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Starting with a crystal structure of a macromolecule, computational structural

modeling can help to understand the associated biological processes, structure

and function, as well as to reduce the number of further experiments required to

characterize a given molecular entity. In the past decade, two classes of powerful

automated tools for investigating the binding properties of proteins have been

developed: the protein–protein docking program ClusPro and the FTMap and

FTSite programs for protein hotspot identification. These methods have been

widely used by the research community by means of publicly available online

servers, and models built using these automated tools have been reported in a

large number of publications. Importantly, additional experimental information

can be leveraged to further improve the predictive power of these approaches.

Here, an overview of the methods and their biological applications is provided

together with a brief interpretation of the results.

1. Introduction

X-ray crystallography provides atomistic structural details

of macromolecules and is crucial for the mechanistic

understanding of their cellular function. However, some

applications such as drug discovery or the determination of

protein–protein complexes may require further experiments

and additional structures to answer all questions. In these

instances, computational structural modeling tools can serve

as an important alternative method to gain structural insights,

as well as to guide or minimize the amount of further

experiments.

This paper aims to briefly outline several state-of-the-art

computational approaches that are used to help understand

biological processes, structure and function, including ClusPro,

a protein–protein docking web server, and FTMap, a family of

web servers for determining and characterizing ligand-binding

hotspots of proteins. Advanced features may be enabled to

leverage pertinent a priori or experimental data, thereby

offering more accurate predictions. Recently, ClusPro has

been used to explore additional applications with AlphaFold2,

including high-accuracy prediction of protein–protein inter-

actions.

1.1. Protein–protein docking using ClusPro

ClusPro is a web server based on a rigid-body docking

method, PIPER, that firstly samples all translations and

rotations of a ligand protein with respect to a receptor protein

and secondly uses the fast Fourier transform (FFT) correlation
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approach using knowledge-based or statistical potentials as

the scoring function to sort the samples in order to select the

best model of the complex (Kozakov et al., 2006; Xia et al.,

2016). The server performs three computational steps as

follows: (i) rigid-body docking by sampling billions of

conformations, (ii) root-mean-square deviation (r.m.s.d.)-

based clustering of the 1000 lowest-energy structures gener-

ated to find the largest clusters that will represent the most

likely models of the complex and (iii) refinement of selected

structures using energy minimization. The numerical effi-

ciency of the method stems from the fact that such energy

functions can efficiently be calculated using FFTs, which

provide the ability to exhaustively sample billions of confor-

mations of the two interacting proteins, evaluating the ener-

gies at each grid point. Thus, the FFT-based algorithm enables

the docking of proteins without any a priori information on

the structure of the complex. While ClusPro assumes that the

proteins are essentially rigid, the method allows for moderate

conformational changes due to the smoothness of the energy

function and its tolerance of atomic overlaps. In fact, allowing

a certain amount of overlap is key to the success of any rigid-

body docking method. The resulting steric conflicts are then

removed by local energy minimization of the generated

complex structures. To account for larger conformational

changes one can dock structures based on NMR experiments,

multiple X-ray structures or structures generated by molecular-

dynamics (MD) simulations. In spite of these approaches, we

admit that without access to multiple representative structures,

docking proteins that substantially alter their conformation

upon binding is a difficult and not entirely solved problem.

In some cases one has additional experimental information

on the complexes such as cross-linking (XL-MS) or mutational

data, which can offer information regarding pairs of atoms or

residues at a protein interface. Such information can be used

to generate pairwise distance restraints that can be provided

as input to ClusPro. If interface restraints are available then

only portions of conformational space will be examined by the

program (Xia et al., 2016); thus, the restraints provide more

reliable predicted structures using the ClusPro scoring func-

tion and also reduce the computational cost. Furthermore, the

confidence in the restraints can be modified by changing the

number of restraints to be satisfied during the PIPER docking

process.

The ClusPro docking methodology has consistently been

the top-performing server in Critical Assessment of Predicted

Interactions (CAPRI; Lensink et al., 2007, 2019; Lensink &

Wodak, 2010, 2013), a double-blinded protein–protein docking

experiment. The ClusPro server has more than 20 000 regis-

tered academic users and has performed more than 600 000

jobs in the last ten years.

1.2. Ligand-binding site determination and characterization
with FTMap

Given the protein crystal structure, a number of questions

can be posed in the context of drug discovery. Some of these

questions are as follows. What are the functional binding sites

of the protein? Can the site of important biological function

be targeted by high-affinity small molecules (i.e. is the pocket

druggable)? Given the binding site how can a ligand be most

optimally designed, or given a natural ligand how should it be

modified or extended? Here we describe a computational

solvent-mapping algorithm, FTMap, which provides answers

to these questions (Kozakov et al., 2015). Requiring only a

protein, DNA or RNA structure in PDB format as input,

FTMap samples millions of positions of small organic mole-

cules used as probes and scores the probe poses using a

detailed molecular-mechanics-like energy expression. FTMap

has been developed as a close computational analog of

screening experiments based on X-ray crystallography

(Mattos & Ringe, 1996) or NMR (Hajduk et al., 2005). The

method distributes small organic probe molecules of varying

size, shape and polarity on a macromolecule surface, finds the

most favorable positions for each probe type and then clusters

the probes and ranks the clusters on the basis of their average

energy. These probes include 16 organic molecules (ethanol,

2-propanol, isobutanol, acetone, acetaldehyde, dimethyl ether,

cyclohexane, ethane, acetonitrile, urea, methylamine, phenol,

benzaldehyde, benzene, acetamide and N,N-dimethylforma-

mide). Furthermore, regions that bind several probe clusters

are referred to as consensus sites and define binding hotspots

that substantially contribute to the binding free energy.

Analogous to experiments, the larger the probe population at

a particular site the more important the hotspot is. The

number of probe clusters forming a consensus site is strongly

correlated with ‘druggability’ and the relative importance of

the site. The hotspots can be further combined to identify

protein binding sites. This approach is performed by FTSite

(Ngan et al., 2012), which builds on top of FTMap. The

mapping process used by FTMap and FTSite can take into

account small conformational changes for the reasons

described above for ClusPro. Additionally, hotspots tend to

be conserved despite moderate conformational changes

(Kozakov et al., 2011). Large conformational changes can be

explored by applying FTMap to ensembles of structures

generated either by NMR, MD or multiple crystal structures

using an MD ensemble.

2. Results

2.1. Protein–protein docking using ClusPro

Two protein–protein docking applications are presented

here. The first is ab initio docking and the second is docking

guided by experimental restraints.

2.1.1. Ab initio protein–protein docking. Here, we

demonstrate a case of protein–protein docking starting from

separately crystallized subunits. As an example, we consider a

complex of subtilisin Carlsberg protease (PDB entry 1scn) and

its inhibitor turkey ovomucoid third domain (OMTKY3; PDB

entry 2gkr). The unbound structures, PDB entries 1scn and

2gkr, are submitted to ClusPro without any additional infor-

mation. The top ten results of this docking run are shown in

Fig. 1(a) superimposed onto an X-ray structure of the complex

research papers

Acta Cryst. (2022). D78, 690–697 George Jones et al. � Computational docking and hotspot analysis 691



(PDB entry 1r0r). In Fig. 1(b) the near-native ClusPro model

ranked 2 is highlighted. The model provides a reasonable

approximation of the binding found in the crystal structure

(PDB entry 1r0r) and shows an r.m.s.d. of 2.09 Å to the native

structure.

2.1.2. Protein–protein docking with distance restraints. To

demonstrate docking with experimental restraints we consider

the case of the Bmi1/Ring1b–UbcH5c complex (PDB entry

3rpg) binding to a nucleosome core particle (PDB entry 3lz0).

When the docking run is submitted without the use of

restraints the Bmi1/Ring1b–UbcH5c complex is modeled as

binding to the DNA strand, which contradicts experimental

evidence. The ubiquitination process indicates that the Cys85

residue on UbcH5c needs to be proximal to the Lys119 residue

on H2A of the nucleosome (Bentley et al., 2011). There are

also mutational studies which indicate that Lys97 on Ring1b is

involved in binding to the surface of the core histones

(Bentley et al., 2011). These experimental details can be used

to specify geometric restraints which will limit the search space

to the relevant areas. The generation of restraints can be

performed using the restraint generator provided at https://

cluspro.bu.edu/generate_restraints.html. The generator outputs

a restraint file formatted as shown in Fig. 2. The results of the

restrained docking can be viewed in Fig. 3(b) compared with

the crystal structure of the complex found in PDB entry 4r8p.

This can be compared with the unrestrained docking results

shown in Fig. 3(a). The restrained results provide a binding

pose close to the reported structure among the top predic-

tions: this is the pose ranked 2 and it has an iRMSD of 4.9 Å

(see Fig. 3b).

2.2. Identification of ligand-binding hotspots using FTMap

In this section, we demonstrate hotspot identification using

FTMap in various drug discovery-related applications starting

from the crystal structure of the protein.

2.2.1. Fragment screening for SARS-CoV-2 main protease
with FTMap. As a first example of computational binding-site

prediction with FTMap, we applied FTMap to SARS-CoV-2

main protease (Mpro; Douangamath et al., 2020), a recognized

COVID-19 drug target. Fig. 4(a) demonstrates the global

mapping of Mpro shown in a gray surface representation.

FTMap produced nine consensus sites or hotspots ranked by
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Figure 1
Protein–protein docking using ClusPro. (a) ClusPro produces multiple models of the ligand (PDB entry 2gkr) binding to the receptor (PDB entry 1scn).
The top ten models using the balanced coefficient set are presented. (b) The PDB entry 1r0r structure is shown in salmon, the PDB entry 1scn structure is
shown in brown and the number 2 ranked ligand (PDB entry 2gkr) is shown in yellow.

Figure 2
Restraint formatting. The figure illustrates the format of the restraints
used for this docking option.



cluster population and shown as different carbon-color line

representations. There are four mostly minor consensus sites

outside the active site of Mpro, including two near the

dimerization interface. The majority (4/5) of highly populated

consensus sites with over ten probe clusters can be found in

the active site of Mpro, including the consensus site with the

highest population (26 probe clusters), which implies that the

site is druggable. Indeed, to date, several compounds with

submicromolar binding to Mpro have been reported in the

literature. Enlarging the active site shown in Fig. 4(b), one can

see that the compounds depicted in stick representation

overlap with FTMap hotspots in different combinations.

2.2.2. Druggability analysis of protein–protein interfaces
using FTMap. The low druggability of protein–protein inter-

faces for the binding of drug-like small molecules is a grand

challenge in drug discovery. It is especially difficult due to the

relatively shallow pockets on the protein surface compared
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Figure 3
Protein–protein docking with restraints. Docking results using ClusPro,
both restrained and unrestrained. (a) The unrestrained docking results
for the Bmi1/Ring1b–UbcH5c complex and nucleosome. The Bmi1/
Ring1b–UbcH5c complex is bound to the DNA in this instance. (b) This is
the number 2 ranked pose using restraints; it binds to the appropriate
location and has a near-native pose.

Figure 4
Fragment screening for Mpro using FTMap: the top-ranking consensus
clusters of probes are depicted in green, cyan, magenta and yellow. The
SARS-CoV-2 Mpro protein structure is depicted as a gray surface in a
global view (a) and the active site (b). The inhibitors are peptide-like
(pale green sticks; Jin et al., 2020), Diamond Fragalysis (wheat sticks;
XChem@Diamond; https://fragalysis.diamond.ac.uk/viewer/react/landing)
and PostEra COVID Moonshot (light blue sticks; https://postera.ai/
moonshot).



with those found in traditional protein–ligand interactions,

and the requirement of the ligand to compete with protein

interactions. FTMap can be used to identify ‘hotspots’ on the

protein surface, the presence, strength and relative distance of

which on the interface can indicate druggable sites. Fig. 5(a)

highlights the FTMap results of mapping interleukin-2 at its

interface with the interleukin-2 receptor. There are strong

hotspots present (�16 probes) along with other hotspots that

indicate a druggable site. Indeed, low-nanomolar inhibitors

were found for this interface. Fig. 5(b) highlights the

contrasting results for ZipA at its interface with FtsZ, where

although some hotspots are present they are weak and do not

indicate a druggable site. In fact, only weak ligands were found

for this interface, which supports the prediction.

2.2.3. Identifying allosteric sites using FTMap. Targeting

allosteric sites on kinases is an emerging area in drug

discovery. Since FTMap searches for sites on the entire

protein surface, it can be useful for finding such sites. Here, we

demonstrate the application of the approach to the identifi-

cation of allosteric sites on PDK1 kinase. The kinase example
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Figure 6
Protein mapping using FTMap. (a) The FTMap results for the N lobe of PDB entry 1h1w, with the PIF pocket in yellow, the ATP-binding pocket in
magenta, the ATP molecule in red and adenosine in teal. (b) Mapping of the PIF binding pocket (yellow) with the bound ligand RF4 (teal).

Figure 5
Protein–protein interface druggability. Druggability analysis of relevant protein–protein interfaces using FTMap. (a) FTMap-generated hotspots at the
interface of interleukin-2 (PDB entry 1m47) with the interleukin-2 receptor and the small-molecule inhibitor FRB (PDB entry 1pw6; IC50 = 6 mM).
Clusters 1 (red, 18 probes), 4 (blue, 12 probes) and 9 (magenta, three probes) constitute a druggable site at the interface. Moreover, clusters 1, 4 and 7
(yellow, five probes) are in close proximity to the inhibitor. (b) FTMap-generated hotspots at the interface of ZipA (PDB entry 1f46) with FtsZ and the
weak small-molecule inhibitor WAC (PDB entry 1s1s). There were no strong hotspots at the interface to form a druggable site. The inhibitor is in close
proximity to the low-strength clusters 5 (orange, eight probes), 10 (red, three probes) and 13 (blue, two probes). The low binding affinity of the inhibitor
at the interface is consistent with the FTMap prediction of the interface not being druggable



is also interesting since kinases are multi-domain proteins and

FTMap was optimized to work on single domains. To address

this, in addition to mapping the entire protein (PDB entry

1h1w) we separately map the domains (N and C lobes in this

case). These two lobes are then submitted to FTMap. PDK1

binds ATP in its main pocket; in addition, an allosteric regu-

lation site has also been identified, the PDK1-interacting

fragment (PIF) pocket. The mapping results for the N lobe are

located in Fig. 6(a), and the two most populated identified

pockets, corresponding to the ATP-binding site and the PIF

site, are shown in Fig. 6(b) along with a bound ligand (PDB

entry 4xx9). Application of FTMap in the analysis to identify

cryptic and allosteric sites is discussed in more detail in Beglov

et al. (2018). Analysis of structures in the kinome are provided

in Yueh et al. (2019).

2.2.4. Detection of ligand-binding sites using FTSite.

Nearby hotspots predicted by FTMap can be further combined

to predict entire binding sites. This is performed by the FTSite

algorithm available as part of the FTMap family of servers.

We demonstrate binding-site identification of the ribosome-

inactivating protein (RIP) momordin. The protein is known to

bind adenosine. We predict the binding site of the protein

starting with unliganded momordin (PDB entry 1ahc). The top

two pockets predicted by FTSite are shown in Fig. 7 along with

the ligand overlapped from the bound structure (PDB entry

1mrg). The adenosine pose lies within the first-ranked pocket.

2.3. Docking and mapping using high-accuracy protein
models

AlphaFold2 has made landmark advances in protein

structure prediction (Jumper et al., 2021). Here, we present

several applications of high-accuracy protein models to

predict both protein–protein interactions (PPI) using ClusPro

and ligand-binding sites using FTMap.

2.3.1. Predicting protein–protein interactions with Alpha-
Fold2 and ClusPro. Firstly, we demonstrate the docking of

models of individual protein monomers using ClusPro. We

consider the complex between the �-lactamase inhibitory

protein and �-lactamase as an example, and construct the

monomer models using AlphaFold2. The sequences of the

component proteins are those of the unbound structures in the

PDB. We then used the MMseqs2 API to generate multiple

sequence alignments (MSA) for each sequence, which were

then combined (Mirdita et al., 2019). In order to allow

generation of the complex, we introduced a 200-residue gap in

the residue-index numbering between each protein. We used

the pTM model parameter set to generate models using

AlphaFold2. AlphaFold2 provided a predicted aligned error

(PAE) for each residue of the model, which we used to

calculate an average PAE score for those residues at the

interface of the interacting proteins. The interface was defined

to be those residues that were within 10 Å of the other

protein. The AlphaFold2 model of the complex with the

lowest average interface PAE score was selected and split into
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Figure 8
Docking comparison between AlphaFold2 and ClusPro. Docking results for �-lactamase inhibitory protein (UniProt P35804) and the �-lactamase TEM1
(UniProt P62593) from the protein–protein docking benchmark (Vreven et al., 2015). Comparison of the best docked models produced by AlphaFold2
and those produced by the docking of AlphaFold2 subunits using ClusPro.

Figure 7
Protein mapping using FTSite. The FTSite results for PDB entry 1ahc
shown with the bound ligand adenosine (teal). The first predicted pocket
(red) and the second predicted pocket (green) are shown.



two separate structures representing the receptor and the

ligand. As can be seen from Fig. 8, AlphaFold2 was not able to

generate an accurate protein complex in this case. However,

when we provided the monomer model to ClusPro for

docking, it was able to generate a high-accuracy model of the

complex.

2.3.2. Predicting binding sites with AlphaFold2 and
FTMap. Similar to the case of protein docking, accurate

models of proteins can be used with FTMap to perform the

mapping of predicted binding sites on protein surfaces. The

binding properties of high-quality protein models produced by

AlphaFold2 (generally GDT_TS > 90) have been shown to

correlate with the binding properties of experimental struc-

tures in the functional analysis of CASP14 targets (Egbert et

al., 2021). For example, the protein 2-hydroxyacyl-CoA lyase

(HACL) was co-crystallized with ADP bound and was utilized

as a CASP14 target. The model predicted by AlphaFold2 is

almost an exact match (GDT_TS = 99.07) to the X-ray

structure, and the ADP-binding pockets are nearly identical

(see Fig. 9). FTMap of both the X-ray structure and the

AlphaFold2 prediction identified the ADP-binding site as the

strongest site, with 33 and 26 probe clusters, respectively.

Visually, the predicted binding sites in HACL appear to be

almost identical between the X-ray structure and the Alpha-

Fold2 model.

3. Conclusions

In this work, we show various applications of computational

docking using ClusPro and hotspot identification using

FTMap. Both servers use protein crystal structures as inputs.

We demonstrate that ClusPro can be used to predict high-

accuracy models of protein complex structures with and

without the use of experimental information. FTMap enables

the identification of orthosteric and allosteric binding sites in

proteins, determining the druggability (i.e. the ability to

develop high-affinity small molecules) of sites of biological

interest and also provides information for the design of small-

molecular inhibitors and modulators. We demonstrate that the

tools can also be used with high-accuracy protein models

provided by novel deep-learning algorithms such as Alpha-

Fold2. The methods are available for free to academic users by

means of public web servers. All of the input models for

the server are available at https://cluspro.bu.edu/examples/

inputs.zip.
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Figure 9
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gray cartoon with co-crystallized ADP shown as pink sticks. The top AlphaFold2 model is overlaid in wheat (GDT_TS = 99.07). (b) The FTMap-
predicted ADP-binding site in the X-ray structure. (c) The FTMap-predicted ADP-binding site in the top AlphaFold2 model, with PDB entry 6xn8 chain
A with ADP overlaid as a reference.
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