Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(1H-1,2,3-Benzotriazol-1-vlmethyl)phthalimide

Su-Qing Wang,^a Fang-Fang Jian^{a*} and Huan-Qiang Liu^b

^aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail: ffjian2008@163.com

Received 11 July 2008; accepted 13 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.111; data-to-parameter ratio = 11.7.

The title compound [systematic name: 2-(1H-1,2,3-benzotriazol-1-ylmethyl)isoindole-1,3-dione], $C_{15}H_{10}N_4O_2$, was prepared by the reaction of 1H-benzotriazole and 2-bromomethylisoindole-1,3-dione. The benzotriazole and isoindole units are almost planar and make a dihedral angle of $70.2 (1)^{\circ}$ (mean planes include C and N atoms). A weak $C-H \cdots O$ intramolecular hydrogen bond involving a carbonyl O atom as acceptor stabilizes the observed molecular conformation.

Related literature

For related literature, see: Chen & Wu (2005); Jiao et al. (2005).

Experimental

Crystal data

$\gamma = 73.398 \ (3)^{\circ}$
V = 633.38 (18) Å ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.10 \text{ mm}^{-1}$
T = 293 (2) K
$0.25 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	2229 independent reflections
diffractometer	1689 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.023$
3364 measured reflections	

Refinement

ł

V S

2

F

$R[F^2 > 2\sigma(F^2)] = 0.041$	191 parameters
$vR(F^2) = 0.110$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
229 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C7−H7A···O1	0.97	2.55	2.890 (2)	101

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2185).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477.

Jiao, K., Wang, Q. X., Sun, W. & Jian, F. F. (2005). J. Inorg. Biochem. 99, 1369-1375

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1782 [doi:10.1107/S160053680802610X]

N-(1H-1,2,3-Benzotriazol-1-ylmethyl)phthalimide

Su-Qing Wang, Fang-Fang Jian and Huan-Qiang Liu

S1. Comment

1*H*-Benzotriazole and its derivatives exhibit a broad spectrum of pharmacological activities, such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005; Jiao *et al.*, 2005). We report here the synthesis and structure of the title compound, (I), as part of our ongoing studies on new benzotriazole compounds with higher bioactivity.

In the molecular structure of (I), bond lengths and angles are within normal ranges (Fig. 1). The dihedral angle formed by the ring 1 (N1/N2/N3/C1/C6) and the ring 3 (C1/C2/C3/C4/C5/C6) is 1.4 (1)°. The dihedral angles formed by the rings 1 and 4 (C9/C10/C11/C12/C13/C14) with the ring 2 (N4/C8/C9/C14/C15) are 69.7 (3) and 1.0 (8)°, respectively. In the phthalimide group, the C?O bond lengths are 1.201 (2) and 1.2013 (19) Å, and the C—N bond lengths are 1.400 (2) and 1.395 (2) Å. There is a C—H…O intramolecular interaction (Table 2) stabilizing the observed molecular conformation.

S2. Experimental

The title compound was synthesized with the following procedure: 2-bromomethyl-isoindole-1,3-dione (3.6 g, 0.015 mol) and 1*H*-benzotriazole (1.78 g, 0.015 mol) were dissolved in chloroform (15 ml). The solution was cooled to 283 K. Then, 1.5 g (0.015 mol) of triethylamine was added dropwise *via* a cannula into the well stirred solution, at 283 K. The reaction mixture was stirred at 283 K for 6 h. and at room temperature for an additional time of 16 h. Water (20 ml) was added into the solution and the resulting white solid was filtered. The organic phase was separated and dried with anhydrous potassium carbonate. The colourless organic phase was evaporated, affording (I), in 53% yield. Crystals suitable for X-ray studies were obtained from anhydrous acetone, at room temperature, after three days.

S3. Refinement

All H atoms were placed geometrically (C—H = 0.93 Å for aromatic CH, 0.97 Å for methylene CH₂), and refined as riding to their parent atom with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

Z = 2

F(000) = 288

 $\theta = 1.7 - 28.2^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, colourless

 $0.25\times0.20\times0.18~mm$

T = 293 K

 $D_{\rm x} = 1.459 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1689 reflections

N-(1H-1,2,3-Benzotriazol-1-ylmethyl)phthalimide

Crystal data

C₁₅H₁₀N₄O₂ $M_r = 278.27$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.9481 (11) Å b = 8.0041 (13) Å c = 12.030 (2) Å $a = 85.715 (3)^{\circ}$ $\beta = 81.283 (3)^{\circ}$ $\gamma = 73.398 (3)^{\circ}$ $V = 633.38 (18) \text{ Å}^{3}$ Data collection

Bruker SMART CCD area-detector	1689 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.023$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.7^{\circ}$
Graphite monochromator	$h = -7 \rightarrow 8$
φ and ω scans	$k = -5 \rightarrow 9$
3364 measured reflections	$l = -14 \rightarrow 14$
2229 independent reflections	

Refinement

Refinement on F ² Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$ wR(F^2) = 0.110	Hydrogen site location: inferred from neighbouring sites
S = 1.09	H-atom parameters constrained
2229 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 + 0.0288P]$
191 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
0 constraints	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.069 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.2735 (2)	0.98906 (15)	0.49784 (11)	0.0591 (4)	
O2	0.2515 (2)	1.39679 (17)	0.74744 (10)	0.0621 (4)	
N1	0.0501 (2)	1.05193 (18)	0.79484 (11)	0.0462 (4)	
N2	-0.0680 (3)	0.9651 (2)	0.75689 (14)	0.0626 (5)	
N3	-0.2433 (3)	1.0032 (2)	0.81950 (15)	0.0680 (5)	
N4	0.2525 (2)	1.16565 (17)	0.64463 (11)	0.0445 (4)	
C1	-0.2400 (3)	1.1155 (3)	0.89974 (16)	0.0547 (5)	
C2	-0.3877 (3)	1.1919 (3)	0.9873 (2)	0.0747 (7)	
H2B	-0.5150	1.1724	0.9984	0.090*	
C3	-0.3374 (4)	1.2959 (3)	1.0557 (2)	0.0806 (8)	
H3B	-0.4333	1.3491	1.1145	0.097*	
C4	-0.1461 (4)	1.3255 (3)	1.04057 (17)	0.0696 (6)	
H4A	-0.1176	1.3961	1.0902	0.083*	
C5	-0.0002 (3)	1.2536 (2)	0.95475 (15)	0.0528 (5)	
H5A	0.1265	1.2742	0.9437	0.063*	
C6	-0.0523 (3)	1.1476 (2)	0.88493 (14)	0.0429 (4)	
C7	0.2508 (3)	1.0372 (2)	0.73567 (15)	0.0502 (5)	
H7A	0.3062	0.9215	0.7056	0.060*	
H7B	0.3375	1.0507	0.7884	0.060*	
C8	0.2638 (2)	1.1293 (2)	0.53142 (14)	0.0431 (4)	
C9	0.2639 (2)	1.2957 (2)	0.46837 (14)	0.0402 (4)	
C10	0.2701 (3)	1.3351 (2)	0.35476 (14)	0.0486 (5)	
H10A	0.2770	1.2515	0.3035	0.058*	
C11	0.2658 (3)	1.5050 (2)	0.32021 (15)	0.0526 (5)	
H11A	0.2706	1.5361	0.2440	0.063*	
C12	0.2547 (3)	1.6289 (2)	0.39629 (16)	0.0518 (5)	
H12A	0.2528	1.7416	0.3703	0.062*	
C13	0.2461 (3)	1.5891 (2)	0.51025 (16)	0.0496 (5)	
H13A	0.2360	1.6732	0.5618	0.060*	
C14	0.2534 (2)	1.4194 (2)	0.54433 (13)	0.0407 (4)	
C15	0.2517 (2)	1.3373 (2)	0.65864 (15)	0.0436 (4)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0823 (9)	0.0380 (8)	0.0593 (8)	-0.0198 (7)	-0.0060 (7)	-0.0107 (6)
O2	0.0844 (10)	0.0616 (9)	0.0486 (8)	-0.0343 (7)	-0.0012 (7)	-0.0140 (7)
N1	0.0559 (9)	0.0451 (9)	0.0434 (8)	-0.0227 (7)	-0.0100 (7)	0.0027 (7)
N2	0.0816 (12)	0.0697 (11)	0.0536 (10)	-0.0451 (10)	-0.0189 (9)	0.0052 (8)
N3	0.0719 (12)	0.0840 (13)	0.0634 (11)	-0.0445 (10)	-0.0191 (9)	0.0122 (10)
N4	0.0525 (9)	0.0381 (8)	0.0426 (8)	-0.0151 (7)	-0.0009 (6)	-0.0019 (6)
C1	0.0514 (11)	0.0585 (12)	0.0545 (11)	-0.0193 (9)	-0.0101 (9)	0.0187 (10)
C2	0.0557 (13)	0.0744 (16)	0.0823 (16)	-0.0124 (12)	0.0023 (11)	0.0249 (13)
C3	0.0859 (17)	0.0606 (15)	0.0698 (15)	-0.0006 (12)	0.0246 (13)	0.0083 (12)
C4	0.1028 (18)	0.0470 (12)	0.0529 (12)	-0.0193 (11)	0.0055 (12)	-0.0028 (9)
C5	0.0687 (12)	0.0429 (11)	0.0485 (10)	-0.0211 (9)	-0.0042 (9)	0.0018 (8)
C6	0.0503 (10)	0.0377 (9)	0.0407 (9)	-0.0136 (8)	-0.0085 (8)	0.0088 (8)
C7	0.0539 (11)	0.0445 (10)	0.0498 (10)	-0.0118 (9)	-0.0045 (8)	0.0009 (8)
C8	0.0411 (10)	0.0404 (10)	0.0469 (10)	-0.0112 (8)	-0.0003 (7)	-0.0075 (8)
C9	0.0354 (9)	0.0382 (9)	0.0455 (10)	-0.0104 (7)	0.0005 (7)	-0.0040 (7)
C10	0.0478 (10)	0.0486 (11)	0.0462 (10)	-0.0108 (8)	0.0009 (8)	-0.0072 (8)
C11	0.0465 (10)	0.0565 (12)	0.0495 (11)	-0.0114 (9)	0.0007 (8)	0.0062 (9)
C12	0.0449 (10)	0.0413 (11)	0.0655 (13)	-0.0123 (8)	0.0005 (9)	0.0055 (9)
C13	0.0461 (10)	0.0405 (10)	0.0631 (12)	-0.0165 (8)	0.0015 (8)	-0.0075 (8)
C14	0.0357 (9)	0.0377 (9)	0.0483 (10)	-0.0123 (7)	0.0011 (7)	-0.0053 (8)
C15	0.0420 (10)	0.0430 (10)	0.0477 (10)	-0.0164 (8)	0.0008 (8)	-0.0088 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01	1.2013 (19)	C4—H4A	0.9300
O2—C15	1.201 (2)	C5—C6	1.390 (2)
N1—C6	1.359 (2)	C5—H5A	0.9300
N1—N2	1.361 (2)	C7—H7A	0.9700
N1—C7	1.443 (2)	С7—Н7В	0.9700
N2—N3	1.299 (2)	C8—C9	1.483 (2)
N3—C1	1.375 (3)	C9—C10	1.377 (2)
N4—C15	1.395 (2)	C9—C14	1.377 (2)
N4—C8	1.400 (2)	C10—C11	1.385 (2)
N4—C7	1.446 (2)	C10—H10A	0.9300
C1—C6	1.383 (2)	C11—C12	1.377 (3)
C1—C2	1.395 (3)	C11—H11A	0.9300
C2—C3	1.360 (3)	C12—C13	1.380 (3)
C2—H2B	0.9300	C12—H12A	0.9300
C3—C4	1.398 (3)	C13—C14	1.378 (2)
С3—Н3В	0.9300	C13—H13A	0.9300
C4—C5	1.365 (3)	C14—C15	1.479 (2)
C6—N1—N2	110.53 (15)	N4—C7—H7A	109.0
C6—N1—C7	130.37 (15)	N1—C7—H7B	109.0
N2—N1—C7	119.04 (15)	N4—C7—H7B	109.0

N3—N2—N1	108.31 (16)	H7A—C7—H7B	107.8
N2—N3—C1	108.26 (16)	O1—C8—N4	124.63 (16)
C15—N4—C8	112.24 (14)	O1—C8—C9	130.09 (16)
C15—N4—C7	124.16 (15)	N4—C8—C9	105.28 (14)
C8—N4—C7	123.55 (14)	C10—C9—C14	121.57 (16)
N3—C1—C6	109.09 (17)	C10—C9—C8	130.10 (16)
N3—C1—C2	130.8 (2)	C14—C9—C8	108.33 (14)
C6—C1—C2	120.1 (2)	C9—C10—C11	116.98 (17)
C3—C2—C1	117.1 (2)	C9—C10—H10A	121.5
C3—C2—H2B	121.4	C11—C10—H10A	121.5
C1—C2—H2B	121.4	C12-C11-C10	121.42 (17)
C2—C3—C4	122.1 (2)	C12—C11—H11A	119.3
С2—С3—Н3В	118.9	C10-C11-H11A	119.3
C4—C3—H3B	118.9	C11—C12—C13	121.36 (17)
C5—C4—C3	121.7 (2)	C11—C12—H12A	119.3
C5—C4—H4A	119.2	C13—C12—H12A	119.3
C3—C4—H4A	119.2	C14—C13—C12	117.14 (17)
C4—C5—C6	116.0 (2)	C14—C13—H13A	121.4
C4—C5—H5A	122.0	С12—С13—Н13А	121.4
С6—С5—Н5А	122.0	C9—C14—C13	121.52 (16)
N1—C6—C1	103.80 (16)	C9—C14—C15	108.84 (15)
N1—C6—C5	133.27 (17)	C13—C14—C15	129.64 (16)
C1—C6—C5	122.91 (17)	O2—C15—N4	124.42 (16)
N1—C7—N4	112.73 (14)	O2—C15—C14	130.33 (16)
N1—C7—H7A	109.0	N4—C15—C14	105.24 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С7—Н7А…О1	0.97	2.55	2.890 (2)	101