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One often observes small but measurable differences in the diffraction data

measured from different crystals of a single protein. These differences might

reflect structural differences in the protein and may reveal the natural dynamism

of the molecule in solution. Partitioning these mixed-state data into single-state

clusters is a critical step that could extract information about the dynamic

behavior of proteins from hundreds or thousands of single-crystal data sets.

Mixed-state data can be obtained deliberately (through intentional perturba-

tion) or inadvertently (while attempting to measure highly redundant single-

crystal data). To the extent that different states adopt different molecular

structures, one expects to observe differences in the crystals; each of the

polystates will create a polymorph of the crystals. After mixed-state diffraction

data have been measured, deliberately or inadvertently, the challenge is to sort

the data into clusters that may represent relevant biological polystates. Here,

this problem is addressed using a simple multi-factor clustering approach that

classifies each data set using independent observables, thereby assigning each

data set to the correct location in conformational space. This procedure is

illustrated using two independent observables, unit-cell parameters and

intensities, to cluster mixed-state data from chymotrypsinogen (ChTg) crystals.

It is observed that the data populate an arc of the reaction trajectory as ChTg is

converted into chymotrypsin.

1. Introduction

Proteins often undergo structural changes as part of their

normal functioning. Crystal structures often reveal proteins in

different conformations (called polymorphs). Crystallography

explores an average structure of all of the molecules in the

volume that the X-ray beam interrogates: an immense number

of individual molecules with possibly significantly different

polymorphs. These different structures might have revealed

information on the dynamics of transitions among those

polymorphs had they not all been averaged together. Because

of this averaging, instead of seeing distinct states clearly, we

may see only what looks like blurred thermal motion.

To reduce this problem, a typical structural study of a

protein might involve constraining the molecule in one of its

states by binding a ligand before crystal growth. For example,

in the emerging field of biological data storage, proteins with

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798321013425&domain=pdf&date_stamp=2022-02-18


two distinct conformations (called polystates) are intention-

ally switched between them to represent binary code (0 and 1;

Sethi, 2015). It seems likely that molecules in a single crystal

form may show slightly different structures depending on the

pH, the state of hydration etc. That is, they exhibit dynamic

behavior that may or may not indicate changes related to their

function. Here, we will adopt the term ‘polystates’ to refer to

protein structural polymorphs that correspond to biologically

relevant conformations of proteins, as well as to other signif-

icant state variations. To observe them, one might sample

these variables carefully to find states where all molecules are

the same in a crystal. We aim in this work to design a more

general workflow.

Modern crystallographic practice provides opportunities to

discover and analyze the sort of changes that we describe here:

we use crystals small enough that each may contain only one

polystate. In particular, data collection at a synchrotron source

often includes the measurement of many partial sets of crystal

diffraction data from many, often very small, crystals (Liu et

al., 2011; Giordano et al., 2012; Rossmann, 2014; Assmann et

al., 2016; Bernstein et al., 2017, 2020; Gao et al., 2018). This is

possible because fourth-generation synchrotron sources are

very bright, the X-ray beams are very small, the 2D detectors

employed are very fast and modern goniometers are very

precise. With a detector operating at 200 Hz, a 360� rotational

sweep with 0.2� per image will take approximately 9 s. These

are standard experimental parameters at the FMX and AMX

beamlines at National Synchrotron Light Source II (NSLS-II),

where a beam size even smaller than the small crystals is

employed. We could sample hundreds of tiny crystals (1–

5 mm), each perhaps one polymorph, and then separate them

into these polymorphs.

For this sort of treatment, one may mount crystals singly or,

say, with half a dozen in each sample mount (loop or mesh

micro-mount); in each case, data are obtained for each indi-

vidual crystal. The crystals may come from different crystal-

lization drops, or even different preparations, but they are all

nominally isomorphous; our objective is to improve the

quality of the data by merging multiple measurements. In

practice one may partition the data from many crystals into

different clusters, based on differences in intensities or unit-

cell parameters. Each cluster may represent one step in the

normal dynamic motion of the molecule. Starting from

multiple independent samples increases the chances of having

multiple states to observe.

As we mentioned, two popular criteria for clustering data

sets are the similarity in unit-cell parameter values and in

reflection intensities. Unit-cell databases have long been used

for substance identification and are now used as a coarse

screen for molecular-replacement candidates. Steno (1669), as

cited in Authier (2013), noticed the constancy of interfacial

angles of crystals. Reflection intensities represent the true

structure, so similarity of reflections is a good metric to use in

comparing data sets.

We demonstrate our approach using chymotrypsinogen

(ChTg). ChTg is the precursor (zymogen) of the mammalian

digestive enzyme chymotrypsin (CHT), one of several well

known serine proteases (Kunitz & Northrop, 1935; Siekevitz &

Palade, 1960). This conversion is accomplished by several

enzymatic cleavages. Firstly (in the digestive tract), trypsin

cleaves the peptide bond between Arg15 and Ile16 to yield

�-CHT, which is an active enzyme form. Secondly, �-CHT

molecules autolyze one another to cleave the bonds between

Leu13 and Ser14 to release Ser14-Arg15, and between Tyr146

and Thr147 and between Asn148 and Ala149 to release

Thr147-Asn148. The resulting �-chymotrypsin is formed by

three chains tethered by disulfide bridges.

We measured 146 diffraction data sets, each from a single

crystal of ChTg crystallized in three different conditions: pH

4.6, pH 5.6 and pH 6.5. We discovered that the polymorphs

that we observed resemble the partial conversion of ChTg to

CHT. Almost all of the crystals that we successfully assembled

into clusters, from which we could average data and solve the

structure, were formed at pH 6.5. To detect different mole-

cular states in individual crystals, we based the partitioning of

the single-crystal data on the following two properties: unit-

cell parameters and intensities.

We first employed differences in unit-cell parameters as a

conventional method for clustering single-crystal data.

However, this was clearly inadequate, and we extended this to

partitioning on similarities in diffraction intensities. The

criterion for similarity was the correlation coefficient calcu-

lated between pairs of measurements, thereby classifying

according to the slightly different but stable conformational

states that generated these data. We found that clustering by

correlation of intensities also revealed the large unit-cell

differences that were observed. In general, however, unit-cell

differences are observable much earlier during structure

determination than distinctive intensity differences, and they

can provide preliminary clustering with the use of correlation

coefficients to follow.

2. Methods

2.1. Crystallization

We determined crystallization conditions for chymo-

trypsinogen (Sigma) using the commercial Crystal Screen HT

(Hampton Research) set up with a Mosquito robot (STP

Labtech). Crystals were grown via hanging-drop vapor diffu-

sion at 18�C from condition F11. To optimize the crystal-

lization conditions further, we set up a 24-well tray using

hanging-drop vapor diffusion with a fixed pH of 6.5, varying

the concentration of both dioxane (10% or 15%) and

ammonium sulfate (1.0–2.0 M). Each drop, consisting of 1 ml

reservoir solution (1.0–2.0 M ammonium sulfate, 0.1 M MES

pH 6.5 and 10% or 15% dioxane) and 1 ml 10.0 mg ml�1

enzyme, was equilibrated over 0.5 ml reservoir solution. The

other two crystallization conditions consisted of either 0.2 M

ammonium acetate, 0.1 M sodium acetate trihydrate pH 4.6,

30%(w/v) PEG 4000 or 0.5 M ammonium sulfate, 0.1 M

sodium citrate tribasic dihydrate pH 5.6, with 1.0 M lithium

sulfate monohydrate in the reservoir. All crystals were

research papers

Acta Cryst. (2022). D78, 268–277 Thu Nguyen et al. � Diffraction data from dynamic proteins 269



cryocooled in 3.5 M lithium sulfate. A typical drop containing

these crystals is shown in Fig. 1.

2.2. Data collection and structure-solution strategies

We used ChTg crystals of �50 mm in size and an �5 mm

beam to obtain several hundred data sets at an energy of

13.48 keV (0.92 Å), collecting 120� of data per crystal on

beamline 17-ID-1 (AMX) at NSLS-II, Brookhaven National

Laboratory using a Dectris EIGER X 9M detector. For each

crystal with sufficient data, the data set was indexed, inte-

grated and scaled using a version of the data-reduction pipe-

line fast_dp (Winter & McAuley, 2011) modified to run in the

local distributed computing environment, which supplies the

following modules: XDS (Kabsch, 2010), DIALS (Winter et

al., 2018), Phenix (Afonine et al., 2012), AIMLESS and

POINTLESS (Evans & Murshudov, 2013). The tetragonal

crystals of ChTg diffracted to between 2.0 and 2.4 Å resolu-

tion.

We determined the structure by molecular replacement

with Phaser (McCoy et al., 2007) using the structure of ChTg

with PDB code 1ex3 as a model (Bernstein et al., 1977;

Berman et al., 2000; Pjura et al., 2000). The data were refined

to their final resolution using iterative rounds of refinement

with REFMAC (Murshudov et al., 1997, 2011) and manual

rebuilding in Coot (Emsley et al., 2010). We then used this

model to build our ‘average’ structure from an average of all

data sets at an energy of 13.48 keV. Our average structure was

broadly similar to previously published structures, with the

exception of one loop that was not resolvable in our data

(Thr147–Asn150; see Fig. 2) and one adjacent region that

adopts a different conformation (Thr139–Tyr146; see Fig. 3).

While scaling these data sets, we noted clusters in the data. It is

possible that they originated from polymorphs in the ChTg

crystals, which may represent dynamic behavior in the mole-

cules.

2.3. Data-clustering program

We used a custom-modified version of the KAMO clus-

tering pipeline (Yamashita et al., 2018), which uses the clus-

tering program Blend (Foadi et al., 2013) to generate a

dendrogram of the data sets. We expanded KAMO and Blend

to allow two-factor clustering as follows. Unit-cell parameters

and amplitudes contain independent information. One expects

differences in unit-cell parameters to reflect changes in the

outer shape of the structure, perhaps responding to the

presence of internal or external ligands. On the other hand,

differences in amplitudes will be sensitive to all conforma-

tional changes in the protein. Therefore, in a single workflow

the new scheme obtains initial ‘coarse’ clusters according to

the similarity of the crystallographic unit cells (space-group

clusters) and then generates ‘fine’ clus-

ters by a further partitioning of each

cluster according to the similarity of the

amplitude data. (The modified software

is available at https://github.com/

nsls-ii-mx/blend and http://github.com/

nsls-ii-mx/yamtbx.)

Our procedure employs Pearson

correlation coefficient (CC) calculations

to determine similarity scores, requiring

that pairs of data sets have many

measured amplitudes in common: one

must have a reasonably complete set of

structure factors. For this CC clustering,

70% completeness is required. One can

introduce a penalty for unmatched

structure factors, and can obtain a

solution with a completeness as low as

20–40% (Bernstein et al., 2017); we are

studying the effect of even lower

completeness to apply this procedure to

partial data sets. We will show that this
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Figure 2
Sequence alignment of ChTg (PDB entry 1ex3) and the average structure (PDB entry 7kty). The
loop residues 147–150 do not display electron density in PDB entry 7kty.

Figure 1
Representative ChTg crystals from crystallization conditions consisting of
1.0–2.0 M ammonium sulfate, 0.1 M MES pH 6.5, 10% or 15% dioxane.



clustering approach demonstrates how increasingly sensitive

clustering methods can identify increasingly detailed struc-

tural differences (Figs. 3–8).

In our study, when we ran KAMO.multi_merge with Blend,

it reduced the data in different point groups (the observed

point groups were exemplified by space groups P2, P222 and

P422). We selected the data that reduced in P422 because

these data contained the largest number of data sets and

correspond to the published space group for ChTg; we aimed

to use the structure factors to display the differences in the

structures corresponding to the data that reduced in P422. We

used KAMO to divide the data sets of the chosen space group

into different clusters based on intensity CC. Please note that

the term space-group clustering is in common usage, but the

technically correct term for clustering performed prior to

refinement is point-group clustering; for example, our algo-

rithms clustered the cymotrypsinogen data using the exemplar

space group P422 (No. 89) with its Laue point group (4/m 2/m

2/m), rather than the actual space group P41212 (No. 92)

adopted by all crystals.

For the clustering step, we defined the ‘distance’ between

pairs of data sets as d(i, j) = [1 � CC(i, j)]1/2. Our procedure

then used a hierarchical clustering analysis (Rokach &

Maimon, 2005) with Ward clustering (Ward, 1963) to find

distinct groups of the chosen data sets. In Ward clustering, the

data sets are considered first by building a small cluster out of

the two closest data sets and then adding one data set at a time

to whichever data set or existing cluster results in a new cluster

of smallest variance (mean of squares of distances). There are

many other choices of what is called ‘linkage’ in forming a

cluster dendrogram, such as using cluster centroids. Using the

minimal variance allows the use of one simple distance matrix

as input to the clustering algorithm, rather than requiring

repeated calculation of distances among cells or, worse, among

hkl vectors of structure factors, but it does tend to produce

dendrograms for which the heights grow rapidly. Strauss &

von Maltitz (2017) discuss some alter-

native linkage choices. The program

outputs a dendrogram that illustrates

the distances (differences) among clus-

ters by the y axis (the joint variance).

To obtain a certain number of clusters

which contain more similar data sets, we

chose a height-cutoff value k accord-

ingly. The lower the k value, the more

similar the data sets in each cluster are.

Each cluster now relates to a structure

built after merging data sets within it.

We want to understand how the unit-

cell parameter values of data sets relate

to the clusters determined by similarity

in diffraction intensities. Since the space

group is P41212 (No. 89/92), the unit-cell

parameters a and b are equal and all
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Figure 4
Two main data clusters can be identified by inspection (the a = 111 Å group and the a = 114–115 Å group). We observed that our data partitioned cleanly
between 28 data sets with an a (= b) unit-cell parameter of approximately 114–115 Å and 118 data sets with an a (= b) unit-cell parameter of
approximately 111 Å. The separation into the two unit-cell clusters is shown in the monochrome clustering on the left. The further division of these two
clusters into amplitude-based clusters is shown by the colors on the right. The a = 114–115 Å unit-cell-based cluster contains the green and red clusters
and the a = 111 Å unit-cell-based cluster contains the cyan, purple and yellow clusters. Each of our data sets was sufficiently large that amplitude-based
clustering could have been used from the start. However, many serial crystallography projects consist of narrow wedges of data, each of which might be
too small to cluster effectively using amplitudes because amplitude-based clustering requires that data sets have a sufficient number of observations in
common. This figure illustrates how an initial use of cell-based clustering might be used to bootstrap amplitude-based clustering.

Figure 3
Cross-eyed stereoview of the structural alignment of PDB entry 1ex3 (dark gray) and the average
structure PDB entry 7kty (light gray). The FATCAT chain r.m.s.d. is 0.56 Å. The regions with
significant differences are adjacent and appear at the upper left of this figure. Firstly, in the average
structure the amino acids between Thr147 and Asn150 are missing. Secondly, in the average
structure the amino acids between Thr139 and Tyr146 adopt a significantly different conformation.



unit-cell angles are 90�. Since there are only two free para-

meters, we could visually demonstrate how the intensity

clusters relate to the unit-cell parameters a and c for each data

set (Fig. 4).

Finally, we created a molecular structure from the average

intensities from all of the crystals in each intensity cluster and

also averaged structures for each of the different unit-cell

parameter clusters (see Fig. 5; the data are available from the

corresponding authors). To create structures that relate to

each of these clusters, we employed the average structure

defined above in the data-collection section as the starting

model for structure determination and refinement of the

structures of each of the clusters. All of the processes that we

used to build the structures of the clusters and to subsequently

refine them are automated with the help of REFMAC

(Murshudov et al., 1997, 2011). Following the automated

refinement steps, we performed a manual check-and-refine

step using Coot (Emsley et al., 2010) to ensure that no serious

errors remained from the automated process and corrected

the refined model as needed. FATCAT (Ye & Godzik, 2004)

allowed us to quantify the morphological differences among

structure solutions.

2.4. Illustrating the differences to identify physically
meaningful clusters

Any software that uses observable parameters to generate

clusters may generate a very large number of clusters. How is

one to determine which clusters are physically meaningful?

Dendrograms can illustrate the relationships among clusters,

but one must illustrate physical relevance using structural

tools, i.e. comparing the structures obtained from each of these

clusters. We generated two software tools for this purpose (see

https://github.com/nsls-ii-mx/chymotrypsinogen). Both tools

use individual colors to differentiate among clusters, which we

can then test for physical relevance, and both tools use two- or

three-dimensional plots to illustrate an underlying physical

characteristic of the structure.

We developed a tool to create color-coded coordinate

ellipses. We plotted the xyz coordinates of the C� atom of a

particular amino acid in the structure that we observed to be

highly mobile among the clusters. We created color-coded

ellipsoids that enclosed all C� atoms found from each of the

individual clusters. The size of each ellipsoid indicates the

variation of the coordinates within the corresponding cluster.

Ideally, the size of each color-coded ellipsoid will not be very

large compared with the separations among the centroids of

the ellipsoids, indicating that each cluster represents a separ-

able state. The code is available in the https://github.com/

nsls-ii-mx/chymotrypsinogen git repository as the file https://

raw.githubusercontent.com/nsls-ii-mx/chymotrypsinogen/master/

ellipsoid.py. An example of the use of this graphic appears in

Fig. 8.

We also plotted the a and c axis lengths for each data set

that resides within an amplitude-based cluster (Fig. 4).

Employing a dendrogram-plotting graphic tool from KAMO,

we illustrated all data that originated from each postulated

cluster in a different color (Fig. 6).

To detect subtle differences among the structures of the

clusters, we used FTMap (Kozakov et al., 2015), software that

was designed to determine and characterize ligand-binding

hotspots on the surfaces of proteins. The algorithm uses a

library of 16 molecules as probes to discover potential patches

on the surface of a structure where a molecule might bind.

Differences in proposed surface binding could reveal other-

wise unnoticeable physical differences among the structures.
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Figure 6
Amplitude-based clusters generated using KAMO (dendrogram). This
dendrogram shows a representation of the similarity of pairs of data sets
and of clusters of more data sets. They are arranged with the most similar
clusters near each other and the connecting bar at a height corresponding
to the distance between clusters. The difference was calculated using
Ward’s method for hierarchical clustering, which yields a composite
metric that contains information from amplitude differences and from
unit-cell differences. Our algorithm is described in Section 2.3. Structures
were solved corresponding to each of these 145 clusters. We deposited the
structure derived from refinement against structure factors, each of which
was an average of that observation from all of these clusters, as PDB
entry 7kty. Through inspection of the derived structures we selected a
height within the dendrogram at which to partition our data, giving five
clusters. We then averaged all structure factors within each of the five
distinct clusters and then refined against these to give cluster-average
structures. We deposited the averaged structure from the green clusters as
PDB entry 7ku1, from the red clusters as PDB entry 7ku2, from the cyan
clusters as PDB entry 7ku3, from the purple clusters as PDB entry 7ktz
and from the yellow clusters as PDB entry 7ku0.

Figure 5
Differences in solvent between the a = 111 Å cluster and the a = 114–
115 Å cluster. Fo � Fc electron difference density displaying two
differences that we observed in solvent density between the a = 111 Å
cluster and the a = 114–115 Å cluster (difference densities at 2� are
shown in green for both data sets). Left: ribbon diagram of ChTg around
Lys175 (cyan) for the a = 111 Å cluster. Right: ribbon diagram of ChTg
around Lys175 (cyan) for the a = 114–115 Å cluster. This density was
modeled as a water molecule.



3. Results

3.1. Data collection and protein structures

We collected 511 complete data sets and processed 325 of

them using our data-reduction pipeline fast_dp_nsls2. Of

these, 175 files had a resolution better than 4 Å. Finally, 146

data sets from the point group represented by space group No.

89 (P422) were merged using Blend cell-based cluster analysis.

The protein is a single chain of 245 residues, of which four

residues (147–150) were not resolved.

We obtained our initial structure, PDB entry 7kty, from a

merge of all 146 data sets and called this the average structure

(denoted thus in Tables 1 and 2). We used REFMAC and Coot

to refine the structure and reduce the R value to about 18%.

Averaging all 146 data sets together resulted in a relatively

high Rmerge value (48%), but nevertheless PDB entry 7kty was

a good fit to these data (Rwork = 19%, Rfree = 20%). This

average structure is slightly different from the published

structure with PDB code 1ex3 which we used as an initial

phasing model. For example, PDB entry 7kty has a missing

loop from residue 147 to residue 150, which is a characteristic

of mature �-chymotrypsin. Fig. 2 displays the sequence

alignment between PDB entry 1ex3 and our structure, PDB

entry 7kty, with the elements of the secondary structure drawn

on top.

3.2. Clustering with unit cells and with amplitudes

Clustering software will generate data corresponding to

candidate polystates, even in cases where truly distinct poly-

states are not actually present in the samples. Two indepen-

dent data sets collected from two samples will always give

different average structures. Such differences are often not

relevant in terms of dynamics or states when the differences

are small compared with the experimental error. The only way

to determine whether candidate clusters may correspond to

biologically relevant polystates is to generate and examine the

corresponding structural models (typically atomic models)

with appropriate real-space tools, such as FATCAT and Coot.

In the case of the ChTg data, we could see from inspection that

the data could be divided into two large clusters corre-

sponding to structures with a’ 111 Å and those with a’ 114–

115 Å (Fig. 4).

Employing only the observed diffraction intensities, we

identified two main clusters that corresponded to the two main

polymorphs that ChTg adopted in our crystals, based on the

length of the a axis. In addition, there were five clusters that

corresponded to biologically relevant polymorphs present in

our data. The cell-based clustering shows that the unit-cell

lengths separate clearly into two groups, while the c unit-cell

length varies less and is not clearly separable. There were

significant solvent-region differences between the a = 111 Å

cluster and the a = 114–115 Å cluster (Fig. 4).

When comparing the structures corresponding to the

a = 111 Å cluster and the a = 114–115 Å cluster, we observed

that the a = 114–115 Å cluster data yields observable density

for all 245 residues (similar to PDB entry 1ex3), while the

a = 111 Å cluster data indicate that there is a missing loop

from residue 147 to residue 150 (this region is also not

research papers

Acta Cryst. (2022). D78, 268–277 Thu Nguyen et al. � Diffraction data from dynamic proteins 273

Table 2
Structure solution and refinement.

PDB code 7kty 7ku1 7ku2 7ku3 7ktz 7ku0

Description Average Green Red Cyan Purple Yellow
Final Rwork (%) 19.13 22.08 20.97 18.15 16.18 16.74
Final Rfree (%) 20.19 26.37 23.42 21.01 19.01 19.41
No. of non-H atoms

Protein 1786 1771 1778 1794 1786 1786
Ligand 15 5 5 15 15 15
Water 99 10 44 195 249 243
Total 1900 1786 1827 2004 2050 2044

R.m.s. deviations
Bonds (Å) 0.01 0.01 0.01 0.01 0.01 0.01
Angles (�) 0.86 1.00 0.86 0.77 0.80 0.74

Average B factors (Å2)
Protein 57.9 67.4 58.7 36.6 28.1 28.8
Ligand 63.0 83.9 75.7 40.7 40.7 34.8
Water 58.7 63.0 56.1 42.3 37.1 36.8

Ramachandran plot (%)
Favored 97.47 96.20 97.06 97.47 98.31 98.73
Allowed 1.69 2.95 2.52 2.11 1.27 0.84

Table 1
Data collection and processing.

PDB code 7kty 7ku1 7ku2 7ku3 7ktz 7ku0

Description Average Green Red Cyan Purple Yellow
Cluster No. 145 139 140 141 131 138
No. of data sets 146 12 16 32 37 49
Wavelength (Å) 0.9201 0.9201 0.9201 0.9201 0.9201 0.9201
Temperature (K) 100 100 100 100 100 100
Detector EIGER X 9M EIGER X 9M EIGER X 9M EIGER X 9M EIGER X 9M EIGER X 9M
Distance (mm) 100–200 100–200 100–200 100–200 100–200 100–200
Rotation (�) 0.2 0.2 0.2 0.2 0.2 0.2
Total range (�) 120 120 120 120 120 120
Space group P41212 P41212 P41212 P41212 P41212 P41212
a, b (Å) 114.49 114.49 115.57 111.33 111.49 111.47
c (Å) 51.90 51.9 52.92 51.87 52.02 52.36
�, �, � (�) 90 90 90 90 90 90
Resolution (Å) 2.00 2.39 2.19 2.00 2.00 2.02
No. of reflections 23850 14139 18927 22533 22696 22261
Completeness (%) 99.94 99.80 98.98 99.81 99.93 99.59
hI/�(I)i 10.91 9.48 9.76 10.66 12.15 10.85
Wilson B factor (Å2) 53.96 61.87 53.31 33.72 29.15 30.16



observed in the average structure). Another thing that we

observed is the presence of strong density near Lys175 in the

a = 111 Å cluster data, while the a = 114–115 Å cluster data

does not have this large artifact (Fig. 5). We discuss these

differences further below.

Using Blend and KAMO, we obtained 145 clusters from the

146 ChTg data sets. We then generated structures after

merging data sets belonging to each of these 145 clusters, and

we visually inspected each of them to find any recurring

patterns. This visual inspection allowed us to determine that

all of the reproducible differences could be accounted for

using just five of the larger clusters (which we call the green,

red, cyan, purple and yellow clusters). In other words, we

chose the ‘height’ at which we cut the KAMO dendrogram so

that five clusters contain the data corresponding to the rele-

vant structures (Fig. 6). By comparing our results with iden-

tically processed data that were modified such that the unit-

cell dimensions were either constant or randomized, we

observed that the dominant contribution to the clustering

correctness derives from differences in the data amplitudes,

with differences in the unit-cell parameters playing a lesser

role (see supporting information).

The 145 clusters could also be overlaid on the a and c axis

diagram color-coded according to each of the five main clus-

ters (Fig. 4). All of the data sets of the green and red clusters

belong to the a = 114–115 Å cluster and the data sets of the

cyan, purple and yellow clusters belong to the a = 111 Å

cluster. If we increase the cut height to 1.5, we obtain sub-

master clusters of the two intensities, one containing the green

and red clusters and the other containing the cyan, purple and

yellow clusters. This means the intensity cluster result has a

strong alignment with the unit-cell parameter cluster result.

3.3. The five data clusters

We generated a dendrogram using Ward’s method for

hierarchical clustering with the height cutoff at 1.0 to obtain

distinct groups of data sets. To observe the differences

between the 145 structures generated using individual data

clusters, we calculated the largest differences in physical

coordinates at the C� atom of each residue (see Fig. 7). We

observed that the most mobile area, particularly residues 139–

145, is near the missing loop from residues 146–152. Note that

the distinctive differences between ChTg (the zymogen) and

CHT (the enzyme chymotrypsin) are the cleavages at the

N-terminus and the gap between Tyr146 and Ala149. The

largest differences were observed for residue 146, with

average positional differences greater than 3 Å (Fig. 8).

At each residue position, we plotted ellipsoids to illustrate

the variation in the C� coordinates observed in each of the

structures corresponding to the five clusters. For example, the

ellipsoid for position 146 illustrates that the C� atoms in the

green and red clusters have a much greater positional varia-

tion (the ellipsoids are bigger) compared with the cyan, purple

and yellow clusters. The ellipsoids show the variation of C�

coordinates of all structures belonging to each sub-master

cluster. The sizes of the ellipsoids show that residue 146 of the

structures in the green and the red clusters varies a large

amount, while the structures of the cyan, purple and yellow

clusters do not change as much.
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Figure 7
Dot plot of the differences between the C� positions of each residue in the
structures. To determine which regions of ChTg were most mobile in our
data, we examined the five structures from the five intensity clusters and
noted the distances among the C� atoms for each of the 146 amino acids.
We plotted the largest value for each amino acid. The data illustrate one
extended region with very large variation (between residues 146 and 151,
in the vicinity of the missing loop that is a normal cleavage point for
�-chymotrypsin). There are also two shorter regions with smaller
variation around Ser75 and Val200.

Figure 8
Using ellipsoids to illustrate the variation in the C� coordinate at position
146. We calculated five ellipsoids for each residue position, corresponding
to the observed variation in the C� positions at a specific residue for the
data in the green, red, cyan, purple and yellow clusters. The lengths of
the perpendicular axes were determined using the minimum-volume
method (which minimizes the volume of the ellipsoid enclosing the
data; see https://github.com/nsls-ii-mx/chymotrypsinogen and https://
raw.githubusercontent.com/nsls-ii-mx/chymotrypsinogen/master/ellipsoid.py).
This method optimizes the fit of each ellipse to the data, including the
major axis in the direction of greatest variation. For example, at C�

position 146 (shown here) the green cluster yielded 18 structures with
large variation in the [0.2, �0.8, 0.0] direction. The volume of the
ellipsoids indicates the overall variation in corresponding C� positions.
For example, at position 146 the green and red clusters yielded structures
with much larger positional variation than the cyan, purple and yellow
clusters.



Table 1 shows that data sets which belong to the green and

red clusters have a = b unit-cell parameters around 114–115 Å,

while data sets in the other clusters have values around 111 Å

(Fig. 4). Table 1 also reveals that data sets belonging to the

cyan, purple and yellow clusters have higher resolution than

those belonging to the green and red clusters. The overall

resolution of around 2 Å with good structure quality for each

of the six structures is indicated by an Rwork and Rfree of about

20%.

When we align the model derived from the average cluster

with the five major subclusters using FATCAT in rigid mode,

all of the residues between 1 and 138 are well aligned, but

residues 139–146 increasingly diverge (Fig. 9).

3.4. Detecting dynamic behavior via ligand-binding hotspots

FTMap shows six binding hotpots for each of the five

structures (Fig. 10; Kozakov et al., 2015). Among them, we

observed the largest differences between the pockets in the

structure of the red cluster (PDB entry 7ku2, cluster 140) and

the structure of the purple cluster (PDB entry 7ktz, cluster

131). Notably, the pockets with the largest differences overlap

with the binding site of the Bowman–Birk protease inhibitor.

Since these two structures belong to the two different unit-

cell-based clusters, the differences provide strong evidence for

the effectiveness of both unit-cell-based and amplitude-based

clustering in detecting polymorphs in the case of very small

structural changes.

Note that the binding pocket for the Kazal-type inhibitor

includes the missing Thr147!Asn150 loop (Tyr146 of ChTg

makes two hydrogen bonds to the Kazal-type inhibitor: a

direct hydrogen bond to Glu40 and a water-mediated

hydrogen bond to Lys43). This would be a characteristic of the

active enzyme chymotrypsin. The similarity between the

results from data clustering and the results from computer

modeling increase our confidence in both methods. We

observed additional similarities between the two methodolo-

gies, which we are currently investigating.
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Figure 10
Surface representation of ChTg as calculated by FTMap comparing the hotspot areas of clusters 131 (PDB entry 7ktz) and 140 (PDB entry 7ku2). Left:
FTMap surface representation of the ChTg structure of model 131 (PDB entry 7ktz, the purple cluster with a = 111.49 Å) overlapped with a wire-frame
rendering of critical parts of a Bowman–Birk plant-based protease-inhibitor complex of chymotrypsinogen (PDB entry 3ru4; Barbosa et al., 2007). Right:
an FTMap mapping result of model 140 (PDB entry 7ku2, the red cluster with a = 115.57 Å, shown as a Lee–Richards surface) overlapped with a wire-
frame rendering of critical parts of the pancreatic Kazal-type inhibitor (PDB entry 1cgi; Hecht et al., 1991).

Figure 9
Structural alignment of residues 138–141 displaying the variation in
position among the structures representing each cluster. The overall
average structure, PDB entry 7kty, which is cluster 145 in the
dendrogram, is colored white. PDB entries 7ktz, 7ku0, 7ku1, 7ku2 and
7ku3, which are clusters 131, 138, 139, 140 and 141, are colored purple,
yellow, green, red and cyan, respectively. The top half shows the variation
in the backbone alone. The bottom half shows the variation including the
side chains. Remember that the green and red clusters are structures with
a = 114–115 Å and all the others have a = 111 Å.



4. Discussion

Although both experimental work (Debrunner & Frauen-

felder, 1982) and theoretical work (McCammon, 1984)

established that dynamic behavior underlies most protein

functions, in the early years crystallography was not regarded

as an appropriate tool for investigating protein dynamics. An

early review of protein crystallography concluded by stating

that ‘crystallographic methods are not suitable for the direct

study of the dynamics of protein structure and interactions’

(Stryer, 1968).

However, the presence of diffuse scatter implied that there

is dynamic behavior within protein crystals (Caspar et al.,

1988). Crystal structures soon illustrated examples of protein

dynamics (Ringe & Petsko, 1985) that were induced by

physical changes such as temperature (Tilton et al., 1992), pH

(Diao, 2003) and ionic strength (Sanishvili et al., 1994) and

induced by chemical changes by the addition of denaturants

(Dunbar et al., 1997) or ligands (Edwards & Poulos, 1990).

However, Stryer’s assertion stands to this day in the sense

that investigators rarely employ simple tools to identify

dynamics from diffraction data, and consequently most crys-

tallographic contributions to dynamics continue to be fortui-

tous. Specifically, we propose here to provide experimenters

with a nearly automatic procedure to suggest insights into the

dynamics of proteins by a systematic surveying of diffraction

data for the presence of clusters. Once crystallographers are

equipped with appropriate tools to identify clusters within

aggregates of diffraction data, results indicating dynamic

behavior may emerge routinely in many protein crystallo-

graphy projects.

A tool to identify dynamic contributions in diffraction data

must be as automated as possible, must present results in a

way that is easy to interpret and must be sensitive enough to

identify small movements. The first of these requirements was

simple to accommodate by deploying our software within the

existing KAMO software package, which we easily integrated

into our existing version of the fast_dp automated data-

analysis pipeline. The experimenter may include this test in

the data-reduction pipeline with the flip of a switch, at a

reasonably low cost in processing speed. We addressed the

second requirement by incorporating visual tools such as

systematic color annotation of clusters (Fig. 6), dot-plot

visualization for structure variation (Fig. 7) and ellipsoid

visualization for model variation (Fig. 8).

The most difficult benchmark was the ability to differentiate

clusters where dynamic contributions are small and subtle. We

tested our techniques using our data from ChTg, which was

not known at the outset to exhibit dynamic behavior. Many of

the changes that we identified involved just a few amino acids.

By combining the strengths of unit-cell clustering (the ability

to operate on thin wedges of data that are often incomplete)

and of diffraction-based clustering (a sensitivity to very small

structural changes), we believe that our technique will accu-

rately identify relevant clusters of different structures hidden

within highly similar data. Our procedure detected different

polystates with coordinate differences of less than 3 Å in just

two amino acids. In addition, the visualization tools that we

created (color-based ellipsoid and scatter plots) allow easy

identification of the highly dynamic regions. This provides

verification that our clusters are physically meaningful. These

tools provide scientists with a simple procedure to screen their

data for dynamic behaviors.

High-data-rate crystallography represents a large and

growing fraction of all crystallographic data. At synchrotrons,

serial crystallography and combinatorial crystallography (for

example fragment screening) produce large streams of data

from samples that are similar but not identical. One can

cluster such data streams automatically, with visual results

presented to scientists either to inform their main project or

to yield serendipitous information that may expand their

thinking about the system in question.

XFEL light sources generate even larger data streams, with

individual diffraction images that are derived nearly instan-

taneously from very small protein crystals. The great reduction

in the time and space averaging in XFEL data (compared with

synchrotron data) further increases the likelihood of obtaining

data from crystals that are in different resolvable polystates.

We acknowledge that our software as it stands will not handle

the partial data sets produced by the XFEL method. However,

eventually the data-processing challenge will be the same: one

needs a data-clustering algorithm that is robust enough to

work with mixed-quality data, sensitive enough to partition all

of the polystates that are present and intuitive enough that

investigators can identify useful clusters that represent

biologically relevant polystates. Here, we have presented an

algorithm that accomplishes these goals.

Our data processing and clustering are automated to reduce

the time spent screening and analyzing the molecules. We also

perform manual checking to verify that the automated

processes achieve reasonable fits to density. However, it is still

a challenge if the data contain a lot of noise such as blurred or

unindexable spots. This problem may be solved by future

research on spot finding and auto-indexing. In addition, we

would like to test whether different distance metrics could

improve the accuracy of the clustering output and further

improve the chances of detecting smaller potentially mean-

ingful changes. We also will test whether the tools can detect

polystates well in data sets from other molecules so that we

can obtain a comprehensive understanding about the effi-

ciency of our clustering procedure.

5. Conclusions

Observing differences in protein structures, even small

differences, could be meaningful and important. However, we

usually miss changes that are very small since they are very

hard to measure. In this paper, we show how one might use the

combination of our unit-cell-based and structure-factor-based

clustering procedure to detect polystates of molecules. We

applied these methods to ChTg data and were able to detect

polystates with very small differences among five clusters of

data sets. From these clusters, we built molecular structures
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and verified the differences among them. The combined

procedure should help scientists to discover minor changes in

molecules that are hardly noticeable from the change of unit-

cell parameters only.

We have developed color-based visualization to assist

investigators in screening their data for distinct groupings that

may represent polystates: dendrograms to show correlations

among intensities and scatter plots and ellipsoids to indicate

differences in automatically refined structures. The dendro-

gram shows the members of clusters with custom height

cutoffs and the differences among those clusters. The scatter

plot quickly shows unit-cell-based clusters and their relations

with structure factor-based clusters, and ellipsoids show the

variations of the physical coordinates of structures of clusters.

Using the color-based plots, one can easily discriminate among

groups of data sets. This visualization method is a fast way to

screen many data sets and to point out those that are impor-

tant for further investigation.
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