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In macromolecular structure determination using X-ray diffraction from

multiple crystals, the presence of different structures (structural polymorphs)

necessitates the classification of the diffraction data for appropriate structural

analysis. Hierarchical clustering analysis (HCA) is a promising technique that

has so far been used to extract isomorphous data, mainly for single-structure

determination. Although in principle the use of HCA can be extended to detect

polymorphs, the absence of a reference to define the threshold used to group the

isomorphous data sets (the ‘isomorphic threshold’) poses a challenge. Here,

unit-cell-based and intensity-based HCAs have been applied to data sets for apo

trypsin and inhibitor-bound trypsin that were mixed post data acquisition to

investigate the efficacy of HCA in classifying polymorphous data sets. Single-

step intensity-based HCA successfully classified polymorphs with a certain

‘isomorphic threshold’. In data sets for several samples containing an unknown

degree of structural heterogeneity, polymorphs could be identified by intensity-

based HCA using the suggested ‘isomorphic threshold’. Polymorphs were also

detected in single crystals using data collected using the continuous helical

scheme. These findings are expected to facilitate the determination of multiple

structural snapshots by exploiting automated data collection and analysis.

1. Introduction

The automation and acceleration of data collection at macro-

molecular crystallography (MX) beamlines of synchrotron-

radiation facilities are yielding massive amounts of X-ray

diffraction data. Such highly efficient, high-yield data acqui-

sition is now becoming a major trend in MX; namely, high-

data-rate MX (HDRMX; Bernstein et al., 2020). HDRMX

has been realized by the availability of highly brilliant X-ray

beams (Ursby et al., 2020; Sanchez-Weatherby et al., 2019;

Hirata et al., 2013), the fast readout of detectors (Casanas et

al., 2016), rapid sample-exchange robots (Murakami et al.,

2020; Papp et al., 2017; Martiel et al., 2020; Nurizzo et al., 2016)

and the application of automated measurement schemes

(Zander et al., 2015; Hirata et al., 2019; Basu et al., 2019;

Bowler et al., 2016). Furthermore, data reduction and struc-

ture analysis of the obtained data sets has also been auto-

mated in various pipelines (Yamashita et al., 2018; Winter &

McAuley, 2011; Wojdyr et al., 2013; Winter, 2010; Monaco et
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al., 2013; Vonrhein et al., 2011; Incardona et al., 2009; Wang et

al., 2022). Finally, data-management systems, including user

interfaces for viewing these data, have been developed so that

experimenters can seamlessly manage and easily interpret the

results of analyses from large amounts of data (Yamada et al.,

2013; Delagenière et al., 2011; Fisher et al., 2015).

Recently, structure determination using multiple crystals

has been facilitated by various developments that include the

automation and acceleration of data collection. In structure

determination using microcrystals, especially from lipid cubic

phase (LCP) crystals of membrane proteins, structures are

normally determined using the small-wedge synchrotron

crystallography (SWSX) approach. In the SWSX approach,

the total oscillation range is reduced but the number of

photons per oscillation width is increased. Since each wedge

data set covers only part of reciprocal space, tens to hundreds

of data sets must be measured from many microcrystals that

are mounted in different orientations (Cherezov et al., 2007;

Rosenbaum et al., 2007). Finally, the acquired data sets are

merged and used to determine the structure. In the case of

serial femtosecond crystallography (SFX; Barends et al., 2022)

or serial synchrotron rotation crystallography (SSROX; Gati

et al., 2014; Hasegawa et al., 2017), a much larger number of

images is required because every frame covers only a small

portion of reciprocal space, posing challenges in data collec-

tion and analysis. Here, the automation of data collection and

analysis is crucial and has provided opportunities to expand

the target and achieve structure determination of diverse

protein samples (Healey et al., 2021).

During structural analysis using multiple crystals, it is

crucial to select data sets that are sufficiently isomorphous. For

example, if non-isomorphous data sets are merged in SAD

phasing, it greatly complicates the search for the heavy-atom

positions (Giordano et al., 2012; Baba et al., 2021). Hier-

archical clustering analysis (HCA) is an approach that has

successfully been utilized to extract highly isomorphous data

sets from multiple crystals. This approach has been imple-

mented in the program BLEND (Foadi et al., 2013) that

conducts unit-cell-based HCA, while HCA based on the

correlation of diffraction intensities (also referred to as

‘intensity-based HCA’) has been realized in the program

ccCluster (Santoni et al., 2017). The automatic data-processing

pipeline KAMO implements both types of HCA.

Even when a structure can be solved using a single crystal,

there are benefits to using multiple crystals to analyze the

structure. One benefit is in terms of attainable resolution. The

resolution of a given structure can be improved as the number

of data sets for merging increases because the signal-to-noise

ratio of weak diffraction spots is improved. Another benefit is

linked to the analysis of polymorphs. Physiologically mean-

ingful structural polymorphs have been found by classifying

diffraction data from many crystals. Most previous studies

used HCA to extract highly isomorphic data for single-

structure determination. However, some recent studies have

demonstrated that HCA can be a powerful tool to classify

structural polymorphs (Nguyen et al., 2022; Soares et al., 2022).

In principle, HCA does not require any prior information on

how many data clusters (i.e. the number of ‘polymorphs’ in the

context of MX) are involved in the entire data set. In practice,

however, there are generally two ways to interpret the results

from HCA. One approach determines a threshold for the

degree of ‘isomorphism’, and clustered data below this

threshold are considered to underlie the same structure. The

other approach decides the number of data clusters prior to

analysis. Since it is impossible to know how many polymorphs

are involved in the entire data set, the former approach is

desirable. However, since there is no reference to decide an

appropriate threshold (‘isomorphic threshold’) at present, it is

necessary to analyze the merged data sets in each cluster

exhaustively and the results should be interpreted case by

case. Therefore, we investigated the feasibility of assigning an

‘isomorphic threshold’ which can be used to select candidate

data clusters where polymorphs may be identified.

Furthermore, we also investigated the usefulness of

applying HCA to data collected using the helical scheme to

capture both inter-crystal and intra-crystal structural poly-

morphs. The helical scheme, strictly referred to as the

‘continuous helical scheme’, was originally developed as a

data-collection scheme to avoid severe radiation damage (Flot

et al., 2010). In contrast to a conventional single-point oscil-

lation scan, crystals are translated during data collection in the

helical scheme. Therefore, the dose for each crystal volume

can be considered to be constant. Since each frame is acquired

from a different point in the crystal, splitting the full data set

into several partial data sets (chunks) could be useful to

observe structural differences that are present in the crystal by

processing each chunk individually and classifying them by

HCA. Indeed, using this approach, structure determination was

possible even from heterogeneous crystals (Katoh et al., 2020).

In this paper, we sought to determine the ‘isomorphic

threshold’ using in silico mixed data sets consisting of two

different high-resolution data sets from standard test protein

samples (trypsin). This threshold was then applied to two

representative protein samples (the nuclear transport receptor

transportin-1 and the [NiFe]-hydrogenase maturation factor

HypD) to evaluate whether the suggested threshold suitably

classifies polymorphs.

2. Materials and methods

2.1. Preparation of apo and inhibitor-bound trypsin crystals

Bovine pancreatic trypsin (molecular weight of approxi-

mately 24 kDa; Fujifilm Wako Pure Chemicals) was dissolved

in 25 mM HEPES pH 7.0 with 5 mM CaCl2 to a concentration

of 30 mg ml� 1. The precipitant solution was 30%(w/v) PEG

3350, 0.1 M Tris–HCl pH 8.5, 0.2 M Li2SO4. Crystallization

was performed at 293 K by the sitting-drop vapor-diffusion

method using MRC-II plates (SWISSCI) and crystals of

200 mm in size appeared within a few days. Several crystals

were harvested before adding the compound to obtain data

for the apo form. The crystals were soaked in cryoprotectant,

which consisted of 10%(v/v) ethylene glycol mixed with the

crystallization buffer, and were then cryocooled in liquid

nitrogen (Yamane et al., 2011).
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The inhibitor compound was directly added to the droplet

on the crystallization plates using an Echo 650 acoustic liquid

handler (Beckman Coulter). In this study, the following

inhibitors were used (Supplementary Fig. S1): 4-methoxy-

benzamidine and 5-chlorotryptamine (hereafter referred to as

‘benzamidine’ and ‘tryptamine’, respectively). Each inhibitor

was added to the crystallization droplet at a final concentra-

tion of 10 mM containing 10%(v/v) dimethyl sulfoxide

(DMSO). After addition of the inhibitor, the crystallization

plate was placed at 293 K for an hour to allow sufficient

diffusion of the inhibitor into the crystals. Inhibitor-bound

trypsin crystals were fished out from the crystallization plate,

cryoprotected in a similar manner to apo trypsin crystals and

cryocooled in liquid nitrogen. The DMSO concentration and

the incubation time were determined based on the results of

a preliminary study. In brief, several series of crystals with

different DMSO concentrations and incubation times were

prepared using apo trypsin. Data were then collected from

these crystals to identify conditions under which the diffrac-

tion quality was not significantly degraded.

2.2. Diffraction data collection, data processing and

structure determination of trypsin

All diffraction data for trypsin crystals were collected on

BL32XU at SPring-8 using the automated data-collection

system ZOO (Hirata et al., 2019). Data were obtained from

four crystals of apo, benzamidine-bound and tryptamine-

bound trypsin. All data sets were acquired using a continuous

helical scheme with 360� of oscillation and the following

experimental parameters: oscillation width, 0.1�; exposure

time, 0.02 s; beam size, 10 mm (horizontal) � 15 mm (vertical);

wavelength, 1 Å; average dose per crystal volume, 10 MGy;

detector, EIGER X 9M (Dectris); temperature, 100 K. The

KUMA module of ZOO automatically estimates the

attenuation factor from the measured crystal size and the

designated dose value (Hirata et al., 2019). The rotation axis of

the goniometer is horizontal to the ground. Basically, the

irradiation vector was set in the apparent long-axis direction

of the crystal, which roughly coincides with the rotation axis, in

the ZOO helical scheme.

The data obtained were automatically processed by XDS

(Kabsch, 2010) in KAMO (Yamashita et al., 2018). Subse-

quently, automated structural analysis was performed using

NABE (Matsuura et al., unpublished work), an automated

structural analysis pipeline currently under development at

the SPring-8 MX beamlines. NABE provides an interface to

manage all of the merged data in clustering results generated

by KAMO by summarizing the data statistics and the electron-

density map. NABE runs DIMPLE (Wojdyr et al., 2013) on

the data processed by KAMO using the given template model

for molecular replacement. If the amino-acid residues and

atom names are specified for a site of interest, NABE auto-

matically generates pictures of the protein model and the

resultant electron-density maps (2Fo � Fc and Fo � Fc maps)

around the selected site using Coot (Emsley et al., 2010),

Raster3D (Merritt & Bacon, 1997) and ImageMagick (https://

imagemagick.org). The pictures are not a static snapshot but a

GIF image that rotates, making it easier to see the surrounding

environment, including the depth direction, which is difficult

to perceive from a static image. After the above processes are

complete, NABE returns an HTML report that tabulates the

resolution of the obtained data, Rfree, the B factor etc. from the

results of KAMO and DIMPLE, along with the GIF image for

each data set. When multiple data sets are used, for example

during SWSX measurements, KAMO classifies the diffraction

data using HCA and then merges them into multiple clusters.

Subsequently, NABE automatically performs an instanta-

neous data analysis for all of these merged data sets.

Here, using the report from NABE, we inspected the

electron-density map around the inhibitor-binding site of

trypsin and confirmed that Fo � Fc density for inhibitors was

not observed in apo trypsin. In contrast, Fo � Fc density for

each inhibitor was observed for the benzamidine-bound and

tryptamine-bound trypsin data sets (Supplementary Fig. S1).

2.3. Clustering analysis using data from apo and

inhibitor-bound trypsin

In HCA, ‘isomorphism’ between data sets is represented

as a vertical ‘distance’ in the dendrogram. Isomorphous data

sets are linked by smaller distances, while other, more

distantly related data sets are linked by longer distances.

Supposing that there are several structural polymorphs in

the multiple data sets, each polymorph will make a cluster

consisting of data sets within a certain ‘threshold’ (referred

to as an ‘isomorphic threshold’) in the dendrogram. In

actual data, the number of polymorphs involved in the

obtained data set is unpredictable. Therefore, two appar-

ently different data sets were used to investigate an

‘isomorphic threshold’ for identifying polymorphs. For this

purpose, we used high-resolution data sets from apo trypsin

and trypsin bound to two different inhibitors.

Two different parameter-based HCAs are implemented in

KAMO: one is unit-cell-based and the other is intensity-based

HCA. KAMO performs unit-cell-based HCA using BLEND.

Intensity-based HCA is performed based on calculation of the

CC by the cctbx (Grosse-Kunstleve et al., 2002) method

miller_array.correlation.coefficient and grouping by the SciPy

(Virtanen et al., 2020) method cluster.hierarchy.dendrogram.

The structural changes of protein molecules in the crystal may

possibly affect the unit-cell constants or diffraction intensities.

These two different parameter-based HCAs are somewhat

different in terms of isomorphism. In unit-cell-based HCA the

classification is based on the isomorphism of the unit-cell

parameters, which reflects a more macroscopic aspect rather

than the protein structures. In contrast, intensity-based HCA

can detect much smaller structural changes.

Here, we examined how two different data sets are classified

by the two different parameter-based HCAs: unit-cell-based

and intensity-based. To evaluate whether splitting the data

collected by the helical scheme enables polymorph analysis

within the same crystals, the collected data were divided into

30� chunks and individually processed using KAMO with the
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split_data_by_deg=30.0 option. The test data set for

clustering analysis was prepared by mixing the same number

of diffraction data sets from two different structures. In this

study, 360� of data collected using the helical scheme were

used after division into 30� chunks. Here, we used 48 30�

chunks for each structure, corresponding to data sets from

four crystals. The two parameter-based HCAs were applied to

in silico mixed data sets consisting of 96 chunks from the

following combinations of two data sets (48 + 48 chunks): (i)

apo and benzamidine-bound trypsin and (ii) benzamidine-

bound and tryptamine-bound trypsin. HCA and data merging

were carried out using KAMO (kamo.auto_multi_merge) in

the following scheme. Prior to HCA, KAMO selects the data

sets used in the merging step (referred to as ‘pre-processing’).

Firstly, the equivalent data group is selected based on P1

symmetry. The selected data sets are then filtered based on the

unit-cell constant using Tukey’s criterion. HCA is performed

for the filtered data list, and merged data are generated for

each cluster. KAMO rejects data on a frame-by-frame and a

data set-by-data set basis based on crystallographic statistics in

the three cycles of data merging. The electron-density map for

the merged data at each cluster is depicted to evaluate the

effect of data contamination. Molecular replacement was

performed with the template model (PDB entry 3rxa).

Evaluation of the electron-density map was performed using

NABE.

In general, the definition of ‘isomorphism’ between data

sets and the linkage method used to calculate the distance

between clusters contribute significantly to the resultant

dendrogram from HCA. For intensity-based HCA, the

correlation coefficient (CC) of intensity is used as an indicator

of isomorphism. A different definition of distance is used in

KAMO and ccCluster as a default setting: (1 � CC)1/2 is used

in KAMO (Yamashita et al., 2018), while (1 � CC2)1/2 is used

in ccCluster (Santoni et al., 2017). In this study, we used (1 �

CC2)1/2 (hereafter referred to as dCC) based on preliminary

investigations of the following distance definitions available in

KAMO: 1 � CC, (1 � CC)1/2 and (1 � CC2)1/2. For the linkage

method, the ‘Ward’ linkage is often used, as it is empirically

less prone to causing ‘chain effects’ and ‘inversions’ of the

dendrogram (Murtagh & Legendre, 2014). BLEND also

adopts the Ward method for the same reason (Foadi et al.,

2013), while ccCluster uses the ‘average’ linkage method

instead. In the intensity-based HCA implemented in KAMO,

the Ward linkage is utilized as the default setting. Based on the

results with seven linkage methods available in the SciPy

module (Supplementary Section S1 and Fig. S2), we used the

Ward linkage in this study. In the Ward linkage, the closest

cluster is selected by minimizing the increase in the variance

when joining the clusters. When merging a pair of single data

sets, the Ward distance can be considered to be synonymous

with dCC, so that the CC value can directly be calculated from

the value of the Ward distance. In contrast, when merging

clusters containing multiple data sets, the distance between

these clusters is determined based on the data contained in the

cluster. Accordingly, the Ward distance does not directly give

the CC value for each data set inside the clusters. For example,

a Ward distance of 0.6 does not mean that the CC value for

each pair of data sets equals 0.8.

2.4. Determination of the isomorphic threshold from

observed/simulated data

Based on the results of HCA of trypsin in silico mixtures, we

hypothesized that the presence of polymorphic structures

could be detected by the Ward distance threshold on the

vertical axis of the dendrogram. If there are multiple clusters

below this ‘isomorphic threshold’, each cluster is considered to

be a different structure. However, the absolute values of the

Ward distance generally increase with the number of data sets

and they also increase when the CC distributions among

different structures are diverse. Therefore, it would not be

useful to derive the absolute Ward distance threshold directly

from the dendrogram of observed trypsin data as a general-

purpose index. Therefore, we simply define the isomorphic

threshold using the maximum Ward distance (W0 in Supple-

mentary Fig. S3) of the entire system as

W1 ¼ W0 � R; ð1Þ

where W0 is the maximum Ward distance, W1 is the isomorphic

threshold and R is a constant to be determined here (a ratio

with a magnitude between 0 and 1).

The ‘isomorphic threshold’ is defined as the larger Ward

distance between two branches when two structures can be

classified (W1 in Supplementary Fig. S3). To determine R in

equation (1), the simulation was performed with the following

steps. Based on the apo and benzamidine-bound trypsin data

sets, we firstly modeled the intensity CC distribution for all of

the three combinations. Assuming that there are multiple data

sets and two structures are included, we created the CC matrix

for HCA using CCs that follow the probability density of our

model (Supplementary Fig. S3). We performed HCA from the

CC matrix and evaluated whether the two structures could be

classified as their original labels on the dendrogram.

Firstly, we checked whether the simulation successfully

reproduced the dendrograms obtained experimentally. Since

W0 and W1 can be obtained from the dendrogram in the HCA

simulation, they were simply compared with the observed

values. Next, the CC model parameters were changed from the

initial model to make classification increasingly difficult, and

calculations were performed stepwise until the final condition

where classification was no longer possible. The number of

data sets was varied from 100 to 1000, each with half of two

different structural labels. The R calculated from W1/W0 and

the score in each HCA were plotted for each parameter to

determine a suitable R to calculate the isomorphic threshold in

the intensity-based HCA. The details of the simulation are

described in Supplementary Section S2.

2.5. Application to representative sample 1: polymorph

analysis of the nuclear transport receptor transportin-1 in

complex with a nuclear localization signal peptide

To evaluate whether the ‘isomorphic threshold’ suggested

from the investigations of trypsin data sets is effective, HCA
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was carried out on representative sample data sets with the

proposed ‘isomorphic threshold’.

Transportin-1 (Trn1) is one of the nuclear transport recep-

tors which recognizes a nuclear localization signal (NLS)

sequence harbored in cargo proteins and brings them into the

nucleus. Detailed information about sample preparation of

the Trn1–NLS peptide complex (with molecular weights of

approximately 98 and 2.5 kDa, respectively) is described in

Supplementary Section S3. We describe it briefly here. The

Trn-1 �loop mutant was produced using an Escherichia coli

expression system. Purification of Trn1 was performed using

Glutathione Sepharose and anion-exchange columns followed

by size-exclusion chromatography. The NLS peptide of Trn1

(Eurofins) was dissolved in purification buffer (110 mM

potassium acetate, 200 mM HEPES–KOH, 10 mM DTT). The

Trn1–NLS peptide complex (hereafter referred to as the

‘Trn1–peptide complex’) was prepared by mixing 5 mg ml� 1

Trn1�loop and 5 mM NLS peptide. Trn1–peptide complex

crystals were obtained using a crystallization condition

consisting of 0.5 M sodium potassium phosphate pH 5.0. The

obtained crystals were cryocooled in liquid nitrogen after

cryoprotection with a 30%(w/v) glycerol-containing reservoir

solution. Diffraction data were automatically collected on

BL32XU at SPring-8 using ZOO. From each of the four

crystals, 720� of rotation data were acquired using a contin-

uous helical scheme. The other experimental parameters were

identical to those used for the trypsin crystals: oscillation

width, 0.1�; exposure time, 0.02 s; beam size, 10 mm (hori-

zontal) � 15 mm (vertical); wavelength, 1 Å; average dose/

crystal volume, 10 MGy; detector, EIGER X 9M (Dectris).

The KUMA module of ZOO automatically estimated the

attenuation factor from the measured crystal size and the

designated dose value. The obtained 720� of data were split

into 30� chunks and hierarchical clustering was applied. Using

NABE, the electron-density map was compared with the

peptide-free structure model as a template model for MR. The

peptide-free model was prepared prior to the clustering

analysis by the following procedure: phasing by molecular

replacement using Phaser (McCoy et al., 2007) with a template

model (PDB entry 5yvi) followed by iteration of refinement

using phenix.refine (Liebschner et al., 2019) and manual model

building using Coot.

2.6. Application to representative sample 2: polymorph

analysis of the [NiFe]-hydrogenase maturation factor HypD

HypD is one of the maturation factors of [NiFe]-hydro-

genase and can form a complex with other maturation factors

(Muraki et al., 2019). The C360S variant of HypD from

Aquifex aeolicus (hereafter referred to as AaHypD-C360S,

molecular weight of approximately 42 kDa) was produced

using an E. coli expression system and was purified using a

cation-exchange column with a sodium chloride gradient and

size-exclusion chromatography. AaHypD-C360S crystals were

obtained using 16%(w/v) polyethylene glycol 3350, 0.1 M

citrate buffer pH 5.6, 1 mM dithiothreitol as a reservoir

solution. The obtained crystals were cryocooled in liquid

nitrogen after cryoprotection. Diffraction data were auto-

matically collected on BL45XU at SPring-8 using ZOO. From

each of the six crystals, 360� of rotation data were acquired

using a continuous helical scheme. The other experimental

parameters were as follows: oscillation width, 0.1�; exposure

time, 0.02 s; detector, PILATUS3 6M (Dectris). The KUMA

module of ZOO automatically estimated the attenuation

factor from the measured crystal size and the designated dose

value. The obtained 360� of data were split into 30� chunks

and hierarchical clustering was applied. The data were merged

into largely separated data clusters that should correspond to

structural polymorphs. Evaluations of the electron-density

map were carried out by NABE. Before analysis by NABE, a

template model (PDB entry 2z1d) was prepared using Phaser

REFMAC5 (Murshudov et al., 2011) and Coot.

3. Results and discussion

3.1. Test study: classification of different trypsin data sets

To investigate whether HCA can classify polymorphic data

sets, in silico mixed data sets were prepared which consist of 48

chunks from each of two different (apo and benzamidine-

bound) trypsin data sets, resulting in a total of 96 chunks that

were submitted to KAMO. The resolution of each chunk was

approximately 1.2 Å. Each chunk contained about 50 000

reflections; the overall completeness was about 40% and the

space group was P212121. KAMO rejected 13 chunks during

pre-processing as described in Section 2, leaving 83 chunks for

HCA (Supplementary Table S1). Reflections up to 1.50 Å

resolution were used to calculate the correlation between the

data sets in intensity-based HCA.

3.1.1. Classification of diffraction data for apo trypsin and

benzamidine-bound trypsin. Unit-cell-based and intensity-

based HCAs were applied to in silico mixed data sets including

apo and inhibitor-bound trypsin (Figs. 1 and 2). In both HCA

results, the merged data for the top cluster (Cluster 82)

exhibited no significant Fo � Fc density corresponding to

benzamidine at 3.0�, even though chunks of benzamidine-

bound trypsin data sets were included in the mixed data set

(Supplementary Table S2). This may be explained by the fact

that the number of apo trypsin data sets in the merged data

was larger than that for benzamidine-bound trypsin as a

consequence of pre-processing by KAMO before HCA.

The largest linear cell variation (LCV) value (Foadi et al.,

2013), a characteristic quantity for unit-cell variation, was

0.59%. Due to slight differences in the unit-cell constant

between apo and benzamidine-bound trypsin (Supplementary

Fig. S4), unit-cell-based HCA did not succeed in fully separ-

ating apo and benzamidine-bound trypsin data sets (Fig. 1).

This implies that unit-cell-based HCA is less sensitive to a

small lattice change such as that found between the apo and

benzamidine-bound trypsin crystal forms. In practical cases,

well classified clusters should be inferred from the electron-

density map since there is no label for polymorphs. Accord-

ingly, we investigated the electron-density map obtained from

merged data in each cluster. The two different data sets
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appeared to be separated at the first branch of the dendro-

gram (Clusters 78 and 81) based on the electron-density map.

Although both apo and benzamidine-bound chunks are

involved in these clusters, data contamination cannot be

distinguished using the electron-density map. Due to the

rejection of outlier data sets during the merging process by

KAMO, some of the contaminating data chunks were elimi-

nated. For example, although Cluster 78 has two apo trypsin

and 16 benzamidine-bound trypsin chunks immediately after

clustering, ten chunks containing only benzamidine-bound

trypsin data sets were merged as the final data set, resulting

in the presence of clear electron density for benzamidine

(Supplementary Table S2 and Fig. 1). In most of the other

cases, the final merged data still contained some contamina-

tion even after outlier rejection (Supplementary Table S2).

For instance, the merged data in Cluster 77 consisted of two

apo trypsin and 11 benzamidine-bound trypsin chunks.

However, the small amount of contamination did not affect

the resulting electron-density map (Fig. 1). Approximately

15% contamination did not affect the electron-density map

resulting from the dominant data set in this test case.

In contrast to the above-described results, intensity-based

HCA (Fig. 2) succeeded in classifying the two mixed data sets

completely (Clusters 71 and 72). Clear Fo � Fc density for

benzamidine was observed in Cluster 72, while no significant

Fo � Fc density for benzamidine was observed in other clus-

ters at 3.0�. Cluster 71 had only one benzamidine-bound

chunk, and there are two possible reasons why this chunk was

involved in the apo trypsin cluster: either the occupancy of

benzamidine was low or the data quality was poor. Consid-

ering the former possibility, the data obtained from a selected

benzamidine-bound crystal was divided into four 90� chunks

and occupancy refinement of benzamidine was performed

with REFMAC5. The resulting occupancies of 97%, 93%, 97%

and 92% were not significantly different, suggesting that the

ligand occupancy was likely to be constant over the whole

crystal volume. With regard to the latter possibility, automated

helical data collection from large crystals often results in

significantly low diffraction power at both ends of the crystal.

This point is further discussed in Section 3.1.4.

In intensity-based HCA, the CC is key information that has

an influence on the results of classification. In CC calculation,

common reflections up to the specified resolution are used.

To investigate the resolution dependence of the CC distance

(dCC) value, intensity-based HCA was performed at several

resolution cutoffs (Supplementary Fig. S5). Despite decreasing

the cutoff resolution for CC calculation to 3.5 Å, intensity-

based HCA successfully classified apo and benzamidine-

bound trypsin data chunks. Accordingly, the resolution

dependence of the CC calculation appeared to be insignificant

as far as we investigated. The successful sorting of apo and

benzamidine-bound data chunks demonstrates that intensity-
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Figure 1
Results of unit-cell-based HCA of in silico mixed data sets containing apo and benzamidine-bound trypsin. (a) Resultant dendrogram. The definitions of
‘node’, ‘branch’ and ‘cluster’ used in this study are illustrated in the dendrogram. Cluster numbers and data labels are depicted on the resultant
dendrogram from unit-cell-based HCA. The blue numbers indicate the cluster numbers at each node. Chunks for apo trypsin are shaded green and those
for benzamidine-bound trypsin are colored orange. (b)–(e) Electron-density maps around the inhibitor-binding site of trypsin in different clusters. The
contour level of the 2Fo � Fc map (gray mesh) is 1.0� and that of the Fo � Fc map (green mesh) is 3.0�. The maps were generated by Coot in the NABE
system.
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based HCA can be effective in disentangling heterogeneous

data chunks, even if the differences in cell dimensions are too

small to be classified by unit-cell-based HCA.

3.1.2. Classification of two different inhibitor-bound

trypsin data sets. Next, we tested HCA-based classification on

data sets obtained from crystals of trypsin with two different

inhibitors with different skeletal formulas (Supplementary

Fig. S1) but that share the same binding site: benzamidine and

tryptamine.

Although clusters of homogenous data sets can be found for

some clusters (for example Clusters 74 and 76), the data for

the two different inhibitors could not be successfully sorted by

unit-cell-based HCA (Fig. 3). The largest LCV value was

0.75%, which is slightly larger than that for apo and benza-

midine-bound trypsin. This implies that a larger LCV value of

0.75% is still insufficient to classify the different trypsin data

sets using unit-cell-based HCA. Based on the electron-density

map (Supplementary Fig. S6), the two different data sets

appeared to be roughly separated at the first branch (Clusters

81 and 82). However, the electron-density map in Cluster 80

clearly exhibited a mixture of both types of inhibitor-bound

data. It appears to be difficult to distinguish the base skeletal

structure from the electron-density map. The merged data

consisted of six benzamidine-bound chunks and 14 tryptamine-

bound chunks, resulting in approximately 30% contamination

of the dominant data set (Supplementary Table S3). In Cluster

77, the merged data consisted of nine benzamidine-bound

chunks and four tryptamine-bound chunks, with about 31%

contamination of the prevailing data set. Based on these

results, approximately 30% contamination by a minor data set

might be a tolerable upper limit to obtain an electron-density

map that allows initial model building.

Intensity-based HCA (Fig. 4) successfully sorted the data

chunks into two homogenous data sets (Clusters 72 and 74),

although two inhibitor-bound data sets were mixed in some

small clusters in the right branch (Clusters 73, 78 and 81). The

electron-density maps obtained at Clusters 74 and 72 exhib-

ited clear Fo � Fc densities derived from benzamidine and

tryptamine at 3.0�, respectively (Supplementary Fig. S7).

3.1.3. Classification of apo trypsin and two inhibitor-bound

trypsin data sets. As shown in the previous sections, two

different data sets were classified using single-step intensity-

based HCA. However, more than three structural polymorphs

may be found in practical cases. For example, when clustering

is applied to data obtained in a time-resolved experiment,

there may be more than three intermediates before and after

the intermediate of interest. To test such a case, intensity-

based HCA was applied to in silico mixed data sets containing

all three of the different trypsin data sets used in this study,

namely apo, benzamidine-bound and tryptamine-bound

trypsin data sets.

The results showed that intensity-based HCA classified the

three different data sets almost perfectly (Supplementary Fig.

S8), while unit-cell-based HCA did not classify these data sets
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Figure 2
Results of intensity-based HCA on in silico mixed data sets containing apo and benzamidine-bound trypsin. (a) Resultant dendrogram. Data labels are
shown at the bottom: green, apo trypsin; orange, benzamidine-bound trypsin. The color threshold for the dendrogram is set to 0.6. (b)–(e) Electron-
density maps around the inhibitor-binding site obtained from the merged data in different clusters. The contour levels of the 2Fo � Fc map (gray mesh)
and the Fo � Fc map (green mesh) are 1.0� and 3.0�, respectively. The maps were generated by Coot in the NABE system.
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well (Supplementary Fig. S9). In the first branch in Supple-

mentary Fig. S8, one cluster contains only tryptamine-bound

chunks (Cluster 115) while the other mainly consists of apo

and benzamidine-bound chunks (Cluster 130). From further

clustering of the latter cluster, the homogeneous data cluster

for apo trypsin appeared at Cluster 114 and that for

benzamidine-bound trypsin appeared at Cluster 116. During

separation, some small clusters (Clusters 119, 120 and 128)

appeared. These clusters are considered to be outliers because

the number of chunks involved is smaller and the distances

between the chunks are relatively large compared with the

other clusters. Although some inhibitor-bound chunks were

mixed into the dominant apo trypsin cluster (Cluster 114), this

is possibly due to lower inhibitor occupancies or relatively

low-quality data.

3.1.4. The ‘isomorphic threshold’ suggested from investi-

gations on the observed trypsin data sets. The CC values for

the data sets in the clusters for in silico mixed trypsin (apo and

benzamidine-bound trypsin; Section 3.1.1) were 0.93 and 0.94

for the clusters of apo trypsin (Cluster 71) and benzamidine-

bound trypsin (Cluster 72) data sets, respectively. This result

suggests that HCA is effective in the classification of such

small structural changes. Therefore, we investigated the

change in CC on a structural change of a certain volume of the

protein moiety. The change in CC value was examined for a

rotation of the partial or whole trypsin molecule (the full

length comprises 223 amino acids) without any changes in the

unit-cell constants (Supplementary Fig. S10). It was found that

even the relatively significant conformational change of a 5�

rotation of the terminal ten-amino-acid helix resulted in a CC

decrease of 0.015 compared with the original structure. When

a quarter of the trypsin residues (57 amino acids) were

rotated, a 5� rotation resulted in a CC change of approxi-

mately 0.030. The simulation also proved that larger CC

changes occur if the whole molecule is rotated.

For the 30� chunks for apo (referred to as ‘apo’) and

benzamidine-bound (referred to as ‘benz’) trypsin used in the

present study, a histogram of the dCC values obtained for each

combination of chunks is illustrated in Supplementary Fig.

S11. The distribution of dCC for homogeneous pairs of apo

chunks was centered at around 0.2, whilst the dCC obtained

between heterogeneous data for apo and benz trypsin had a

distribution shifted slightly to the right at around 0.25 (CC ’

0.97).

The histograms showed that even among homogeneous

data, some portions of the combination exhibited a high dCC

value of greater than 0.6 (Supplementary Fig. S11). The heat

map of dCC values between all pairs of data sets revealed that

there are some data sets that do not have any correlation

against almost all of the data (Supplementary Fig. S12). These

data were mostly chunks emanating from the tip of the crys-

tals. Since the selection of equivalent data sets and unit-cell-

based filtering are performed prior to clustering, these chunks

are similar to the other chunks, at least with respect to the

unit-cell parameters. The chunks at the tip of crystals did not

significantly affect the structural analysis, as discussed in the

previous section; therefore, the calculation of CC may be not
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Figure 4
Dendrogram from intensity-based HCA of mixed data sets including
benzamidine-bound and tryptamine-bound trypsin. The data labels at the
bottom are in orange for benzamidine-bound trypsin and in blue for
tryptamine-bound trypsin.

Figure 3
Dendrogram from unit-cell-based clustering of mixed data sets including
benzamidine-bound and tryptamine-bound trypsin. Cluster numbers and
data labels are depicted on the resultant dendrogram from unit-cell-based
HCA. To evaluate the clustering effect, each cluster leaf is shaded
according to the original data set: orange, benzamidine-bound trypsin;
blue, tryptamine-bound trypsin. The number labeled at each cluster node
indicates the cluster number output from BLEND.
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reliable (for example hI/�(I)i or the resolution limit for used

intensities should be carefully considered during the calcula-

tion of CC). However, all of the data classified by HCA were

included in the main distribution with a dCC of around 0.2,

indicating that the main dCC distribution is important for

accurate classification by HCA.

As described in Section 2.4 and Supplementary Section S2,

numerical simulations were performed to determine an

‘isomorphic threshold’ from apo and benz trypsin data sets.

The observed median values for the CCapo–apo, CCbenz–benz

and CCapo–benz distributions were 0.978, 0.970 and 0.962,

respectively, with corresponding standard deviations of 0.020,

0.019 and 0.017, respectively. Only data satisfying dCC < 0.4

were used to characterize the prominent peak of the CC

distribution for these statistics. The distributions of CCs and

fitted curves are shown in Supplementary Fig. S13(a).

The HCA simulations for apo and benz trypsin showed

perfect classification without contamination of the dendro-

gram (Supplementary Fig. S13b). After repeating 100 calcu-

lations, the mean and standard deviation of W1 for classifying

the two different structures were 0.61 and 0.03, respectively.

The result demonstrates that our simulation roughly repro-

duces the observed data.

In the next step, the validated model was used to perform

HCA simulations by modifying its parameters to make it

difficult to classify the two structures. Fig. 5 displays the

relationship between the ratio R and the HCA simulation

scores. The lowest R in each plot, shown as a ‘cross mark’, is

the result of HCA using the original model. From there, as

classification becomes difficult, R increases and the score

worsens. An R greater than 0.7 worsens the classification score

for all plots except for 1000 data sets. We regard the score

threshold for success in classification as 0.9 (dotted line in

Fig. 5); 0.6–0.7 can then be a reasonable R for several hundred

data sets. Based on these results, we assumed that the

‘isomorphic threshold’ for polymorphism detection in intensity-

based HCA can be calculated by multiplying W0 by 0.6–0.7.

By using the assumed ratio, classifications in the observed

intensity-based HCA were examined. For the apo/benz trypsin

case, 0.77–0.90, the highest value of the dendrogram in Fig. 2

(1.29) multiplied by 0.6–0.7, was used as the isomorphic

threshold. As a result, Clusters 71, 72 and 74 were candidates

for structural polymorphs, but Cluster 74 was not a complete

data set and could not be used for structural analysis. For the

two ligand-bound trypsins (Fig. 4) the isomorphic threshold is

0.76–0.89, which classifies Clusters 72, 75 and 78 as candidates

for structural polymorphs. Although Cluster 73 is contami-

nated, Cluster 75 shows a benzamidine-bound structure in the

electron-density map in Supplementary Fig. S7. A similar

result is found in intensity-based HCA on a mixed data set

including apo and benzamidine-bound trypsin. In Supple-

mentary Fig. S8, the isomorphic threshold is about 0.96–1.1,

and Clusters 115, 123 and 125 are candidates for polymorphs.

Of these, Clusters 115, 114 and 116 remain after excluding the

obvious outlier clusters. Our isomorphic threshold proved to

be a good indicator for classifying polymorphism in all trypsin

cases.

The investigations on trypsin data sets indicated that

intensity-based HCA can successfully classify structural

polymorphs. The results also suggested that single-step

intensity-based HCA could be sufficient when variation in the

unit-cell constant is small; for example, when the largest LCV

value is less than 1%. In the dendrogram from intensity-based

HCA on trypsin test cases (Figs. 2 and 4 and Supplementary

Fig. S8), the same data sets appeared to be clustered within

our isomorphic threshold. Based on the results, polymorphs

could be identified by grouping the data sets using a single step

of intensity-based HCA with the suggested ‘isomorphic

threshold’. Since multiple steps of clustering (Nguyen et al.,

2022) decrease the number of data sets in the final step by

filtering the data during the clustering, fewer steps of clus-

tering may be helpful when the total number of data is limited.

3.2. Applications to representative samples

To evaluate whether a single step of intensity-based HCA

with our suggested ‘isomorphic threshold’ is useful for the

detection of polymorphs in practical samples, we performed

intensity-based HCA and structure analysis on two repre-

sentative examples: the Trn1–peptide complex and AaHypD-

C360S. Here, we selected clusters that satisfy our threshold,

together with the completeness of the merged data being high

enough to allow further structural analysis.
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Figure 5
R in equation (1) and classification score in our HCA simulations (details
are described in Section 2.4 and Supplementary Section S2). The line
plots illustrate the scores assuming 100, 200, 300, 500 and 1000 data sets.
The lowest R in each plot is shown as a cross mark and is the result of
HCA using the original CC model (Supplementary Fig. S13a). HCA
simulations were performed with the CCapo–benz and CCbenz–benz positions
gradually approaching each other in ten steps, making classification more
difficult.
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3.2.1. Diffraction data classification and polymorph

analysis of the Trn1–peptide complex. Diffraction data of the

Trn1–peptide complex were obtained using a helical scheme

for 720� rotation. Each data set was divided into 30� chunks,

yielding 96 chunks from four crystals. The resolution for each

chunk was in the range 3–4 Å. The number of reflections in

each 30� chunk was approximately 60 000, the overall

completeness was about 25% and the space group was C2.

Reflections up to 3.67 Å resolution were used to calculate the

correlation between the data sets in intensity-based HCA.

The obtained chunks were subjected to intensity-based

HCA using KAMO (Fig. 6). Although some outliers were

observed, two major clusters (Clusters 72 and 76) were

selected for further structural analysis.

The electron-density maps from these two nodes were

significantly different (Fig. 7). There were two peptide binding

forms: one without any secondary structure (Form 1) and one

with an �-helix (Form 2). These two peptide binding forms

were also observed when all chunks were merged (Cluster 82).

However, the Fo � Fc map for each peptide binding form

appeared to be less clear than the clustering results (Clusters

72 and 76). Although both peptide binding forms appeared

in each node, the occupancies seemed to be different. The

Fo � Fc map indicated that Form 1 was dominant in Cluster 76

while Form 2 was dominant in Cluster 72. The isomorphic

threshold values range from 0.73 to 0.85, and looking at the

dendrogram with these values, Clusters 72 and 76 are candi-

dates for structural polymorphs, consistent with the above

results.

The existence of two peptide binding forms was supported

by the results of biochemical experiments. As illustrated in

Fig. 7, some acidic amino-acid residues were found around the

Fo � Fc density of the NLS peptide in both binding forms.

Since NLS generally consists of basic amino-acid residues, this

is in line with the cargo-recognition mechanism which is

achieved by electrostatic interaction. Triple mutations in each

peptide binding form (two Glu residues and one Asp residue

for Form 1 and two Glu residues and one Trp residue for Form

2) caused a decrease in peptide binding. Thus, both peptide

binding forms are physiologically important for the function of

Trn1.

Since the variation of unit-cell constants for the Trn1–

peptide complex was more significant than that of trypsin

(Supplementary Fig. S14), we also applied unit-cell-based

HCA (Supplementary Fig. S15). The largest LCV value for the

Trn1–peptide complex was 4.03%, which was significantly

higher than that for trypsin (0.59%). The obtained electron-

density maps seemed different (Supplementary Fig. S16), as

observed in the results from intensity-based HCA (Fig. 7).

However, the clustering result was slightly different. Form 1

dominant nodes appeared in the left branch (Clusters 73 and

78), while both forms were observed in the right branch

(Clusters 77 and 79). The Form 2 dominant node was not

found in the results from unit-cell-based HCA. Accordingly,

single-step intensity-based HCA seemed to classify the data

better in this case even though the cell variation is significant.

Although the resolution was relatively low (lower than 3 Å)

and the space group was not highly symmetric (C2) in the

case of the Trn1–peptide complex, intensity-based HCA was

adequate to identify two different peptide binding modes. The

results imply that polymorph analysis can even be performed

on data sets that exhibit relatively low resolution and low-

symmetry space groups.

Another interesting finding is that the dominant peptide

binding form differed even though the crystals were obtained

in the same crystallization drop. Furthermore, some crystals

had both Form 1 dominant and Form 2 dominant chunks

(i.e. intra-crystal variation). Mapping the clustering results

revealed that Form 1 dominant chunks were mostly found at

the tips of the crystals (Supplementary Fig. S17). This result

implies that polymorphs not only in different crystals (inter-

crystal) but also in the same crystals (intra-crystal) are

discernible by collecting diffraction data via the continuous

helical scheme, significantly expanding the possibilities of

polymorph analysis.

3.2.2. Diffraction data classification and polymorph

analysis of AaHypD-C360S. Using a helical scheme, diffrac-

tion data sets for AaHypD-C360S were acquired from six

crystals, applying 360� rotation per crystal. Each data set was

divided into 30� chunks, yielding 72 chunks from six crystals.

The resolution for each chunk was approximately 1.6 Å. There

were about 100 000 reflections in each 30� chunk, the overall

completeness was about 45% and the space group was

P212121. For intensity-based HCA, reflections up to 2.79 Å

resolution were used to calculate the correlation between the

data sets.

The values of the isomorphic threshold were about 1.9–2.2

based on the dendrogram in Fig. 8, and Clusters 61, 63 and 64
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Figure 6
Dendrogram from intensity-based HCA for the Trn1–peptide complex.
Data labels are shown at the bottom and are colored by crystals. Clusters
72 and 76 were used for further structural analysis because these two
clusters appeared to have different structures (polymorphs).
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were polymorph candidates in terms of this threshold. Since

the Ward distance was very large compared with the other

samples in this paper, we decided to carefully perform struc-

tural analysis on the clusters for which complete data sets were

available and compare the details of this sample. Among the

data from these clusters, some polymorphs that have differ-

ences around the N-terminal and [4Fe–4S] regions were

identified by examining the corresponding electron-density

maps (Fig. 9 and Supplementary Fig. S18). Significant differ-

ences were found in Clusters 50 and 52. In Cluster 50, the

N-terminal region was unfolded (referred to as the ‘unfolded’

conformation) with no secondary structure and the occupancy

of the [4Fe–4S] cluster decreased with disorder of the

surrounding area (Figs. 9a and 9b). In contrast, in Cluster 52

the N-terminal region was folded towards the protein side

(referred to as the ‘folded’ conformation) and the surrounding

region around the [4Fe–4S] cluster was well ordered

(Figs. 9c and 9d). The electron-density map in Cluster 51

(Supplementary Figs. S18a and S18b) exhibited a similar trend

in Cluster 50. However, the negative Fo � Fc peak of the

[4Fe–4S] cluster was decreased in Cluster 51. The electron-

density map in Cluster 42 was similar to that in Cluster 52

(Supplementary Figs. S18c and S18d). However, the ‘folded’

N-terminal region was more evident in Cluster 52. Two

different N-terminal conformations were strongly related to

disorder around the [4Fe–4S] cluster. B-factor analysis clearly

indicated that an ‘unfolded’ conformation in the N-terminus

destabilized the [4Fe–4S] surrounding region (Fig. 10). From

data in Cluster 54, a solution with a significantly high Rfree

(>0.4) was obtained. In Cluster 47, complete data were not

obtained because most chunks were rejected by outlier

rejection in KAMO. In this example, the most significant

structural differences (the N-terminal and [4Fe–4S] regions)

appeared to be separated at the first branch of the dendro-

gram. During further separation, more slight differences

(occupancies) seemed to be classified (Clusters 50 and 51 or

Cluster 52 and 42).

Consequently, Clusters 61, 63 and 64, classified from our

‘isomorphic threshold’, are the parent nodes of the data where

the characteristic structures were found. Cluster 61 is the

parent node for Clusters 50 and 51, Cluster 63 is the parent

node for Cluster 52, and Cluster 64 is the parent node for

Cluster 42 (Fig. 8). Considering only locally for Cluster 61, W0

is 1.0, corresponding to an isomorphic threshold of 0.6–0.7.
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Figure 7
Peptide-omitted Fo � Fc maps from different nodes resulting from intensity-based HCA for the Trn1–peptide complex. Fo � Fc maps calculated from
merged data at (a) Cluster 82, (b) Cluster 76 and (c) Cluster 72 are depicted. The contour level for each figure is set to 3.0�. The binding peptide was
omitted during map calculation. The figures were generated by Coot.

Figure 8
Dendrogram from intensity-based HCA on the AaHypD-C360S variant.
Data labels are shown at the bottom, colored by crystals. Due to the
significant deviation among the data sets, some clusters were not satisfied
with sufficient completeness for further analysis. Accordingly, Clusters 52
and 54 were selected based on the results with a threshold of 0.8. Each
data cluster consists of chunks from one or two crystals, indicating that
inter-crystal differences are more prominent than intra-crystal differences
in AaHypD-C360S.

http://doi.org/10.1107/S2059798323007039
http://doi.org/10.1107/S2059798323007039
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This allows Clusters 50 and 51 to be considered as classifiable

within this cluster. Our isomorphic thresholds also proved to

be valid for this sample. Polymorphs were also found in

crystals obtained under the same crystallization conditions.

This result indicates that a protein may have several meta-

stable conformations even under identical crystallization

conditions. The results of this study indicate that when the

absolute value of the Ward distance on the dendrogram is

large, as in the present sample, it is useful to try to analyze

the structure of subclusters of nodes that diverged at the

isomorphic threshold.

The median values of CC distributions for homologous data

pairs in Clusters 50, 51, 52 and 42 were 0.976, 0.961, 0.935 and

0.966, respectively. The corresponding standard deviations

were 0.019, 0.019, 0.020 and 0.019, respectively. These statistics

are filtered by dCC < 0.4 as for the other samples. As expected

from the resultant dendrogram (Fig. 8), there are significant

CC changes between the data pairs from Cluster 50 or 51 and

Cluster 52 or 42. Even for the CC distribution for the data

pairs between Cluster 50 and Cluster 51, where the smallest

difference was found from the dendrogram, the mean value of

the CC distribution was 0.946 and the corresponding standard

deviation was 0.020.

3.3. Current limitations of intensity-based HCA and

conceivable best practices for further applications

The results for the two representative samples demonstrated

that intensity-based HCA with the proposed ‘isomorphic

threshold’ can be a useful indicator to detect polymorphs in

data sets obtained from multiple crystals. In addition, splitting

the data collected by a helical scheme into several chunks

could be beneficial for the analysis of structural polymorphs

within the same crystals. Even for well-known proteins whose

structures have already been determined, structural poly-

morphs may possibly have been overlooked. The scope of this

guideline is intended for cases in which multiple crystals of

50 mm or larger are used such that complete data can be

collected from a single crystal with slight variation in unit-cell

constants. We focus on finding polymorphs by collecting large
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Figure 9
Electron-density maps around the N-terminal region and [4Fe–4S] cluster obtained from merged data at different clusters: (a, b) Cluster 50 and (c, d)
Cluster 52. The contour level for the 2Fo � Fc map (gray mesh) is set to 1.0� except for the [4Fe–4S] region in Cluster 52, where it is set to 1.5�. The
contour level for the Fo � Fc map is set to 3.0� (green mesh, positive; red mesh, negative) in all figures. Only the main chain is depicted in the N-terminal
region: ‘unfolded’ (purple) and ‘folded’ (blue). The variable N-terminal region (Ser7–Tyr12) was omitted and the occupancy for the [4Fe–4S] cluster was
set to 1.0 in map calculation. The figures were generated by Coot.



wedge data sets of 360� or more through helical data collection

from multiple large crystals and clustering the data into chunk

data sets of 30� or more.

There is an explicit limitation for intensity-based HCA. A

certain number of common reflections are required among the

data sets to calculate the CC value. As a default setting in

KAMO, at least three common reflections are required

between each data set. In SWSX, diffraction data are collected

with 5–20� rotation from each crystal, which results in fewer

common reflections. The number of common reflections also

decreases due to the lower resolution or crystallographic

symmetry. In this study, the chunk size was set to 30�, where

the number of common reflections is expected to be adequate.

To investigate the limitation on chunk size (rotation range),

the numbers of common reflections and rejected data in

different chunk sizes were plotted using the high-resolution

trypsin data set from 0.5� to 30� (Supplementary Fig. S19). The

number of chunks excluded from the CC calculation was

drastically increased below 3�. When the chunk size was set to

0.5�, almost all data were rejected (99.0%). This result is

consistent with a previous report on intensity-based HCA

applied to serial synchrotron crystallography (SSX) data (2�

per crystal) using ccCluster (Santoni et al., 2017). Obviously, it

is not realistic to apply intensity-based HCA to single-frame

data with extremely narrow or no oscillation data, such as

those collected by the serial femtosecond crystallography

(SFX) or the serial synchrotron rotation crystallography

(SSROX) approaches.

In addition, to investigate a sufficient number of common

reflections for intensity-based HCA, the number of common

reflections was evaluated in different chunk sizes for the data

sets used in this study. Since the rejected data increased below

3� in the case of trypsin, log(number of common reflections) �

2.5 seems promising. The fraction of common reflections in the

total reflections is highly dependent on the crystallographic

symmetry (Supplementary Fig. S20). If the resolution is rela-

tively low or the crystallographic symmetry is not high, a large

molecular weight could cover the number of reflections, as

exhibited in the example of the Trn1–peptide complex. If

possible, partial data collection using the helical scheme or a

larger rotation range of data will help to increase the common

reflections for polymorph analysis with intensity-based HCA.

Unit-cell-based HCA can still be useful when intensity-

based HCA is not available. Even for single-frame data, such

as SFX data, unit-cell constants are available. Therefore, unit-

cell-based HCA can be applied to any given diffraction data
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Figure 10
B-factor analysis of AaHypD-C360S structures obtained from different clusters in intensity-based HCA. (a) Plot of the B factors of C� atoms in data
from different clusters. (b, c) Main-chain trace of AaHypD-C360S with an ‘unfolded’ N-terminus obtained from Cluster 50 (b) and with a ‘folded’
N-terminus obtained from Cluster 52 (c). B-factor-based coloring was applied using Coot. The N-terminus and C-terminus are depicted in the figure as
‘N’ and ‘C’, respectively. The structure with the ‘unfolded’ N-terminus showed a significantly high B factor around the [4Fe–4S] cluster. The figures were
generated by UCSF Chimera (Pettersen et al., 2004).

http://doi.org/10.1107/S2059798323007039
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set. In actual SFX data, data sets with different unit-cell

properties are sometimes mixed into the entire data sets

(Nomura et al., 2021). Considering a general case, unit-cell-

based HCA should first be applied to filter out the data set

with different unit-cell parameters. If the variation in unit-cell

constants is relatively small, say the largest LCV value is less

than 1%, then it is likely that unit-cell-based HCA will not

yield good classification results. However, polymorphs could

be found from the results of unit-cell-based HCA. In a recent

study (Soares et al., 2022), the distance metric for unit-cell-

based HCA has been improved. Furthermore, outlier rejec-

tion during the merging step as implemented in KAMO could

be useful to reduce a contaminated data set.

Although we classified polymorphs by single-step intensity-

based clustering, unit-cell parameters should be considered for

more accurate classification in general cases. From the results

of unit-cell-based HCA for trypsin data sets, chunks from the

same data were separated into different branches (Figs. 1 and

3). If intensity-based HCA is further applied to the clusters

obtained from unit-cell-based HCA, the number of data sets

remaining in the final stage of data merging may decrease.

Thus, single-step clustering is preferable when the total

number of data sets is small. HCA with two-dimensional

parameters, including both unit-cell parameters and intensity

correlation, is under consideration for more effective single-

step clustering.

4. Conclusions and outlook

Based on the investigations on the test cases, we propose that

the ‘isomorphic threshold’ for classification by intensity-based

HCA of several hundred 30� chunk data sets is the Ward

distance in the top row of the dendrogram multiplied by 0.6–

0.7. In the representative samples, polymorphs were success-

fully detected by intensity-based HCA with our suggested

threshold. The scope of this guideline basically includes cases

in which multiple crystals of larger than 50 mm are used and

complete data can be collected from each single crystal with a

slight variation in unit-cell constants. We focus on finding

polymorphs by collecting large wedge data sets of 360� or

more through helical data collection from multiple large

crystals and clustering them into chunk data sets of 30� or

more.

The results of this study, including standard and repre-

sentative samples, show that single-step intensity-based HCA

with the proposed ‘isomorphic threshold’ is effective for the

detection of polymorphs using multiple data sets. Although

helical data collection and HCA have been used in MX

experiments and analyses, we demonstrated several advan-

tages consistent with current HDRMX trends. The helical data

scheme is unique in that it can be applied to polymorph

analysis within crystals by dividing the complete data set into

chunks, as the data are collected while translating the position

of X-ray exposure. Indeed, our results suggest the possibility

of the presence of polymorphs within crystals. The continuous

helical data collection adopted in the ZOO automated data-

acquisition system at SPring-8 collects data from each crystal

volume with a uniform dose, which may reduce structural

inhomogeneities due to radiation damage compared with

single-point rotation. Even when multiple crystals are used,

the isomorphism among crystals due to radiation damage can

be suppressed to the same extent, allowing discussion of only

the structural differences that exist in the crystals. In addition,

highly efficient automated data collection increases the

number of data sets that can be measured in a given time,

allowing the analysis of many polymorphs with higher reso-

lution.

Our findings could be widely applied to other protein

samples. Even though the resolution was relatively low

(approximately 4 Å), physiologically meaningful polymorphs

can be identified, as exhibited in the example of the Trn1–

peptide complex. The representative examples also showed

that protein molecules may exhibit different structures within

the same crystal. In addition, polymorphs can be found from

multiple crystals obtained using the same crystallization

conditions in both practical cases. Determination of the

‘isomorphic’ threshold enables polymorph detection, even if

the existence of polymorphs was not expected or detected

during sample preparation. It will also facilitate broader

applications by automating the polymorph analysis with our

proposed ‘isomorphic’ threshold.

The suggested polymorph analysis could help to obtain

various structural snapshots during the functional process of

the protein to elucidate the molecular mechanism. The

determination of multiple structural snapshots will also

contribute to more accurate structure prediction, as realized

by AlphaFold2 (Jumper et al., 2021) and RoseTTAFold (Baek

et al., 2021). However, structural information on time series or

reaction pathways among the identified polymorphs is not

available using our approach. It may be complemented by

molecular-dynamics (MD) simulations. For instance, analysis

of the free-energy landscape will help in understanding the

dynamic structural mechanism during protein function (Oide

et al., 2020). Polymorph analysis will be further enhanced

along with techniques for inducing structural change, such as

ligand mixing. Although time-resolved crystallography is a

powerful tool for the analysis of dynamics, the proposed

polymorph analysis will help to compensate for numerous

difficulties in controlling such reactions. Expanding intensity-

based HCA to single-frame data (from SFX or SSROX)

should also be developed in the near future.

5. Availability

The analysis presented here can be performed anywhere by

installing the program KAMO, which is available from

GitHub (https://github.com/keitaroyam/yamtbx). The raw

diffraction data used in this study are available from Zenodo.

The links are https://doi.org/10.5281/zenodo.7067666 for apo-

trypsin; https://doi.org/10.5281/zenodo.7068055 for benzami-

dine-bound trypsin; https://doi.org/10.5281/zenodo.7067758

for tryptamine-bound trypsin; https://doi.org/10.5281/zenodo.

7068185 for HypD and https://doi.org/10.5281/zenodo.7067871

for Trn1.
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A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie,
A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T.,
Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals,
O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021).
Nature, 596, 583–589.

Kabsch, W. (2010). Acta Cryst. D66, 125–132.

Katoh, T., Sengoku, T., Hirata, K., Ogata, K. & Suga, H. (2020). Nat.
Chem. 12, 1081–1088.

Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen,
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