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Principal component analysis (PCA) has been widely proposed to analyze

flexibility and heterogeneity in cryo-electron microscopy (cryoEM). In this

paper, it is argued that (i) PCA is an excellent technique to describe continuous

flexibility at low resolution (but not so much at high resolution) and (ii) PCA

components should be analyzed in a concerted manner (and not independently).

1. Introduction

Biological macromolecules can be regarded as flexible objects

whose movements, which are continuous in a general case,

allow them to perform their physiological functions. Principal

component analysis (PCA) has been widely proposed to

analyze flexibility and heterogeneity in cryo-electron micro-

scopy (cryoEM) (Tagare et al., 2015; Haselbach et al., 2018;

Punjani & Fleet, 2020). This technique assumes that the

different conformations that are present in a sample can be

constructed as a weighted sum of the eigenvectors of the

covariance matrix of the volume. In its turn, the covariance

has also been the subject of much previous work in the field

(Penczek et al., 2006; Zheng et al., 2012; Andén et al., 2015;

Katsevich et al., 2015; Liao et al., 2015; Andén & Singer, 2018;

Zhang et al., 2019). In this paper, we argue that (i) PCA is an

excellent technique to describe continuous flexibility at low

resolution (but not so much at high resolution) and (ii) PCA

components should be analyzed in a concerted manner (and

not independently).

2. PCA coarsely describes movements

Let r 2 R3 be an arbitrary location in space. Given an ideal

conformation V0(r), any continuously deformed map V(r)

could be constructed as

VðrÞ ¼ V0½rþ gðrÞ� ð1Þ

for some local, continuous deformation field gðrÞ 2 R3. Note

that every single particle would have its own g(r) deformation

field different from the deformation fields of other particles.

PCA approximates the deformed volume, more specifically

the vector formed by its samples on a regular grid, V, by a

linear combination of volumes,

V � �VVþ
P

n

cnVn; ð2Þ

where �VV is the mean volume of all of the deformed volumes

and Vn are the eigenvectors of the covariance matrix of the

volumes (also called eigenvolumes). The approximation sign

would be an equality if, for volumes of N3 voxels, we compute

N3 eigenvolumes. With this formulation, PCA is more similar
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to a Taylor series expansion than to the continuous defor-

mation field expressed above in (1),

VðrÞ ’ V0ðrÞ
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ð3Þ

where x, y and z are the Cartesian directions. The first line is

the undeformed volume, the second line comes from the

Jacobian (first derivatives) of the undeformed volume, the

third line comes from the Hessian (second derivatives) etc.

Note that each of the terms of the Taylor expansion is a

volume in itself. In this way, the Taylor expansion of a

deformed volume is a sum of many volumes (each with less

and less energy as long as the deformations are sufficiently

small). The approximation error of the Taylor expansion

decays as o[kg(r)k�k], where k is the highest degree of the

derivatives included in the sum.

Although PCA goes beyond the extreme locality of the

Taylor expansion (because it has access to the whole popula-

tion of observed data), the comparison here is relevant in the

sense that it highlights the similarity in nature of the

construction of a volume as the linear combination of a basis

capturing different variations. PCA can also be interpreted as

being related to factor analysis in a probabilistic generative

model (Tipping & Bishop, 1999; Moghaddam, 2002).

An interesting remark is that constructing a basis for

describing the movements of the coordinates of a volume

(equation 1) is not the same as constructing a basis for

describing a volume (equations 2 and 3). The second task

requires many more terms than the first, as the small details,

such as the atomic or secondary structure, require the addition

of high-frequency terms. In contrast, in the first task these

small details are provided by V(r), and g(r) only needs to

explain their relative position with respect to the original

location. In practice, slowly varying and small-amplitude g(r)

deformations are expected. This is at the core of all deform-

able registration techniques between volumes in biomedical

imaging (Sotiras et al., 2013).

However, there is a fundamental difference between the

Taylor expansion above and PCA: in the Taylor expansion, for

each deformed particle the volumes to add are different, while

in PCA the volumes to add are the same but with different

weights, cn, that depend on each particle. From this point of

view, we can regard PCA as a way to find a linear subspace

that approximates all of the volumes used in the Taylor

expansions of all of the particles in a data set; a way of

performing a linear embedding of the manifold of volumes

used in the Taylor expansion.

At this point, considerations of the signal-to-noise ratio of

the images impose an intrinsic limit on the identifiability of

PCA components in high-dimensional space (Johnstone &

Paul, 2018), so that in a practical setting only a few PCA

components can be explored/calculated from sets of cryoEM

images, typically between one and three [apart from the work

of Punjani & Fleet (2020), in all of the PCA applications we

know of in cryoEM the number of PCA components analyzed

is always smaller than three, although there is no special

reason for such a low number].

Katsevich et al. (2015) provide an in-depth theoretical

analysis of the properties of PCA in the context of cryoEM. It

is shown that although the estimates of the covariance matrix

are consistent for the number of images going to infinity, in

common practice estimating the covariance matrix of a typical

volume with a side width of 200–300 voxels would be prohi-

bitively high. Combining the facts that PCA is a linear

embedding of a potentially much more complex reality and

that we can only access a quite small number of dimensions of

that linear subspace, it is clear that PCA can only achieve a

coarse description of the underlying deformed volumes.

PCA also has another exciting connection to harmonic

functional analysis, highlighting its coarse representation of

the underlying movements. As discussed below, we may think

of PCA components as an ad hoc basis specifically tailored to

describe sets of macromolecules. Indeed, PCA is equivalent to

a Laplacian analysis of a graph in which all voxels are

connected to all other voxels (He et al., 2005) (which, in turn, is

very much related to a dimensionality-reduction technique

called locality-preserving projections; Sorzano et al., 2014).

The actual connectivity matrix is given by the covariance

matrix in such a way that if the covariance between two voxels

is large in absolute value then these two voxels are connected,

and if it is low then these two voxels are not connected. We

may compare this connectivity to that in which a voxel is only

connected to its immediately neighboring voxels (and impose

periodic conditions when we reach the edges of the bounding

box). The eigenvectors of the Laplacian of the graph of this

latter connectivity matrix happen to be the complex expo-

nentials; that is, the basis used in the 3D Fourier transform

(Saito, 2008). Actually, we may extend the concept of the

Fourier transform to arbitrary geometrical shapes and

construct a complete basis of functions defined in any arbi-

trary region by computing the eigenvectors of the Laplacian of

its connectivity matrix (Saito, 2008; for instance, spherical

harmonics is the resulting basis when we define the connec-

tivity matrix of the surface of a sphere, Bessel functions are the

basis for cylindrical surfaces and prolate spheroidals are the

basis for solid spheres). In this regard, PCA would be in a

superior position as it can identify coordinated movements

between parts of the macromolecule that are not adjacent. The

reason for this is that it has access to statistical information

about the different macromolecule conformational states

largely beyond the purely geometrical connectivity of adjacent

voxels (note that the fact that the connectivity matrix is local

does not constrain its analysis to local regions; for instance, the

Fourier transform contains low-frequency components that

can express long-range dependencies).

In Saito (2008) it is argued that the representation error

(that is, how accurately the map is represented by a finite sum

of elements of the basis) decays as O(n��+0.5) (where 1 < � < 2)

when n, the number of elements in the truncated basis, goes to
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infinity (for example, for the Fourier transform � = 1). In this

regard, the way that PCA is applied in cryoEM loses its

theoretical advantage of having access to the correlation

matrix. The reason for this is that we are normally restricted to
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Figure 1
Example of PCA analysis of a small detail moving in an image. The figure shows (a) the mean of 1000 images, (b) the 16 first eigenimages, (c) a plot of
eigenvalues, (d) a projection of the input data set onto the first three principal components and (e) a sample image and its reconstruction with one, two,
three and ten principal components.



no more than a few principal components, and consequently

we must necessarily be incurring large representation errors

due to the low-frequency nature of the components being

used.

Either from the Taylor expansion argument or from the

connection of PCA to harmonic functional analysis, we see

that PCA can only describe very coarse (low-resolution)

volumes unless a sufficiently high number of PCA components

are analyzed, which is not practically feasible.

Consequently, PCA analysis of cryoEM data should be

considered as a way to describe large conformational changes,

but not as a path to study more detailed macromolecular

motions at the level of atomic or secondary structure.

3. PCA components should be analyzed collectively

In cryoEM, it is customary to interpret each principal

component independently. [For instance, the first principal

component may represent a rotation of a certain part of the

macromolecule, the second principal component a shift of

another part etc.; see Figs. 2, 4 and 5 in Punjani & Fleet (2020);

the reader should note that this is not a criticism of that

specific work, as its authors are fully aware of the importance

of the distribution of images in the PCA subspace. This

interpretation of the isolated bases is common in other

structural studies (Chiduza et al., 2019)]. However, in the light

of the analysis in the previous section, PCA provides only a

basis in which the deformed volumes can be expressed. The

important information is in the combination of the decom-

position coefficients, cn, and the volume basis, Vn; that is, at the

level of volume and not at the level of coefficients or eigen-

volumes alone. Stated differently, the interpretation of the

eigenvolumes alone does not necessarily follow any ‘biological

feature’, but the combined set of eigenvolumes and coeffi-

cients is the set that allows a compact analysis of our data set:

it is like interpreting the waves of the Fourier transform basis,

only these ‘waves’ are specially adapted to the shape and

correlation of the underlying macromolecules.

4. A simple example

To illustrate all of these ideas, we have performed a simulated

example in which a thin line (an idealized representation of an

�-helix) randomly rotates �15� around a point situated in the

middle of the image (for simplicity of representation the

example is 2D, but the same ideas apply in 3D), with noise

added to the image. We simulated 1000 of these images. In

Fig. 1 we show the mean of the input data set, the corre-

sponding eigenimages (PCA basis), the plot of eigenvalues,

the representation of each of the 1000 images in (c1, c2, c3)

space and one of the images with its reconstruction using one,

two, three and ten eigenimages of the basis.

It can be seen that (i) eigenimages 1–10 have increasing

frequency content (as expected from the harmonic functional

analysis), (ii) from eigenimage 11 it is challenging to visualize

any structural detail (as expected from the difficulty in esti-

mating PCA components in noisy environments), (iii) at least

ten coefficients are needed to obtain a meaningful repre-

sentation of the input images, (iv) a trajectory of images is

clearly seen in (c1, c2, c3) space, meaning that understanding of

the input images cannot be obtained solely based in terms of

the eigenimages, and (v) the reconstructions with a small

number of eigenimages show very low-resolution details that

hinder the understanding of the underlying deformation.

5. Conclusions

The analysis of the volume covariance matrix and the principal

components is effectively connected to the continuous flex-

ibility problem encountered in cryoEM, and it has successfully

been used in several previous experimental examples (Melero

et al., 2020).

However, we must understand its limits; in particular, its

limitation to describing movements at the level of atomic or

secondary-structure details. Actually, there is a trade-off

between the extent of the movement and the size of the object

being moved. In this way, small objects that move short

distances can be safely analyzed with PCA to high resolution.

On the other hand, it may be an excellent tool to describe the

movement of whole domains or large movements of large

portions of the macromolecule. Additionally, the PCA

description of the movement must be analyzed at the level of

reconstructed volumes combining the different elements of

the bases and not at the level of individual coefficients or

eigenvolumes alone.
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