C1-C8-C9	-178.3 (2)	
C7—C2—C3—C4	0.5 (3)	S-C1-C8-C9	0.1 (4)	
C1—C2—C3—C4	-178.9 (2)	C7—O1—C8—C1	-0.9 (2)	
C2—C3—C4—C5	-0.1 (4)	C7—O1—C8—C9	177.97 (19)	
C2—C3—C4—C12	-179.8 (2)	C1C8C10	-72.1 (3)	
C3—C4—C5—C6	-0.3 (4)	O1—C8—C9—C10	109.3 (2)	
C12—C4—C5—C6	179.4 (2)	C11—O3—C10—O2	0.7 (4)	
C4—C5—C6—C7	0.3 (4)	C11—O3—C10—C9	179.8 (3)	
C5—C6—C7—C2	0.2 (4)	C8—C9—C10—O2	-176.1 (3)	
C5—C6—C7—O1	-179.8 (2)	C8—C9—C10—O3	4.8 (3)	
C3—C2—C7—C6	-0.6 (3)			