Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-(7,8-Diphenyl-1H-imidazo[4,5-f]guinoxalin-2-yl)phenol methanol disolvate

### Hoong-Kun Fun,<sup>a</sup>\* Reza Kia<sup>a</sup><sup>‡</sup> and Paul R. Raithby<sup>b</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>b</sup>Chemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, England Correspondence e-mail: hkfun@usm.my

Received 4 August 2008; accepted 5 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.062; wR factor = 0.182; data-to-parameter ratio = 21.1.

The title compound,  $C_{27}H_{18}N_4O \cdot 2CH_4O$ , is a unsymmetrically substituted quinoxaline. An intramolecular O-H···N hydrogen bond involving the hydroxy and imino groups generates an S(6) ring motif. Intermolecular C-H···O and N-H···O hydrogen bonds form an  $R_2^1(7)$  ring motif involving a methanol O atom and two H atoms of the imidazole and benzene rings, respectively. The latter links neighbouring molecules into one-dimensional extended chains along the a axis. The two benzene rings are inclined towards each other, as indicated by the dihedral angle of 52.13 (10)°. The phenol ring is almost coplanar with the basic quinoxaline unit, making a dihedral angle of 2.43 (6) $^{\circ}$ . The short distances between the centroids of the five- and six-membered rings prove the existence of  $\pi$ - $\pi$  interactions [centroid-centroid distances = 3.5234 (9)–3.7885 (10) Å]. The crystal structure is stabilized by intramolecular O-H···N, intermolecular O-H···O, N- $H \cdots O$  and  $C - H \cdots O$  (× 2) hydrogen bonds and weak intermolecular C-H··· $\pi$  and  $\pi$ - $\pi$  interactions.

### **Related literature**

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For information about imidazolyl quinoxaline, see, for example: Mamedov et al. (2004); Miranda et al. (2008); Bhosale et al. (2005); Kanoktanaporn et al. (1980); Ali et al. (2000); Veroni et al. (2008); Zarranz et al. (2004); Addess et al. (1993); Mollegaard et al. (2000).

 $\nu = 95.147 \ (1)^{\circ}$ 

Z = 2

V = 1192.81 (4) Å<sup>3</sup>

Mo Ka radiation  $\mu = 0.09 \text{ mm}^{-3}$ 

T = 100.0 (1) K

 $R_{\rm int} = 0.043$ 

 $0.39 \times 0.29 \times 0.12 \text{ mm}$ 

23412 measured reflections

7076 independent reflections

5031 reflections with  $I > 2\sigma(I)$ 

### **Experimental**

## Crystal data

| C <sub>27</sub> H <sub>18</sub> N <sub>4</sub> O·2CH <sub>4</sub> O |
|---------------------------------------------------------------------|
| $M_r = 478.54$                                                      |
| Triclinic, P1                                                       |
| a = 10.5120 (3) Å                                                   |
| b = 11.4574 (2) Å                                                   |
| c = 11.9983 (2) Å                                                   |
| $\alpha = 116.325 \ (1)^{\circ}$                                    |
| $\beta = 107.465 \ (1)^{\circ}$                                     |

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)

 $T_{\min} = 0.876, \ T_{\max} = 0.990$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.061$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.182$               | independent and constrained                                |
| S = 1.07                        | refinement                                                 |
| 7076 reflections                | $\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 335 parameters                  | $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Selected centroid ··· centroid distances (Å).

| $Cg1\cdots Cg1^{i}$<br>$Cg2\cdots Cg3^{i}$ | 3.7885 (10)<br>3.5234 (7) | $Cg3\cdots Cg4^{i}$ | 3.6348 (11) |
|--------------------------------------------|---------------------------|---------------------|-------------|
|                                            |                           |                     |             |

Symmetry code: (i) -x + 1, -y, -z + 1. Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/N4/C7/C8/C15, N2/N3/C11-C14, C1-C6 and C8-C15 benzene rings, respectively.

| Table 2                |     |     |
|------------------------|-----|-----|
| Hydrogen-bond geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|--------------|--------------------------------------|
| O2−H1 <i>O</i> 2···O3       | 1.00     | 1.71                    | 2.700 (3)    | 167                                  |
| O3−H1O3···N3 <sup>iii</sup> | 0.95     | 1.87                    | 2.814 (2)    | 172                                  |
| $N4 - H1N4 \cdots O2$       | 0.97 (3) | 1.78 (3)                | 2.750 (2)    | 177 (2)                              |
| O1−H1 <i>O</i> 1···N1       | 0.97 (4) | 1.66 (4)                | 2.570 (2)    | 154 (3)                              |
| $C2-H2A\cdots O1^{iv}$      | 0.93     | 2.48                    | 3.356 (3)    | 156                                  |
| $C5-H5A\cdots O2$           | 0.93     | 2.42                    | 3.310 (3)    | 160                                  |
| $C28-H28C\cdots Cg5^{v}$    | 0.96     | 2.95                    | 3.534 (2)    | 120                                  |
|                             |          |                         |              |                                      |

Symmetry codes: (iii) x + 1, y, z; (iv) -x + 1, -y - 1, -z + 1; (v) -x + 1, -y, -z. Cg5 is the centroid of the C22-C27 benzene ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used

<sup>2</sup> CH<sub>3</sub>OH

<sup>‡</sup> Additional correspondence author, e-mail: zsrkk@yahoo.com. First Postdoctoral position: Chemistry Department, University of Bath, Claverton Down, Bath BA2 7AY England.

to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia, and the University of Bath for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2610).

### References

- Addess, K. J., Sinsheimer, J. S. & Feigon, J. (1993). *Biochemistry*, **32**, 2498–2505.
- Ali, M. M., Ismail, M. M. F., EI-Gabby, M. S. A., Zahran, M. A. & Ammar, T. A. (2000). *Molecules*, 5, 864–868.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). *Tetrahedron Lett.* 46, 7183–7186.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kanoktanaporn, S., MacBride, J. A. H. & King, T. J. (1980). J. Chem. Res. 406, 4901–4902.
- Mamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Chernova, A. V., Litvinov, I. A., Levin, Ya. A. & Shagidullin, R. R. (2004). *Izv. Akad. Nauk SSSR Ser. Khim.* 159–164.
- Miranda, F. da Silva, Signori, A. M., Vicente, J., de Souza, B., Priebe, J. P., Szpoganicz, B., Sanches, N. G. & Neves, A. (2008). *Tetrahedron*, **64**, 5410– 5415.
- Mollegaard, N. E., Bailly, C., Waring, M. J. & Nielsen, P. E. (2000). *Biochemistry*, 39, 9502–9507.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Veroni, I., Mitsopoulou, C. A. & Lahoz, F. J. (2008). J. Organomet. Chem. 693, 2451–2457.
- Zarranz, B., Jaso, A., Aldana, I. & Monge, A. (2004). *Bioorg. Med. Chem.* 12, 3711–3716.

# supporting information

Acta Cryst. (2008). E64, o1741-o1742 [doi:10.1107/S1600536808025269]

# 2-(7,8-Diphenyl-1H-imidazo[4,5-f]quinoxalin-2-yl)phenol methanol disolvate

### Hoong-Kun Fun, Reza Kia and Paul R. Raithby

### S1. Comment

Quinoxaline structure is recognized in a growing number of naturally occurring compounds such as riboflavin (vitamin B2), flavoenzymes, molybdopterines and antibiotics of Streptomyces (Ali *et al.*, 2000; Veroni *et al.*, 2008). Quinoxaline derivatives have already been used as antibacterial, antiviral, anticancer, antifungal, antihelmintic and insecticidal agents (Zarranz *et al.*, 2004). The widely prescribed quinoxaline antibiotics are found to bind specifically by bisintercalation to double-stranded DNA (Addess *et al.*, 1993) and to enhance peptide nucleic acid (PNA) binding to it (Mollegaard *et al.*, 2000), stimulating the research on the DNA-interactive ligands. In addition, some disubstituted quinoxaline derivatives have been found as potent antagonists of the quisqualate and kainate receptors on neurones of the central nervous system. To the best of our knowledge, this compound is the first quinoxaline with both phenol and imidazole substituents. In view of the importance of these organic ligands, the title compound (I) was synthesized and its crystal structure is repoted here.

The bond lenghts and angles are in normal ranges (Allen *et al.*, 1987). An intramolecular O—H···N hydrogen bond involving the hydroxy and the N atom of the imidazole group generate *S*(6) ring motif (Bernstein *et al.* 1995). An intermolecular C—H···O and N—H···O hydrogen bonds form an  $R_2^1(7)$  ring motif involving an oxygen of the methanol and two H atoms of the imidazole and benzene rings, respectively (Bernstein *et al.* 1995). The latter links neighbouring molecules into 1-D extended chains (Fig. 2) along the *a* axis. The two benzene rings are inclined to each other and their orientations are shown by the dihedral angle of 52.13 (10) °. The phenol ring is almost coplanar with the basic quinoxaline unit making the dihedral angle of 2.43 (6) °. The short distances between the centroids of the five and sixmembered rings prove an existence of  $\pi$ - $\pi$  interactions (Table 1) [centroid–centroid distances ranging from 3.5234 (9) to 3.7885 (10) Å]. The crystal structure is stabilized by intramolecular O—H···N, intermolecular O—H···O, N—H···O, C— H···O (*x* 2) hydrogen bonds, weak intermolecular C—H·· $\pi$  and  $\pi$ - $\pi$  interactions.

### **S2. Experimental**

A mixture of (E)-2-((5-amino-2,3-diphenylquinoxalin-6-ylimino)methyl) -phenol (418 mg, 1 mmol) in 20 ml of dichloromethane was added to a 20 ml methanolic solution of CoCl<sub>2</sub>. 6H<sub>2</sub>O (238 mg, 1 mmol). The reaction mixture was stirred under heating/boiling condition for 1 h. After cooling, the brown crystalline products was filtered, washed with ethanol and ether and then dried at room temperature.

### **S3. Refinement**

The H-atoms attached to O1 and N4 were located from the difference Fourier map and refined freely. The H-atoms attached to O2 and O3 were located from the difference Fourier map and then costrained to ride on the parent atoms with an isotropic displacement parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93 - 0.96 Å] and refined using a riding model. A rotating-group model was applied for the methyl groups.



### Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular and intermolecular interactions are drawn as dashed lines.



### Figure 2

The crystal packing of (I), viewed down the b-axis, showing an 1-D extended chain along the a-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.

### 2-(7,8-Diphenyl-1H-imidazo[4,5-f]quinoxalin-2-yl)phenol methanol disolvate

| Crystal data                    |                                               |
|---------------------------------|-----------------------------------------------|
| $C_{27}H_{18}N_4O{\cdot}2CH_4O$ | V = 1192.81 (4) Å <sup>3</sup>                |
| $M_r = 478.54$                  | Z = 2                                         |
| Triclinic, $P\overline{1}$      | F(000) = 504                                  |
| Hall symbol: -P 1               | $D_{\rm x} = 1.332 {\rm ~Mg} {\rm ~m}^{-3}$   |
| a = 10.5120 (3)  Å              | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 11.4574 (2) Å               | Cell parameters from 4368 reflections         |
| c = 11.9983 (2) Å               | $\mu = 0.09 \text{ mm}^{-1}$                  |
| $\alpha = 116.325 (1)^{\circ}$  | T = 100  K                                    |
| $\beta = 107.465 (1)^{\circ}$   | Block, brown                                  |
| $\gamma = 95.147 (1)^{\circ}$   | $0.39 \times 0.29 \times 0.12 \text{ mm}$     |

Data collection

| Bruker SMART APEXII CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2005)<br>$T_{\min} = 0.876, T_{\max} = 0.990$ | 23412 measured reflections<br>7076 independent reflections<br>5031 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.043$<br>$\theta_{max} = 30.3^\circ, \ \theta_{min} = 2.1^\circ$<br>$h = -14 \rightarrow 14$<br>$k = -16 \rightarrow 16$<br>$l = -16 \rightarrow 16$                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.061$<br>$wR(F^2) = 0.182$<br>S = 1.07<br>7076 reflections<br>335 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods                              | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0919P)^2 + 0.4066P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.99$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.48$ e Å <sup>-3</sup> |

### Special details

**Experimental**. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | X            | у             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|---------------|--------------|-----------------------------|--|
| 01  | 0.43178 (14) | -0.35511 (14) | 0.48044 (14) | 0.0269 (3)                  |  |
| N1  | 0.31793 (14) | -0.20440 (14) | 0.39691 (14) | 0.0206 (3)                  |  |
| N2  | 0.29306 (14) | 0.09233 (14)  | 0.22570 (14) | 0.0190 (3)                  |  |
| N3  | 0.03863 (14) | 0.11984 (14)  | 0.25061 (14) | 0.0201 (3)                  |  |
| N4  | 0.42131 (14) | -0.09206 (14) | 0.32161 (14) | 0.0194 (3)                  |  |
| C1  | 0.53792 (17) | -0.32830 (17) | 0.44611 (16) | 0.0204 (3)                  |  |
| C2  | 0.64738 (18) | -0.38570 (17) | 0.47042 (17) | 0.0230 (3)                  |  |
| H2A | 0.6462       | -0.4398       | 0.5096       | 0.028*                      |  |
| C3  | 0.75724 (18) | -0.36215 (18) | 0.43628 (18) | 0.0247 (4)                  |  |
| H3A | 0.8303       | -0.4001       | 0.4533       | 0.030*                      |  |
| C4  | 0.76027 (18) | -0.28222 (19) | 0.37661 (18) | 0.0243 (4)                  |  |
| H4A | 0.8341       | -0.2682       | 0.3525       | 0.029*                      |  |
| C5  | 0.65261 (17) | -0.22384 (18) | 0.35341 (17) | 0.0220 (3)                  |  |
| H5A | 0.6550       | -0.1699       | 0.3143       | 0.026*                      |  |

| C6   | 0.54036 (16) | -0.24495 (16) | 0.38802 (16) | 0.0191 (3) |
|------|--------------|---------------|--------------|------------|
| C7   | 0.42786 (17) | -0.18162 (16) | 0.36860 (16) | 0.0189 (3) |
| C8   | 0.23639 (17) | -0.12638 (16) | 0.36740 (16) | 0.0197 (3) |
| С9   | 0.10836 (17) | -0.11210 (17) | 0.37990 (18) | 0.0223 (3) |
| H9A  | 0.0684       | -0.1577       | 0.4137       | 0.027*     |
| C10  | 0.04485 (18) | -0.02999 (17) | 0.34120 (18) | 0.0222 (3) |
| H10A | -0.0393      | -0.0193       | 0.3490       | 0.027*     |
| C11  | 0.10607 (16) | 0.03970 (16)  | 0.28893 (16) | 0.0190 (3) |
| C12  | 0.09500 (16) | 0.18353 (16)  | 0.20112 (16) | 0.0186 (3) |
| C13  | 0.22417 (16) | 0.16765 (16)  | 0.18646 (16) | 0.0182 (3) |
| C14  | 0.23573 (16) | 0.02835 (16)  | 0.27780 (16) | 0.0184 (3) |
| C15  | 0.29957 (17) | -0.05638 (16) | 0.31951 (16) | 0.0192 (3) |
| C16  | 0.01785 (17) | 0.27117 (17)  | 0.16282 (17) | 0.0204 (3) |
| C17  | -0.12304(18) | 0.21913 (19)  | 0.08189 (18) | 0.0256 (4) |
| H17A | -0.1672      | 0.1312        | 0.0538       | 0.031*     |
| C18  | -0.1971(2)   | 0.2984 (2)    | 0.0433 (2)   | 0.0334 (4) |
| H18A | -0.2905      | 0.2630        | -0.0116      | 0.040*     |
| C19  | -0.1323(2)   | 0.4301 (2)    | 0.0864 (2)   | 0.0383 (5) |
| H19A | -0.1819      | 0.4828        | 0.0600       | 0.046*     |
| C20  | 0.0072 (2)   | 0.4835 (2)    | 0.1693 (2)   | 0.0343 (4) |
| H20A | 0.0502       | 0.5724        | 0.1996       | 0.041*     |
| C21  | 0.0823 (2)   | 0.40404 (18)  | 0.20673 (19) | 0.0265 (4) |
| H21A | 0.1758       | 0.4396        | 0.2612       | 0.032*     |
| C22  | 0.28550 (17) | 0.23115 (16)  | 0.12362 (16) | 0.0192 (3) |
| C23  | 0.20742 (18) | 0.21654 (18)  | -0.00052(17) | 0.0228 (3) |
| H23A | 0.1148       | 0.1690        | -0.0437      | 0.027*     |
| C24  | 0.2674 (2)   | 0.27272 (19)  | -0.05977(18) | 0.0259 (4) |
| H24A | 0.2151       | 0.2613        | -0.1434      | 0.031*     |
| C25  | 0.4040 (2)   | 0.34550 (19)  | 0.00426 (19) | 0.0281 (4) |
| H25A | 0.4436       | 0.3834        | -0.0358      | 0.034*     |
| C26  | 0.4826 (2)   | 0.36194 (19)  | 0.12905 (19) | 0.0278 (4) |
| H26A | 0.5745       | 0.4117        | 0.1729       | 0.033*     |
| C27  | 0.42355 (18) | 0.30390 (18)  | 0.18805 (17) | 0.0229 (3) |
| H27A | 0.4765       | 0.3137        | 0.2707       | 0.028*     |
| O2   | 0.62482 (16) | 0.01159 (16)  | 0.26543 (16) | 0.0394 (4) |
| H1O2 | 0.7056       | 0.0933        | 0.3188       | 0.059*     |
| C28  | 0.5765 (2)   | 0.0070 (2)    | 0.1395 (2)   | 0.0398 (5) |
| H28A | 0.5578       | 0.0915        | 0.1519       | 0.060*     |
| H28B | 0.4933       | -0.0643       | 0.0802       | 0.060*     |
| H28C | 0.6455       | -0.0093       | 0.1012       | 0.060*     |
| 03   | 0.86046 (15) | 0.20926 (15)  | 0.38666 (16) | 0.0366 (3) |
| H1O3 | 0.9203       | 0.1858        | 0.3389       | 0.055*     |
| C29  | 0.8398 (2)   | 0.3352 (2)    | 0.4050 (2)   | 0.0352 (4) |
| H29A | 0.8729       | 0.3989        | 0.4994       | 0.053*     |
| H29B | 0.7430       | 0.3260        | 0.3642       | 0.053*     |
| H29C | 0.8893       | 0.3665        | 0.3638       | 0.053*     |
| H1N4 | 0.492 (3)    | -0.053 (2)    | 0.302 (2)    | 0.038 (6)* |
| H1O1 | 0.370 (3)    | -0.303 (3)    | 0.460 (3)    | 0.054 (8)* |
|      |              |               |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-----------------|-----------------|-------------|-------------|-------------|
| 01  | 0.0281 (6)  | 0.0313 (7)      | 0.0364 (7)      | 0.0112 (5)  | 0.0177 (6)  | 0.0248 (6)  |
| N1  | 0.0209 (7)  | 0.0221 (7)      | 0.0245 (7)      | 0.0066 (5)  | 0.0106 (6)  | 0.0146 (6)  |
| N2  | 0.0215 (7)  | 0.0202 (7)      | 0.0182 (6)      | 0.0051 (5)  | 0.0090 (5)  | 0.0111 (5)  |
| N3  | 0.0213 (7)  | 0.0201 (7)      | 0.0202 (7)      | 0.0055 (5)  | 0.0087 (5)  | 0.0105 (6)  |
| N4  | 0.0202 (6)  | 0.0226 (7)      | 0.0216 (7)      | 0.0074 (5)  | 0.0098 (5)  | 0.0145 (6)  |
| C1  | 0.0228 (8)  | 0.0198 (8)      | 0.0193 (7)      | 0.0028 (6)  | 0.0083 (6)  | 0.0105 (6)  |
| C2  | 0.0263 (8)  | 0.0219 (8)      | 0.0228 (8)      | 0.0069 (6)  | 0.0071 (7)  | 0.0140 (7)  |
| C3  | 0.0231 (8)  | 0.0260 (9)      | 0.0254 (8)      | 0.0082 (7)  | 0.0069 (7)  | 0.0141 (7)  |
| C4  | 0.0201 (8)  | 0.0305 (9)      | 0.0256 (8)      | 0.0065 (7)  | 0.0096 (7)  | 0.0161 (7)  |
| C5  | 0.0215 (8)  | 0.0260 (8)      | 0.0223 (8)      | 0.0059 (6)  | 0.0089 (6)  | 0.0147 (7)  |
| C6  | 0.0198 (7)  | 0.0200 (7)      | 0.0187 (7)      | 0.0044 (6)  | 0.0069 (6)  | 0.0109 (6)  |
| C7  | 0.0207 (7)  | 0.0193 (7)      | 0.0180 (7)      | 0.0040 (6)  | 0.0077 (6)  | 0.0104 (6)  |
| C8  | 0.0205 (7)  | 0.0198 (8)      | 0.0212 (8)      | 0.0039 (6)  | 0.0087 (6)  | 0.0118 (6)  |
| C9  | 0.0226 (8)  | 0.0239 (8)      | 0.0263 (8)      | 0.0053 (6)  | 0.0130 (7)  | 0.0151 (7)  |
| C10 | 0.0210 (8)  | 0.0247 (8)      | 0.0260 (8)      | 0.0067 (6)  | 0.0131 (7)  | 0.0139 (7)  |
| C11 | 0.0198 (7)  | 0.0194 (7)      | 0.0183 (7)      | 0.0052 (6)  | 0.0079 (6)  | 0.0092 (6)  |
| C12 | 0.0199 (7)  | 0.0190 (7)      | 0.0173 (7)      | 0.0057 (6)  | 0.0073 (6)  | 0.0090 (6)  |
| C13 | 0.0197 (7)  | 0.0182 (7)      | 0.0166 (7)      | 0.0040 (6)  | 0.0067 (6)  | 0.0087 (6)  |
| C14 | 0.0208 (7)  | 0.0192 (7)      | 0.0170 (7)      | 0.0053 (6)  | 0.0083 (6)  | 0.0097 (6)  |
| C15 | 0.0201 (7)  | 0.0208 (8)      | 0.0192 (7)      | 0.0058 (6)  | 0.0088 (6)  | 0.0108 (6)  |
| C16 | 0.0227 (8)  | 0.0235 (8)      | 0.0204 (8)      | 0.0107 (6)  | 0.0115 (6)  | 0.0122 (7)  |
| C17 | 0.0251 (8)  | 0.0276 (9)      | 0.0245 (8)      | 0.0086 (7)  | 0.0089 (7)  | 0.0132 (7)  |
| C18 | 0.0288 (9)  | 0.0418 (11)     | 0.0305 (10)     | 0.0166 (8)  | 0.0081 (8)  | 0.0192 (9)  |
| C19 | 0.0429 (12) | 0.0403 (12)     | 0.0442 (12)     | 0.0252 (10) | 0.0182 (10) | 0.0275 (10) |
| C20 | 0.0423 (11) | 0.0266 (9)      | 0.0430 (11)     | 0.0150 (8)  | 0.0196 (9)  | 0.0213 (9)  |
| C21 | 0.0288 (9)  | 0.0237 (8)      | 0.0298 (9)      | 0.0095 (7)  | 0.0129 (7)  | 0.0140 (7)  |
| C22 | 0.0233 (8)  | 0.0187 (7)      | 0.0203 (8)      | 0.0076 (6)  | 0.0110 (6)  | 0.0113 (6)  |
| C23 | 0.0238 (8)  | 0.0249 (8)      | 0.0225 (8)      | 0.0078 (7)  | 0.0094 (7)  | 0.0133 (7)  |
| C24 | 0.0334 (9)  | 0.0288 (9)      | 0.0223 (8)      | 0.0096 (7)  | 0.0117 (7)  | 0.0170 (7)  |
| C25 | 0.0378 (10) | 0.0259 (9)      | 0.0283 (9)      | 0.0061 (7)  | 0.0169 (8)  | 0.0172 (8)  |
| C26 | 0.0283 (9)  | 0.0262 (9)      | 0.0265 (9)      | 0.0001 (7)  | 0.0114 (7)  | 0.0116 (7)  |
| C27 | 0.0248 (8)  | 0.0252 (8)      | 0.0201 (8)      | 0.0053 (7)  | 0.0091 (6)  | 0.0121 (7)  |
| O2  | 0.0436 (8)  | 0.0401 (8)      | 0.0442 (9)      | 0.0048 (7)  | 0.0230 (7)  | 0.0259 (7)  |
| C28 | 0.0470 (12) | 0.0376 (11)     | 0.0423 (12)     | 0.0138 (10) | 0.0216 (10) | 0.0224 (10) |
| O3  | 0.0404 (8)  | 0.0427 (8)      | 0.0511 (9)      | 0.0215 (7)  | 0.0308 (7)  | 0.0324 (8)  |
| C29 | 0.0345 (10) | 0.0341 (10)     | 0.0416 (11)     | 0.0129 (8)  | 0.0216 (9)  | 0.0172 (9)  |

Geometric parameters (Å, °)

| 01—C1   | 1.355 (2) | C16—C21  | 1.394 (2) |  |
|---------|-----------|----------|-----------|--|
| 01—H101 | 0.97 (3)  | C16—C17  | 1.399 (2) |  |
| N1—C7   | 1.334 (2) | C17—C18  | 1.389 (3) |  |
| N1—C8   | 1.377 (2) | C17—H17A | 0.9300    |  |
| N2—C13  | 1.326 (2) | C18—C19  | 1.386 (3) |  |
| N2-C14  | 1.358 (2) | C18—H18A | 0.9300    |  |
|         |           |          |           |  |

| N3—C12                     | 1.324 (2)            | C19—C20                 | 1.392 (3)   |
|----------------------------|----------------------|-------------------------|-------------|
| N3—C11                     | 1.361 (2)            | C19—H19A                | 0.9300      |
| N4—C7                      | 1.370 (2)            | C20—C21                 | 1.390 (3)   |
| N4—C15                     | 1.374 (2)            | C20—H20A                | 0.9300      |
| N4—H1N4                    | 0.97 (3)             | C21—H21A                | 0.9300      |
| C1—C2                      | 1.395 (2)            | C22—C27                 | 1.392 (2)   |
| C1—C6                      | 1.412 (2)            | C22—C23                 | 1.393 (2)   |
| C2—C3                      | 1.379 (3)            | C23—C24                 | 1.385 (2)   |
| C2—H2A                     | 0.9300               | C23—H23A                | 0.9300      |
| C3—C4                      | 1.394 (2)            | C24—C25                 | 1.380 (3)   |
| С3—НЗА                     | 0.9300               | C24—H24A                | 0.9300      |
| C4—C5                      | 1.385 (2)            | C25—C26                 | 1.392 (3)   |
| C4—H4A                     | 0.9300               | C25—H25A                | 0.9300      |
| C5—C6                      | 1 398 (2)            | C26—C27                 | 1 391 (2)   |
| C5—H5A                     | 0.9300               | C26—H26A                | 0.9300      |
| C6-C7                      | 1 455 (2)            | C27—H27A                | 0.9300      |
| $C_{8}$ $C_{15}$           | 1 399 (2)            | 02-C28                  | 1.416(3)    |
| $C_{8}$                    | 1.377(2)<br>1 414(2) | 02                      | 1.0039      |
| $C_{0}$ $C_{10}$           | 1.414(2)<br>1.364(2) | C28 H28A                | 0.9600      |
| $C_{0}$ H0A                | 0.0300               | C28 H28B                | 0.9000      |
| C10 C11                    | 1.428(2)             | $C_{28}$ $H_{28C}$      | 0.9000      |
| C10_H10A                   | 0.0300               | $C_{20} = 1128C$        | 1.407(2)    |
| $C_{10}$ $C_{11}$ $C_{14}$ | 0.9300               | 03 4102                 | 1.407(2)    |
| C12 C12                    | 1.421(2)             | C20 1120A               | 0.9322      |
| C12-C13                    | 1.438(2)             | C29—H29A                | 0.9600      |
| C12 - C10                  | 1.480(2)             | C29—n29B                | 0.9600      |
| C13 - C22                  | 1.480(2)             | C29—H29C                | 0.9600      |
| 014015                     | 1.410 (2)            |                         |             |
| Cg1…Cg1 <sup>i</sup>       | 3.7885 (10)          | Cg3····Cg4 <sup>i</sup> | 3.6348 (11) |
| Cg2···Cg3 <sup>i</sup>     | 3.5234 (7)           |                         |             |
|                            |                      |                         |             |
| C1—O1—H1O1                 | 104.8 (17)           | C8—C15—C14              | 121.14 (15) |
| C7—N1—C8                   | 105.76 (13)          | C21—C16—C17             | 119.42 (16) |
| C13—N2—C14                 | 117.55 (14)          | C21—C16—C12             | 121.54 (15) |
| C12—N3—C11                 | 118.73 (14)          | C17—C16—C12             | 119.04 (15) |
| C7—N4—C15                  | 106.63 (14)          | C18—C17—C16             | 120.17 (17) |
| C7—N4—H1N4                 | 127.7 (14)           | C18—C17—H17A            | 119.9       |
| C15—N4—H1N4                | 125.4 (14)           | C16—C17—H17A            | 119.9       |
| O1—C1—C2                   | 117.77 (15)          | C19—C18—C17             | 120.15 (19) |
| O1—C1—C6                   | 122.16 (15)          | C19—C18—H18A            | 119.9       |
| C2—C1—C6                   | 120.07 (15)          | C17—C18—H18A            | 119.9       |
| C3—C2—C1                   | 119.88 (16)          | C18—C19—C20             | 120.00 (18) |
| C3—C2—H2A                  | 120.1                | C18—C19—H19A            | 120.0       |
| C1—C2—H2A                  | 120.1                | С20—С19—Н19А            | 120.0       |
| C2—C3—C4                   | 120.86 (16)          | C21—C20—C19             | 120.10 (19) |
| С2—С3—НЗА                  | 119.6                | C21—C20—H20A            | 119.9       |
| C4—C3—H3A                  | 119.6                | C19—C20—H20A            | 119.9       |
| C5—C4—C3                   | 119.55 (16)          | C20—C21—C16             | 120.13 (18) |

| C5—C4—H4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.2                    | C20—C21—H21A                                                     | 119.9                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|--------------------------|
| C3—C4—H4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.2                    | C16—C21—H21A                                                     | 119.9                    |
| C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.87 (16)              | C27—C22—C23                                                      | 119.41 (15)              |
| С4—С5—Н5А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.6                    | C27—C22—C13                                                      | 119.70 (14)              |
| С6—С5—Н5А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.6                    | C23—C22—C13                                                      | 120.88 (15)              |
| C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.74 (15)              | C24—C23—C22                                                      | 120.17 (16)              |
| C5—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122.07 (15)              | C24—C23—H23A                                                     | 119.9                    |
| C1 - C6 - C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119 18 (15)              | C22—C23—H23A                                                     | 119.9                    |
| N1-C7-N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.95 (14)              | $C_{25}$ $C_{24}$ $C_{23}$                                       | 120.52 (16)              |
| N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122 72 (14)              | $C_{25} = C_{24} = H_{24A}$                                      | 119 7                    |
| N4-C7-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122.72(14)<br>125.33(15) | $C_{23}$ $C_{24}$ $H_{24A}$                                      | 119.7                    |
| N1  C8  C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.39(19)<br>100.20(14) | $C_{23}^{24}$ $C_{24}^{25}$ $C_{26}^{26}$                        | 119.7                    |
| $N1 = C_{0} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.29(14)<br>120.16(15) | $C_{24} = C_{25} = C_{20}$                                       | 119.70 (10)              |
| $N1 - C_0 - C_9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129.10(13)<br>121.56(15) | $C_{24} = C_{25} = H_{25} A$                                     | 120.1                    |
| $C_{13} = C_{8} = C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.30(15)               | $C_{20} = C_{23} = H_{23} = H_{23}$                              | 120.1                    |
| C10 - C9 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.49 (13)              | $C_{27} = C_{20} = C_{23}$                                       | 119.98 (17)              |
| C10 - C9 - H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.8                    | $C_2/-C_{20}$ -H26A                                              | 120.0                    |
| C8—C9—H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.8                    | C25—C26—H26A                                                     | 120.0                    |
| C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.76 (15)              | C26—C27—C22                                                      | 120.16 (16)              |
| C9—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.6                    | С26—С27—Н27А                                                     | 119.9                    |
| C11—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.6                    | С22—С27—Н27А                                                     | 119.9                    |
| N3—C11—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.68 (14)              | C28—O2—H1O2                                                      | 101.2                    |
| N3—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.80 (15)              | O2—C28—H28A                                                      | 109.5                    |
| C14—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.51 (15)              | O2—C28—H28B                                                      | 109.5                    |
| N3—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.96 (14)              | H28A—C28—H28B                                                    | 109.5                    |
| N3—C12—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.40 (14)              | O2—C28—H28C                                                      | 109.5                    |
| C13—C12—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.65 (14)              | H28A—C28—H28C                                                    | 109.5                    |
| N2-C13-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.33 (14)              | H28B—C28—H28C                                                    | 109.5                    |
| N2—C13—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.56 (14)              | C29—O3—H1O3                                                      | 108.4                    |
| C12—C13—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.09 (14)              | O3—C29—H29A                                                      | 109.5                    |
| N2—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.75 (15)              | O3—C29—H29B                                                      | 109.5                    |
| N2—C14—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.71 (15)              | H29A—C29—H29B                                                    | 109.5                    |
| C15—C14—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.51 (14)              | O3—C29—H29C                                                      | 109.5                    |
| N4—C15—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106.38 (14)              | H29A—C29—H29C                                                    | 109.5                    |
| N4—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 132.46 (15)              | H29B—C29—H29C                                                    | 109.5                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                                                  |                          |
| 01 - C1 - C2 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179 52 (16)              | N3-C11-C14-N2                                                    | -2.1(2)                  |
| C6-C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.7(3)                  | C10-C11-C14-N2                                                   | 17868(15)                |
| $C_1 - C_2 - C_3 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.5(3)                  | $N_{3}$ $C_{11}$ $C_{14}$ $C_{15}$                               | 170.00(19)<br>179.95(14) |
| $C_1 = C_2 = C_3 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11(3)                    | $C_{10}  C_{11}  C_{14}  C_{15}$                                 | (17).00(14)              |
| $C_2 - C_3 - C_4 - C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.5(3)                  | C7 N4 C15 C8                                                     | 0.7(2)                   |
| $C_{3} - C_{4} - C_{5} - C_{6} - C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.6(3)                  | C7 N4 C15 C14                                                    | -177.04(17)              |
| $C_{4} = C_{5} = C_{6} = C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0(3)                   | $C_{1} = 104 = C_{13} = C_{14}$ $N_{1} = C_{2} = C_{15} = N_{4}$ | 1/1.94(1/)<br>-0.57(19)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170.09 (10)              | $N1 - C\delta - C15 - N4$                                        | -0.3/(18)                |
| 01 - 01 - 00 - 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1/9.00(15)              | $U_{2} = U_{3} = U_{13} = U_{3}$                                 | 179.00 (15)              |
| $C_2 - C_1 - C_6 - C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5 (2)                  | N1 - C8 - C15 - C14                                              | 1/8.09 (15)              |
| $\bigcup_{i=1}^{i} \bigcup_{j=1}^{i} \bigcup_{i=1}^{i} \bigcup_{j=1}^{i} \bigcup_{j$ | 2.3 (2)                  | C9—C8—C15—C14                                                    | -2.0 (3)                 |
| C2—C1—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -177.50 (15)             | N2-C14-C15-N4                                                    | 1.1 (3)                  |
| C8—N1—C7—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.09 (19)               | C11—C14—C15—N4                                                   | 179.09 (17)              |
| C8—N1—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 179.25 (15)              | N2—C14—C15—C8                                                    | -177.11 (15)             |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| C5—C6—C7—N1177.68 (16)C13—C12—C16—C21 $-50.0 (2)$ C1—C6—C7—N1 $-3.6 (2)$ N3—C12—C16—C17 $-49.6 (2)$ C5—C6—C7—N4 $-3.1 (3)$ C13—C12—C16—C17130.63 (17) |  |
| C1—C6—C7—N1       -3.6 (2)       N3—C12—C16—C17       -49.6 (2)         C5—C6—C7—N4       -3.1 (3)       C13—C12—C16—C17       130.63 (17)            |  |
| C5—C6—C7—N4 –3.1 (3) C13—C12—C16—C17 130.63 (17)                                                                                                      |  |
|                                                                                                                                                       |  |
| C1—C6—C7—N4 175.63 (15) C21—C16—C17—C18 1.4 (3)                                                                                                       |  |
| C7—N1—C8—C15 0.41 (18) C12—C16—C17—C18 -179.21 (17)                                                                                                   |  |
| C7—N1—C8—C9 –179.54 (17) C16—C17—C18—C19 –0.9 (3)                                                                                                     |  |
| N1—C8—C9—C10 –178.63 (17) C17—C18—C19—C20 –0.4 (3)                                                                                                    |  |
| C15—C8—C9—C10 1.4 (3) C18—C19—C20—C21 1.3 (3)                                                                                                         |  |
| C8—C9—C10—C11 0.2 (3) C19—C20—C21—C16 -0.8 (3)                                                                                                        |  |
| C12—N3—C11—C14 1.3 (2) C17—C16—C21—C20 -0.6 (3)                                                                                                       |  |
| C12—N3—C11—C10 -179.45 (15) C12—C16—C21—C20 -179.91 (17)                                                                                              |  |
| C9—C10—C11—N3 179.52 (16) N2—C13—C22—C27 -50.5 (2)                                                                                                    |  |
| C9—C10—C11—C14 -1.3 (3) C12—C13—C22—C27 131.08 (17)                                                                                                   |  |
| C11—N3—C12—C13 0.7 (2) N2—C13—C22—C23 128.11 (17)                                                                                                     |  |
| C11—N3—C12—C16 -179.14 (14) C12—C13—C22—C23 -50.3 (2)                                                                                                 |  |
| C14—N2—C13—C12 1.3 (2) C27—C22—C23—C24 0.7 (3)                                                                                                        |  |
| C14—N2—C13—C22 –177.07 (14) C13—C22—C23—C24 –177.91 (16)                                                                                              |  |
| N3—C12—C13—N2 -2.1 (2) C22—C23—C24—C25 -1.1 (3)                                                                                                       |  |
| C16—C12—C13—N2 177.70 (15) C23—C24—C25—C26 0.4 (3)                                                                                                    |  |
| N3—C12—C13—C22 176.20 (15) C24—C25—C26—C27 0.7 (3)                                                                                                    |  |
| C16—C12—C13—C22 -4.0 (2) C25—C26—C27—C22 -1.0 (3)                                                                                                     |  |
| C13—N2—C14—C15 178.55 (15) C23—C22—C27—C26 0.3 (3)                                                                                                    |  |
| C13—N2—C14—C11 0.7 (2) C13—C22—C27—C26 178.97 (16)                                                                                                    |  |

Symmetry code: (i) -x+1, -y, -z+1.

# Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>                        | D—H      | H···A    | D···A     | D—H···A |
|------------------------------------------------|----------|----------|-----------|---------|
| 02—H1 <i>0</i> 2…O3                            | 1.00     | 1.71     | 2.700 (3) | 167     |
| O3—H1 <i>O</i> 3····N3 <sup>ii</sup>           | 0.95     | 1.87     | 2.814 (2) | 172     |
| N4—H1 <i>N</i> 4····O2                         | 0.97 (3) | 1.78 (3) | 2.750 (2) | 177 (2) |
| 01—H1 <i>0</i> 1…N1                            | 0.97 (4) | 1.66 (4) | 2.570 (2) | 154 (3) |
| C2—H2A····O1 <sup>iii</sup>                    | 0.93     | 2.48     | 3.356 (3) | 156     |
| С5—Н5А…О2                                      | 0.93     | 2.42     | 3.310 (3) | 160     |
| C28—H28 <i>C</i> ··· <i>Cg</i> 5 <sup>iv</sup> | 0.96     | 2.95     | 3.534 (2) | 120     |

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) -*x*+1, -*y*-1, -*z*+1; (iv) -*x*+1, -*y*, -*z*.