organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[1-(4-Nitrophenyl)ethylidene]thiosemicarbazide

Jian-Gang Wang,^a Fang-Fang Jian^{b*} and Yu-Feng Ding^c

^aMicroscale Science Institute, Bioengineering School, Weifang University, Weifang 261061, People's Republic of China, ^bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and ^cNumber Seven Middle School, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 14 July 2008; accepted 5 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.141; data-to-parameter ratio = 15.9.

The title compound, $C_9H_{10}N_4O_2S$, was prepared by the reaction of 1-(4-nitrophenyl)ethanone and thiosemicarbazide in ethanol at 367 K. There are weak intermolecular $N-H\cdots S$ and $N-H\cdots O$ hydrogen-bonding interactions in the crystal structure involving the amine and nitrile groups, respectively, as donors.

Related literature

For related literature, see: Jian *et al.* (2006); Qin *et al.* (2006); Rozwadowski *et al.* (1999).

Experimental

Crystal data	
$C_9H_{10}N_4O_2S$	a = 7.4450 (15) Å
$M_r = 238.27$	b = 9.3180 (19) Å
Triclinic, P1	c = 9.4050 (19) Å

$\alpha = 62.08 \ (3)^{\circ}$	
$\beta = 76.41 \ (3)^{\circ}$	
$\gamma = 69.02 \ (3)^{\circ}$	
V = 536.5 (3) Å ³	
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 2493 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 145 parameters $wR(F^2) = 0.140$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.39$ e Å⁻³2307 reflections $\Delta \rho_{min} = -0.38$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N3-H3A\cdots S1^{i}$ $N4-H4A\cdots O1^{ii}$ $N4-H4B\cdots O2^{iii}$	0.86 0.86 0.86	2.74 2.35 2.29	3.581 (2) 3.101 (3) 3.133 (3)	166 146 166

Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^{-1}$

 $0.20 \times 0.15 \times 0.10$ mm

2307 independent reflections

1776 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.026$

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) -x, -y, -z + 2; (iii) x - 1, y + 1, z - 1.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2598).

References

Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, 03198–03199.

Qin, Y.-Q., Ren, X.-Y., Liang, T.-L. & Jian, F.-F. (2006). Acta Cryst. E62, 05215–05216.

Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809–2817.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1730 [doi:10.1107/S1600536808025105]

1-[1-(4-Nitrophenyl)ethylidene]thiosemicarbazide

Jian-Gang Wang, Fang-Fang Jian and Yu-Feng Ding

S1. Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Jian *et al.*, 2006). Schiff bases show biochemical and pharmacological applications. The growing interest in Schiff bases lately is also due to their ability to form intramolecular hydrogen bonds by electron coupling between acid-base centers (Rozwadowski *et al.*,1999). The title compound (I), was synthesized and we report here its crystal structure

In the crystal structure of (I) (Fig. 1). The C6–C9/N2/N3/S1 plane makes a dihedral angle of 19.78 (127)° with the benzene ring (C1–C6). The C=N bond length [1.281 (3) Å] and C=S bond length [1.685 (2) Å] are in agreement with those observed before (Jian *et al.*, 2006; Qin *et al.*, 2006). There are intermolecular N–H···S and N–H···O hydrogen-bond interactions to stabilize the crystal structure (Table 1).

S2. Experimental

A mixture of hydrochloric acid 0.6 mL (0.02 mol) and thiosemicarbazide 1.8 g (0.02 mol) was stirred with ethanol (50 mL) at 293 K for 2 h, then add 1-(4-nitrophenyl)ethanone 3.3 g (0.02 mol), then afford the title compound [4.17 g, yield: 87.6%]. Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone and ethanol(1:1) at room temperature.

S3. Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with $U_{iso}=1.2$ or $1.5U_{eq}$.

Figure 1

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Z = 2

F(000) = 248

 $\theta = 2.5 - 27.0^{\circ}$

 $\mu = 0.29 \text{ mm}^{-1}$

Block, yellow

 $0.20 \times 0.15 \times 0.10$ mm

T = 293 K

 $D_{\rm x} = 1.475 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1776 reflections

1-[1-(4-Nitrophenyl)ethylidene]thiosemicarbazide

C₉H₁₀N₄O₂S $M_r = 238.27$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.4450 (15) Å b = 9.3180 (19) Å c = 9.4050 (19) Å $a = 62.08 (3)^{\circ}$ $\beta = 76.41 (3)^{\circ}$ $\gamma = 69.02 (3)^{\circ}$ $V = 536.5 (3) \text{ Å}^{3}$

Data collection

Bruker SMART CCD area-detector	1776 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.026$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.0^{\circ}, \theta_{\rm min} = 2.5^{\circ}$
Graphite monochromator	$h = 0 \rightarrow 8$
φ and ω scans	$k = -11 \rightarrow 11$
2493 measured reflections	$l = -11 \rightarrow 11$
2307 independent reflections	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.046$ Hydrogen site location: inferred from $wR(F^2) = 0.140$ neighbouring sites S = 1.08H-atom parameters constrained 2307 reflections $w = 1/[\sigma^2(F_0^2) + (0.0802P)^2 + 0.1605P]$ 145 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	-0.18728 (10)	0.97254 (7)	0.38617 (7)	0.0483 (2)

O1	0.2761 (3)	-0.3046 (2)	1.2287 (3)	0.0697 (6)
O2	0.4183 (3)	-0.2729 (2)	1.3830 (2)	0.0680 (6)
N1	0.3337 (3)	-0.2167 (2)	1.2626 (2)	0.0472 (5)
N2	0.0574 (3)	0.5445 (2)	0.7336 (2)	0.0373 (4)
N3	0.0128 (3)	0.7117 (2)	0.6222 (2)	0.0394 (4)
H3A	0.0744	0.7778	0.6144	0.047*
N4	-0.2206 (3)	0.6599 (2)	0.5464 (2)	0.0521 (5)
H4A	-0.1876	0.5573	0.6190	0.063*
H4B	-0.3121	0.6918	0.4873	0.063*
C1	0.1766 (3)	0.1958 (3)	0.9090 (3)	0.0392 (5)
H1A	0.1182	0.2381	0.8145	0.047*
C2	0.2135 (3)	0.0244 (3)	1.0120 (3)	0.0410 (5)
H2B	0.1813	-0.0485	0.9871	0.049*
C3	0.2990 (3)	-0.0353 (2)	1.1521 (3)	0.0364 (5)
C4	0.3527 (3)	0.0684 (3)	1.1924 (3)	0.0415 (5)
H4C	0.4109	0.0249	1.2873	0.050*
C5	0.3167 (3)	0.2400 (3)	1.0864 (3)	0.0397 (5)
H5A	0.3537	0.3112	1.1100	0.048*
C6	0.2260 (3)	0.3065 (2)	0.9453 (2)	0.0337 (4)
C7	0.1848 (3)	0.4909 (2)	0.8317 (3)	0.0371 (5)
C8	0.2907 (4)	0.5977 (3)	0.8389 (4)	0.0631 (8)
H8A	0.2478	0.7120	0.7589	0.095*
H8B	0.4268	0.5521	0.8185	0.095*
H8C	0.2649	0.5972	0.9441	0.095*
C9	-0.1299 (3)	0.7696 (3)	0.5255 (3)	0.0384 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0686 (4)	0.0278 (3)	0.0474 (4)	-0.0157 (3)	-0.0254 (3)	-0.0044 (2)
01	0.0890 (15)	0.0312 (9)	0.0844 (14)	-0.0239 (9)	-0.0267 (11)	-0.0073 (9)
02	0.0795 (14)	0.0444 (10)	0.0588 (11)	-0.0168 (9)	-0.0295 (10)	0.0051 (9)
N1	0.0442 (11)	0.0309 (9)	0.0534 (12)	-0.0102 (8)	-0.0077 (9)	-0.0062 (8)
N2	0.0450 (10)	0.0227 (8)	0.0400 (9)	-0.0076 (7)	-0.0105 (8)	-0.0084 (7)
N3	0.0478 (10)	0.0242 (8)	0.0446 (10)	-0.0109 (7)	-0.0151 (8)	-0.0078 (7)
N4	0.0678 (14)	0.0332 (10)	0.0558 (12)	-0.0205 (9)	-0.0276 (10)	-0.0047 (9)
C1	0.0448 (12)	0.0296 (10)	0.0433 (11)	-0.0090 (8)	-0.0139 (9)	-0.0120 (9)
C2	0.0468 (12)	0.0285 (10)	0.0513 (13)	-0.0119 (9)	-0.0106 (10)	-0.0158 (9)
C3	0.0352 (11)	0.0254 (9)	0.0404 (11)	-0.0070 (8)	-0.0027 (8)	-0.0088(8)
C4	0.0462 (12)	0.0361 (11)	0.0392 (11)	-0.0105 (9)	-0.0112 (9)	-0.0109 (9)
C5	0.0481 (12)	0.0296 (10)	0.0444 (12)	-0.0100 (9)	-0.0119 (9)	-0.0152 (9)
C6	0.0347 (10)	0.0242 (9)	0.0400 (11)	-0.0063 (8)	-0.0064 (8)	-0.0119 (8)
C7	0.0404 (11)	0.0249 (9)	0.0442 (11)	-0.0068 (8)	-0.0093 (9)	-0.0124 (9)
C8	0.0745 (18)	0.0316 (11)	0.0821 (19)	-0.0198 (12)	-0.0407 (15)	-0.0044 (12)
C9	0.0481 (12)	0.0284 (10)	0.0379 (11)	-0.0111 (9)	-0.0093 (9)	-0.0108 (8)

Geometric parameters (Å, °)

S1—C9	1.685 (2)	C1—H1A	0.9300	
01—N1	1.231 (3)	C2—C3	1.381 (3)	
O2—N1	1.224 (3)	C2—H2B	0.9300	
N1—C3	1.473 (3)	C3—C4	1.389 (3)	
N2—C7	1.281 (3)	C4—C5	1.395 (3)	
N2—N3	1.379 (2)	C4—H4C	0.9300	
N3—C9	1.353 (3)	C5—C6	1.397 (3)	
N3—H3A	0.8600	С5—Н5А	0.9300	
N4—C9	1.336 (3)	C6—C7	1.498 (3)	
N4—H4A	0.8600	C7—C8	1.506 (3)	
N4—H4B	0.8600	C8—H8A	0.9600	
C1—C2	1.388 (3)	C8—H8B	0.9600	
C1—C6	1.406 (3)	C8—H8C	0.9600	
02—N1—O1	123.1 (2)	C3—C4—H4C	121.0	
O2—N1—C3	118.7 (2)	C5—C4—H4C	121.0	
01—N1—C3	118.15 (19)	C4—C5—C6	121.2 (2)	
C7—N2—N3	119.08 (18)	C4—C5—H5A	119.4	
C9—N3—N2	118.64 (17)	C6—C5—H5A	119.4	
C9—N3—H3A	120.7	C5—C6—C1	118.60 (18)	
N2—N3—H3A	120.7	C5—C6—C7	121.53 (18)	
C9—N4—H4A	120.0	C1—C6—C7	119.86 (18)	
C9—N4—H4B	120.0	N2—C7—C6	114.93 (18)	
H4A—N4—H4B	120.0	N2—C7—C8	125.16 (19)	
C2—C1—C6	121.03 (19)	C6—C7—C8	119.91 (18)	
C2—C1—H1A	119.5	C7—C8—H8A	109.5	
C6—C1—H1A	119.5	C7—C8—H8B	109.5	
C3—C2—C1	118.5 (2)	H8A—C8—H8B	109.5	
С3—С2—Н2В	120.8	C7—C8—H8C	109.5	
C1—C2—H2B	120.8	H8A—C8—H8C	109.5	
C2—C3—C4	122.67 (19)	H8B—C8—H8C	109.5	
C2—C3—N1	118.13 (19)	N4—C9—N3	117.19 (18)	
C4—C3—N1	119.20 (19)	N4—C9—S1	122.63 (17)	
C3—C4—C5	118.0 (2)	N3—C9—S1	120.19 (16)	

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3A····S1 ⁱ	0.86	2.74	3.581 (2)	166
N4—H4A···O1 ⁱⁱ	0.86	2.35	3.101 (3)	146
N4—H4 <i>B</i> ···O2 ⁱⁱⁱ	0.86	2.29	3.133 (3)	166

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*, -*y*, -*z*+2; (iii) *x*-1, *y*+1, *z*-1.