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Structure determination of filamentous molecular complexes involves the

selection of filaments from cryo-EM micrographs. The automatic selection of

helical specimens is particularly difficult, and thus many challenging samples

with issues such as contamination or aggregation are still manually picked. Here,

two approaches for selecting filamentous complexes are presented: one uses a

trained deep neural network to identify the filaments and is integrated in

SPHIRE-crYOLO, while the other, called SPHIRE-STRIPER, is based on a

classical line-detection approach. The advantage of the crYOLO-based

procedure is that it performs accurately on very challenging data sets and

selects filaments with high accuracy. Although STRIPER is less precise, the user

benefits from less intervention, since in contrast to crYOLO, STRIPER does not

require training. The performance of both procedures on Tobacco mosaic virus

and filamentous F-actin data sets is described to demonstrate the robustness of

each method.

1. Introduction

Many proteins of biological and medical relevance form fila-

ments. Prominent examples are cytoskeletal proteins such as

microtubules and actin, which are essential for many cellular

functions, including muscle contraction and cargo transport

(Pospich & Raunser, 2018). Further examples are amyloid and

tau fibrils, which are involved in neurodegenerative diseases

and have recently been the focus of many structural studies

(Fitzpatrick et al., 2017; Pospich & Raunser, 2017). As fila-

ments are, in general, reluctant to crystallize, cryo-EM is the

method of choice to study their structure, as illustrated by the

increasing number of deposited helical structures (https://

www.ebi.ac.uk/pdbe/emdb/statistics_emmethod.html).

The determination of protein structures using single-

particle cryo-EM requires the selection of thousands of

particles within micrographs. For single particles, various

methods have been developed to automate this task (Voss et

al., 2009; Scheres, 2015; Huang & Penczek, 2004; Nicholson &

Glaeser, 2001; Wagner et al., 2019; Bepler et al., 2019; Tegunov

& Cramer, 2019; Wang et al., 2016; Zhu et al., 2017). In

particular, the introduction of deep-learning-based proce-

dures have dramatically reduced the false-positive rates of

picking and have made the automatic picking of particles the

standard in single-particle cryo-EM (Wagner et al., 2019;

Bepler et al., 2019; Tegunov & Cramer, 2019; Wang et al., 2016;

Zhu et al., 2017).
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However, the picking of filaments is more challenging

because of the line-like structure of the specimens. It is

especially difficult to omit filament crossings and overlaps.

Although procedures have been introduced that allow the

automated picking of helical samples (Huber et al., 2018; He &

Scheres, 2017), a deep-learning-based helical specimen picker

is missing.

Here, we present a new deep-learning filament-picking

procedure implemented in our single-particle selection tool

SPHIRE-crYOLO (Wagner et al., 2019). CrYOLO is based on

a convolutional neural network (CNN) and the ‘you only look

once’ (YOLO) approach (Redmon & Farhadi, 2017). CNNs

are deep-learning network architectures that have become

prominent in machine learning during the last ten years.

Today, CNNs are the state-of-the-art choice for image classi-

fication and object localization.

A traditional CNN-based classifier trained on a set of

positive (e.g. particles) and negative (e.g. contamination or

background) examples can be turned into an object-detection

system by using a sliding window. This moving window slides

over the input image, crops out small regions from it and then

classifies these regions as either containing a particle or not.

This allows the localization of particles within micrographs.

However, this approach has very limited spatial contextual

information and is slowed down by a high computational

overhead.

The ‘you only look once’ (YOLO) framework described by

Redmon et al. (2016) is, among others (Mittal et al., 2019), an

alternative to the sliding-window approach. Instead of many

small cropped-out regions, the whole micrograph goes through

the network in a single pass. Internally, the image is divided

into a grid, where each grid cell is responsible for predicting a

single box. The confidence that a grid cell actually contains a

particle, the relative box position inside the grid cell, and the

width and height of a box are estimated by each individual grid

cell. This approach reduces the computational overhead and

makes YOLO fast, while retaining its accuracy. Moreover,

because the network sees the complete image at once, it is also

able to learn about the spatial context of the particles. These

properties make the generic YOLO framework an excellent

basis for particle picking in crYOLO. CrYOLO enables the

automated picking of particles within low signal-to-noise ratio

cryo-EM micrographs with minimal human supervision or

intervention.

In the new filament mode, crYOLO places boxes on the

filaments after training on several manually labeled micro-

graphs. An extra post-processing step uses these boxes as

support points to trace the actual filaments. As crYOLO

always takes the larger context into account, it is able to skip

dense filament regions or broken areas of filaments without

the need for additional, user-selected thresholds. This enables

crYOLO to identify filaments on previously unseen micro-

graphs with an accuracy that is similar to manual picking.

In addition, we present STRIPER as an alternative to the

filament mode in crYOLO. STRIPER enhances linear struc-

tures within in an image using oriented Gaussian smoothing

kernels and then applies a line-detecting algorithm. Potential

crossings are detected by the same algorithm and can be

skipped.

Both methods have different hardware requirements, are

based on different detection principles and require different

starting conditions. For example, crYOLO needs a GPU to

run, uses a CNN for detection and requires manual training.

STRIPER, in contrast, runs on a CPU, uses classic line

detection and only requires a few parameter adjustments to

run. Given this diversity, we believe that the procedures

complement each other and thus are both very useful for the

cryo-EM community.

2. Materials and methods

2.1. Oriented Gaussian filtering for feature extraction

An oriented Gaussian smoothing kernel can be used to

extract direction-dependent information from an image and/

or enhance specific directional features of an image. Here, we

use an oriented Gaussian smoothing kernel to extract line

features. The second derivative in the y direction M(x, y) of a

smoothing kernel is given by

Mðx; yÞ ¼
½�2
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where �x and �y are the spread in the x and y directions,

respectively, and x0 and y0 denote the center of the kernel.

The spread �y determines the amount of averaging in the y

direction and the spread �x is proportional to the width of the

line structure it enhances (see the mask in Fig. 1).

To enhance lines with a specific orientation �, M needs to be

rotated by �. Let I(x, z) be our input image; the oriented filter

response R(x, y) then enhances structures that are oriented in

the direction �,

R�ðx; yÞ ¼ F�1
fF ½Iðx; yÞ� � F ½Mðx; yÞ� � expði � �Þg; ð2Þ

where F denotes the Fourier transform. To enhance all line

structures with arbitrary orientation, we calculate

Uðx; yÞ ¼ max
�

R�ðx; yÞ: ð3Þ

To extract the dominating direction at every position in an

image, we calculate

Vðx; yÞ ¼ argmax
�

R�ðx; yÞ: ð4Þ

V is used in the crYOLO tracing method and U is used in

STRIPER for running the line-detection algorithm.

2.2. Steger line detection

The STRIPER ridge-detection algorithm is based on Steger

(1998). It identifies any lines present within the image through

differential geometric properties. More precisely, the algo-

rithm is divided into four steps.

(1) Pre-processing based on the approach of Koller et al.

(1995), where the image is filtered with the derivative of a

Gaussian smoothing kernel. The resulting image features a
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series of mathematical properties (Koller et al., 1995) that

allow the algorithm to detect lines of arbitrary width.

(2) Detect all the pixels on an identified line segment (‘line

points’). For each line point a strength s is calculated which is a

measure of belonging to a particular line. In a greyscale image,

pixels that are not line points are assigned an s value of 0.0,

while line points closer to the center of a line have an s value

of up to 1.0.

(3) Connect line points to form the actual lines and identify

line crossings. The list of line points L is first reduced by

removing any line points with an s value lower than a user-

defined threshold.

The procedure for building a generic line o is a general-

ization of a hysteresis threshold operation (Canny, 1986).

(a) Select the line point p with the highest s value as the

starting point of a new line o.

(b) From the surrounding pixels of p, select the one with

highest s value that is not already part of o and add it to o.

(c) Repeat (b) until (i) no valid line point is found, thus

indicating the end of the line, or (ii) the selected line point is

already part of a different line. Mark this point as a junction

and split the line in two.

New lines are created until all points in L have been visited

once (Steger, 1998).
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Figure 1
Filament picking with crYOLO and STRIPER. (a) CrYOLO. The input image is convolved multiple times with rotated versions of the convolutional
mask. Each pixel in the directional image is color-coded to indicate the direction of the mask with the strongest response at its coordinates. During
tracing, a box is randomly chosen and the search direction is determined by the directional image. The search angle � is set to 120�. The search radius is
set proportional to the box size. Finally, given the traced boxes, the filament boxes are generated using a pre-set distance. (b) STRIPER convolves the
input image with the same mask as crYOLO. An enhanced image is created by setting each pixel value to the strongest response of the rotated
convolutional filters. The enhanced lines are then detected by a line-tracing algorithm (Steger, 1998; Wagner & Hiner, 2017). After tracing, crossing
points are removed and the boxes are placed along the detected lines at a user-defined distance. Scale bars represent 50 nm.



(4) Determine the line width. Since the edges of a thick line

are lines themselves, they are identified in a similar way as

above by using a different filter.

Steger uses a generic line model defined by the s values of

each pixel in step (2), and the computed line widths, to

improve the position of the estimated line (Steger, 1998).

2.3. CrYOLO

CrYOLO is a particle-picking procedure based on the

YOLO framework (Redmon & Farhadi, 2017). For a technical

description of crYOLO, we refer the reader to our original

publication (Wagner et al., 2019).

2.4. Evaluation procedures

For the evaluation of the proposed procedures, we used the

common metrics of recall and precision. The recall score

measures the ability of the classifier to detect positive exam-

ples, and the precision score measures the ability of the clas-

sifier to not label a true negative as a true positive. Both

measurements are commonly used for binary classification

tasks. To calculate the precision and recall for the user-

selected filaments Tu and the results Tp given by crYOLO or

STRIPER, we performed the following.

(i) We transformed traced filaments of Tu into a binary

image Bu by setting all pixels along the filament and within a

local radius of fw/3 to the value 1. The same is performed for

Tp, which results in the binary image Bp.

(ii) We calculated a difference image D by D = Bu � Bp.

Here, we define D1 as a binary image in which all pixels in D

are set to 0 except the positive pixels and D�1 as a binary

image in which all pixels in D are set to 0 except the pixels with

negative values.

(iii) The false-negative pixels (FN) and the false-positive

pixels (FP) are then given by

FN ¼ D1 �M; ð5Þ

FP ¼ jD�1j �M; ð6Þ

where M is a mask of ones of size fw � fw and * is the

morphological opening operator. The true positive pixels are

then given by

TP ¼ Bu � FN: ð7Þ

Finally, the precision and recall are defined as

R ¼

P
TPP
Bu

; ð8Þ

P ¼

P
TPP

TPþ
P

FP
: ð9Þ

To calculate these statistics, we ignored both picks on the

border of the image and the start and end positions of each

filament, as they are connected with high uncertainty during

manual selection.

3. Results and discussion

3.1. CrYOLO filament mode

Since we have only recently introduced the crYOLO fila-

ment mode, a generalized model is not yet available. There-

fore, crYOLO requires several filaments to be labeled

manually in order to properly train the model. We used the

e2helixboxer program provided by EMAN2 (Tang et al., 2007)

for manual selection, but any other program that allows the

manual picking of filaments can be applied. The number of

micrographs that need to be manually annotated may vary

depending on the filament density, orientation and back-

ground variations. Also, a project with many aggregates might

increase the number of training images needed to obtain a

good working model.

The training of crYOLO works as described for single-

particle projects (Wagner et al., 2019). The network is trained

on the manually labeled micrographs, while a small subset of

those micrographs is used for validation. After each round of

training, crYOLO measures the success of picking on the

validation micrographs and stops the training when the vali-

dation performance no longer increases. After training is

complete, crYOLO goes through the data set and places boxes

on filaments. The boxes have no defined distance to each other

and no information about the filament to which they belong.

As a special requirement for helical specimens, the filament

mode in crYOLO allows more overlap of boxes during

picking. The originally determined positions of the boxes on

the filaments are merely used as support points for placing

new boxes with a user-defined distance. During this post-

processing step, an oriented convolutional mask filter is used

to estimate the direction of every filament.

The mask contains the second derivative of an oriented

Gaussian smoothing kernel (see equation 1). Given the user-

selected filament width fw in pixels and a default mask width

mw of 100 pixels, then �x and �y are defined using the ‘full

width at half maximum’ criterion:

�x ¼
mw

2f½2 lnð2Þ�g1=2
; ð10Þ

�y ¼
fw

2f½2 lnð2Þ�g1=2
: ð11Þ

The kernel is rotated and each rotated version is convolved

with the input image. For each pixel in the input image, the

rotational angle of the convolutional mask that gives the

maximum response is determined (see equation 4), which

when evaluated for all pixels gives the directional map

(Fig. 1a).

Next, a box is chosen randomly on the filament and the

direction of the filament is evaluated by the directional map.

The next box is searched for within a radius proportional to

the box size; the search is restricted by an angle � around the

estimated direction of the filament. If a box can be found, the

search is continued. If not, another as yet untraced box is

selected and the search is repeated. In the case where the

search finds a previously traced box, both filament segments
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will be merged into a single filament if their directions are

comparable. After the tracing has been performed, new boxes

are generated based on the user-defined distance. The final

boxes are saved in STAR and EMAN helical box format.

The filament mode of crYOLO has already been success-

fully applied to solvie the structures of F-actin in complex with

drug-like toxins (Pospich et al., 2020) and with LifeAct (Belyy

et al., 2020).

3.2. STRIPER

Instead of using a trained deep neural network to identify

the boxes along the filaments, the STRIPER filament-picking

procedure is based on a classical line-detection approach

(Fig. 1b). Cryo-EM images typically have a very low signal-to-

noise ratio, which is problematic for line-detection algorithms.

We therefore included a line-enhancing pre-processing step in

STRIPER. In this step, the filaments are enhanced using the

same oriented Gaussian smoothing kernel as described above

for crYOLO. The width of the mask is configured by the user

and should be set to the filament width. The lines in the

enhanced image (see equation 3) are then extracted by the

ridge-detection algorithm of Steger (Steger, 1998; Wagner &

Hiner, 2017).

To run the STRIPER filament procedure, four parameters

need to be provided: (i) the filament width in pixels, which can

easily be measured, (ii) the mask width in pixels, which is set to

100 by default and only has to be changed for very flexible

filaments (both parameters are used for the creation of the

enhanced line image), and (iii) the upper and (iv) the lower

threshold used as hysteresis thresholds for Steger’s line-

detection algorithm (see Section 2). Since the latter values are

difficult to guess, STRIPER provides an optimization algo-

rithm to estimate these parameters. For this, the user has to

manually select the filaments in two to three micrographs.

While fixing the lower threshold to a value of 0, a simple grid

search will then find the best upper threshold to detect as

many of the annotated filaments as possible. Finally, the lower

threshold is increased stepwise to remove false-positive

detections. After extracting the lines, STRIPER splits them at

crossing points, and boxes are placed along the lines with a

user-defined distance.

By defining a minimum length for detected filaments,

STRIPER can remove short line-like contaminations that are

detected as false positives. Moreover, STRIPER allows the

user to provide a binary mask for each micrograph. This mask

divides an image into valid picking regions and regions with

carbon or contamination. This masking option is especially

useful as deep-learning-based carbon and contamination

detection have recently become available (Tegunov &

Cramer, 2019; Sanchez-Garcia et al., 2020). These programs

determine valid and nonvalid regions with high accuracy and

create binary masks, which then can be directly used in

STRIPER to remove false-positive selections.

STRIPER has already been successfully applied to solve the

structures of toxin-stabilized F-actin (Pospich et al., 2020) and

of F-actin in the ADP-Pi state (Merino et al., 2018).

3.3. Training and configuration

To test both procedures, we used the publicly available

Tobacco mosaic virus (TMV) data set (EMPIAR 10022;

Fromm et al., 2015) and one of our in-house F-actin data sets

(Belyy et al., 2020). The TMV data set has two difficulties:

Firstly, several filaments are localized in very close proximity

on the grid and should ideally not be selected. Secondly, the

TMVs contain interruptions or discontinuities in their struc-

ture, which should be excluded from selection. The challenges

of the F-actin data set are that the filaments often cross each

other and that large carbon areas are covered with F-actin. In

contrast to the TMV data set, the F-actin images contain

carbon edges, which is especially demanding for the selection

process, since they appear as line-like structures.

To train crYOLO on both data sets, we used manually

labeled filaments on several micrographs. For F-actin, we

selected 275 filaments on 24 micrographs. For TMV, we used

the manually traced filaments that were provided with the

EMPIAR data set and selected a subset of 425 labeled fila-

ments from 44 micrographs. For both data sets we included

images with a broad defocus range. This is important as

otherwise the detection quality on a low-defocus image might

be low. We roughly estimated the width of TMV and actin

filaments on the images and used these values for processing

(�200 Å for TMV and �80 Å for F-actin). Since the distance

of the boxes is not relevant for the selection of the filaments,

we used a standard box distance of 20 pixels for both data sets.

When processing the data further for structural investigations

this value should be adjusted, taking the helical rise of the

filament into account. The picking threshold in crYOLO was

set to the default value of 0.3 for both data sets. For evalua-

tion, 20% of the labeled micrographs were not used during

training.

In STRIPER, several processes that are automatically

performed in crYOLO, such as binning, normalization and

filtering, have to be performed manually. Thus, to test

STRIPER we binned the TMV and F-actin images by a factor

of four, low-pass filtered them with an absolute cutoff

frequency of 0.1 and normalized them by subtracting the mean

and dividing by the standard deviation. All pixel values

greater than 3 or lower than �3 were saturated.

The contrast of an image has a strong influence on the line-

detection algorithm used in STRIPER. Since the contrast

depends very much on the defocus at which the images have

been taken, we manually labeled filaments in one micrograph

with high defocus and one micrograph with low defocus to

determine the hysteresis thresholds. We then applied the

internal grid-optimization routine to find the best set of

selection thresholds (upper and lower thresholds of 0.77 and

0.29 for F-actin, and 0.2 and 0.1 for TMV, respectively).

For the evaluation of the precision and recall for crYOLO

filament mode and STRIPER, we used the same micrographs.

3.4. Evaluation on test data sets

When we applied crYOLO to the TMV data set, the recall

and precision were 0.98 and 0.84, respectively. The automatic
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picking of filaments resulted in a selection of filaments that

was comparable to the manually picked data sets. Filaments

that touched each other were skipped and discontinuities in

the filaments, as are typical for this TMV data set (Supple-

mentary Fig. S1), were mostly omitted (Fig. 2g). In contrast,

STRIPER identified and picked almost all filaments on the

micrographs (Fig. 2e). This led to a high recall (1.0) but, since

STRIPER also selected filaments that sit very close to each

other and contain discontinuities, the precision of only 0.52

was quite low.

For F-actin filaments, crYOLO achieved a recall of 0.95 and

a precision of 0.83. It skipped most of the filament crossings

and did not select the carbon edge or filaments on the carbon

(Fig. 2h). STRIPER also identified most of the filaments and

skipped their crossings (Fig. 2f). However, it also picked the

carbon edge as well as filaments and line-like contaminations

on the carbon. The recall was 0.81 and the precision was 0.51.

As STRIPER supports binary masks, we masked out the

carbon area using the MicrographCleaner tool (Sanchez-

Garcia et al., 2020) and repeated the selection (Supplementary

Fig. S2). The masking led to an increase in the precision of

STRIPER to 0.73, while the recall remained at 0.81.

We further assessed the quality of the selected filaments by

2D classification in SPHIRE (Moriya et al., 2017; Yang et al.,

2012). We then applied Cinderella (Wagner, 2020), a deep-

learning-based tool that is trained to identify high-quality

particle classes, and used the percentage of rejected classes as

an indication of the quality of the picking procedure.

The particles picked by both selection procedures resulted

in many high-quality class averages (Fig. 3). Almost all classes

calculated for the filaments identified by crYOLO were

accepted by Cinderella (Table 1, Supplementary Figs. S3 and

S4), demonstrating that crYOLO indeed did not pick back-

ground, contamination or carbon edges.
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Figure 2
CrYOLO and STRIPER evaluated on micrographs with F-actin and TMV. (a, b) Input images that were not used during training (crYOLO) or
parameter optimization (STRIPER). (c, d) Manually selected filaments. (e–h) Automatically selected filaments by STRIPER (e, f ) or crYOLO (g, h).
Scale bars represent 50 nm.

Figure 3
Example class averages calculated in SPHIRE. F-actin and TMV were
picked by crYOLO filament mode or STRIPER. The respective numbers
of class averages are listed in Table 1. Scale bars represent 25 nm.



For particle stacks selected with STRIPER, almost all class

averages were accepted by Cinderella in the case of TMV

(Supplementary Fig. S5). The number of selected particles is

much higher than for crYOLO, because STRIPER also picked

TMVs with discontinuities and filaments that were in close

proximity to their neighbors. As expected, 37% of the classes

mainly contained false positives and were rejected in the case

of F-actin (Supplementary Fig. S6). Applying a mask to

exclude the carbon and carbon edges solved this problem and

almost all classes were accepted by Cinderella (Table 1).

However, the total number of accepted classes is much lower

compared with the classes obtained from particles selected by

the crYOLO filament mode (Table 1).

3.5. Computational efficiency

To determine the speed, we picked 203 F-actin micrographs

(4096 � 4096) using an Intel Xeon Gold 5122 CPU and an

Nvidia Titan V GPU (32 GB RAM). On average, crYOLO

picked a micrograph in 7 s (including filtering and filament

post-processing), while STRIPER required 0.8 s (without

filtering). In both cases the algorithms presented in this paper

provide highly efficient picking methods that allow users to

pick large data sets in short amounts of time.

4. Conclusions

Particle picking is a crucial step in the cryo-EM processing

pipeline. Picking of helical specimens is particularly challen-

ging, as crossings, overlaps and filaments that are in too close

proximity to each other need to be omitted. This challenge is

well illustrated by the data sets used as examples in this work.

Here, we present two picking procedures that allow accurate

picking of filaments even for complex data sets, as illustrated

for TMV and F-actin in this work. One of them is based on the

deep-learning particle-picking procedure crYOLO and the

other, called STRIPER, is based on a line-detection algorithm.

CrYOLO is to our knowledge the first deep-learning-based

particle-picking procedure which supports filaments. Through

this approach, crYOLO learns the spatial context of filaments,

enabling it to omit carbon edges and filaments that are too

dense or broken, thereby accurately reproducing the accuracy

of manual picking. As no general model for filaments is yet

available, crYOLO requires training on manually selected

micrographs. In contrast, STRIPER only requires four para-

meters, which can be quickly determined by the integrated

optimization procedure. While this makes STRIPER a very

fast, easily accessible picker, it comes at the cost of reduced

precision compared with crYOLO. However, we also showed

that the usage of a binary mask significantly improves the

precision of STRIPER, resulting in high-quality 2D classes.

Both picking procedures produce box files that are compatible

with the majority of cryo-EM processing software and come

with standard hardware requirements. Considering the

performance and accessibility, we believe that both proce-

dures are seminal contributions to the cryo-EM field.

5. Code availability

The filament mode of crYOLO has been available since

crYOLO version 1.3. CrYOLO itself is free for academic use

and can be downloaded together with the source code at

http://sphire.mpg.de/. crYOLO is implemented in Python and

based on Keras 2.2.5 (https://keras.io/) using Tensorflow 1.10.1

(Abadi et al., 2016) as the backend. The version of STRIPER

used in this paper was first implemented as an ImageJ

(Rueden et al., 2017) plugin and is open source. The source

code can be found at https://github.com/MPI-Dortmund/

ij_striper. A Python implementation of STRIPER is currently

being implemented and the alpha version can be found at

https://github.com/MPI-Dortmund/striper. All data supporting

the findings of this study are available from the corresponding

author on reasonable request.
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