
research papers

478 https://doi.org/10.1107/S2059798317003369 Acta Cryst. (2017). D73, 478–487

Received 4 December 2016

Accepted 28 February 2017

Keywords: cryo-electron tomography;

subtomogram averaging; GPU computing;

cloud computing; Amazon EC2.

The Dynamo package for tomography and
subtomogram averaging: components for MATLAB,
GPU computing and EC2 Amazon Web Services

Daniel Castaño-Dı́ez*

BioEM Lab at C-CINA, Biozentrum, University of Basel, Matenstrasse 26, CH-4058 Basel, Switzerland. *Correspondence

e-mail: daniel.castano@unibas.ch

Dynamo is a package for the processing of tomographic data. As a tool for

subtomogram averaging, it includes different alignment and classification

strategies. Furthermore, its data-management module allows experiments to be

organized in groups of tomograms, while offering specialized three-dimensional

tomographic browsers that facilitate visualization, location of regions of interest,

modelling and particle extraction in complex geometries. Here, a technical

description of the package is presented, focusing on its diverse strategies for

optimizing computing performance. Dynamo is built upon mbtools (middle

layer toolbox), a general-purpose MATLAB library for object-oriented

scientific programming specifically developed to underpin Dynamo but usable

as an independent tool. Its structure intertwines a flexible MATLAB codebase

with precompiled C++ functions that carry the burden of numerically intensive

operations. The package can be delivered as a precompiled standalone ready for

execution without a MATLAB license. Multicore parallelization on a single

node is directly inherited from the high-level parallelization engine provided for

MATLAB, automatically imparting a balanced workload among the threads in

computationally intense tasks such as alignment and classification, but also in

logistic-oriented tasks such as tomogram binning and particle extraction.

Dynamo supports the use of graphical processing units (GPUs), yielding

considerable speedup factors both for native Dynamo procedures (such as the

numerically intensive subtomogram alignment) and procedures defined by the

user through its MATLAB-based GPU library for three-dimensional operations.

Cloud-based virtual computing environments supplied with a pre-installed

version of Dynamo can be publicly accessed through the Amazon Elastic

Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-

you-go basis, thus avoiding upfront investments in hardware and longterm

software maintenance.

1. Introduction

The cryo-electron tomography technique allows the imaging

of cellular structures in a close-to-native context (Lučić et al.,

2005, 2013), representing them as three-dimensional models

called tomograms. Copies of a given macromolecular structure

can be located and averaged together by the technique known

as subtomogram averaging, which aligns the noisy copies with

their common signal, possibly classifying different conforma-

tional states (Briggs, 2013). The scope of the attainable level of

detail has dramatically increased since the introduction of

direct detector cameras, with several reports of resolutions

below one nanometre (Schur et al., 2015; Khoshouei et al.,

2016; Pfeffer et al., 2015) or even close to the atomic level

(Schur et al., 2016).

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798317003369&domain=pdf&date_stamp=2017-04-20

The general workflow of subtomogram averaging and the

algorithms behind it have been explained on a general level in

several reviews (Wan & Briggs, 2016), while individual teams

of developers have described the particularities of their

different packages: the IMOD-integrated PEET (Heumann et

al., 2011), Jsubtomo (Huiskonen et al., 2014), EMAN2 (Galaz-

Montoya et al., 2015), XMIPP (Scheres et al., 2009) and

RELION (Bharat et al., 2015). The functionalities of Dynamo

have also been described in detail in Castaño-Dı́ez et al.

(2012), which addressed the alignment and classification

methods, and in Castaño-Dı́ez et al. (2017), which reported the

data-management system for visualization and annotation of

sets of tomograms.

After a brief summary of the main functionalities currently

included in Dynamo, this report focuses on more technical

details of the software implementation, describing the archi-

tecture of the package and its implementation strategies for

different scenarios: single and multinode parallelization, GPU

computation and adaption to cloud computing through

Amazon Web Services (AWS).

2. Functionalities

2.1. Subtomogram averaging

We introduce here some notation to be used throughout

this manuscript. Within Dynamo, a subtomogram-averaging

procedure consists of the analysis of N particles (each with a

side length of L voxels) using K templates. Alignment of a

particle against a template consists of performing a loop of R

rotations of the template. At each step of the loop, the rotated

template and particle are both bandpassed to the same reso-

lution, and the rotated template is filtered with the particle’s

missing wedge to keep only the Fourier coefficients present in

the data. This operation is followed by computation of the

locally normalized cross-correlation (Roseman, 2003) of all

allowed translations of the rotated template against the data

particle. The result is a single set of alignment parameters

(three components of a shift vector and three Euler angles)

and a cross-correlation coefficient, selected as the rotation and

shift that yield the maximum cross-correlation over all tested

rotations and translations.

In the averaging step, the particles with the best correlation

may be selected for averaging. The resulting averaged particle

is used as the alignment reference in the next iteration.

In multireference alignment (MRA), the alignment process

runs independently on different references. On each reference

k, the averaging step considers only those particles for which

the highest cross-correlation was attained when aligned

against that reference.

2.2. Implementation

The core concept when using Dynamo for subtomogram

averaging is the project. A project links and structures as a

single entity all of the elements needed to effectively run the

iterative procedure for alignment:

(i) the input files: the location of the data (with possible

initial orientations), descriptions of the missing wedges,

templates and masks;

(ii) the numerical settings, mainly the determination of

scanned angular sets, policies for threshold selection, allowed

shifts and possible binning;

(iii) the computation settings, establishing the number of

CPU cores and/or GPU units to use. If a remote cluster is

used, the project will guide the user towards the creation of a

configuration file that will allow Dynamo to handle the

communication with the queuing system.

Dynamo provides several tools for project manipulation.

Along with flexible command-line options for more advanced

users, the GUI dcp provides a graphical interface for

controlling the creation of a project from scratch, executing it

and accessing the results (Fig. 1).

2.3. Data management

The second main functionality of Dynamo concerns the

logistics of the steps leading to subtomogram averaging: the

organization and annotation of sets of tomograms from which

the subtomogram particles will be cropped into a data folder.

Initial orientations of the particles will be expressed in the

table accompanying the data folder.

This functionality area is handled by the Catalogue module.

A catalogue is a set of tomograms indexed by the catalogue

manager. Users can create a catalogue that manages a set of

tomograms by passing a text file containing the names of

the tomograms to the catalogue manager, dcm -create

myCatalogue -fromStar myTomograms.star, or equivalently

through the corresponding GUI.

After creation of the catalogue, the tomograms can be

accessed independently (for visualization and annotation) and

research papers

Acta Cryst. (2017). D73, 478–487 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging 479

Figure 1
User interface for subtomogram-averaging projects.

jointly (for the extraction of subtomograms towards the

creation of a subtomogram-averaging project).

2.4. Visualization

Dynamo includes different task-tailored tools for the

visualization of tomograms. Navigation offline inside huge

tomograms can be performed smoothly by dtmshow, which

loads into memory only the fraction of tomogram required for

a given depicted scene. dpreview allows fragments of interest

to be defined and archived for future reference. dtmslice

allows fast geometrical modelling inside a preloaded tomo-

gram fraction. Visual tracking of three-dimensional structures

is supported by dpktomo.montage, which simultaneously

presents several slices in a region, or dpktomo.concurrent

view, which combines several local orthogonal views around a

given area.

2.5. Modelling

The annotation of tomograms runs through models.

Dynamo includes a library of model types as described in

Castaño-Dı́ez et al. (2017) corresponding to different support

geometries for particle cropping (vesicles, filaments, surfaces,

pseudocrystals, isolated globular surfaces, isolated elongated

surfaces etc.). On each of these geometries, the model fulfills

two functions. Firstly, it drives the user to specific tools for

volumetric data navigation that complement the generic

tomogram browsers. As examples, filament-like models are

supported by interactive depictions of sets of slices orthogonal

to a hand-drawn path. Membrane-like models are connected

with image-processing tools that allow the automated tracking

of membrane points across consecutive sections of a tomo-

gram, as depicted in Fig. 2. The second functionality is the

design of workflows on the selected points. A model workflow

research papers

480 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging Acta Cryst. (2017). D73, 478–487

Figure 2
Model functionalities exemplified for membrane geometries. (a) shows a bacterial membrane where the user defines an area of interest in the tomogram
browser and a group of seed points (in red). (b) is one of the user interfaces attached to the membrane model, offering a montage view of the area of
interest. Each slice represent a z-cut of the tomogram for different, equispaced values of z. Seed points entered by the user on the first section are used to
automatically compute points belonging to the membrane in the next section. The GUI allows the immediate evaluation and correction of the automatic
detection. (c) The detected set of points. These are processed by the workflow GUI in (d) to parameterize the membrane as a smoothly triangulated
surface, which is then used to define a regular distribution of points, each of which is provided with an initial orientation normal to the membrane, as
shown in (e).

provides a series of tools to stepwise build a mapping between

selected points in a tomogram and a set of particles, describing

their three-dimensional positions (and possibly orientations).

In the membrane-like model, for instance, spline interpolation

of the input points allows the creation of an equispaced set

of control points, followed by a triangulation that smoothly

characterizes the enclosed membrane in three dimensions and

finally the definition of a set of particles regularly distributed

on the membrane, each with an orientation given by the

normal of the closest triangle. The parameters of such work-

flows (in this case the distance between control points, the

mesh parameter that characterizes the triangulation and the

distance between points) can be saved for systematic appli-

cation to all selected models inside a catalogue.

The interrelation among the main functionalities of the

package is summarized in Fig. 3.

3. Software description

3.1. MATLAB

The codebase of Dynamo is mainly written in MATLAB.

This design choice was taken in order to ensure fast and

uncomplicated code production. This decision equally benefits

the developers and users: historically, from the first practi-

tioners the technique of subtomogram averaging required a

significant amount of scripting, prototyping and testing, thus

making MATLAB a natural choice.

The flexibility of MATLAB comes at the cost of slow

performance when executing explicit loops on sets of pixels.

Dynamo circumvents this limitation by the use of MEX files,

which are pieces of code written in C++ whose compilation

produces an executable viewed by MATLAB as a regular

function. Therefore, variables defined in the workspace of

research papers

Acta Cryst. (2017). D73, 478–487 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging 481

Figure 3
Functionality areas of Dynamo and associated commands. Catalogues (opened with the command dcm) take care of archiving lists of tomograms.
Individual tomograms are visualized inside the volume browser dtmslice, with is connected to the model system and its geometric tools. The
annotations created by models are stored in the catalogue, which can produce a data set of cropped subtomograms, a process driven by the command
dtcrop. Alignment projects on the formed data set can be run through the GUI dcp. While the main result of an alignment project is the final average, in
practice it is frequently necessary to closely inspect all of the results of an alignment process to further the analysis. To this end, Dynamo includes tools
for PCA-based classification (dccm_analysis), visualization of averages (dview, dmapview) and metadata (dtshow) in the context of the original
tomograms (dpktomo.volume.slices.Slice, dtplace) and database access to all elements generated by the project (ddb).

MATLAB can be directly accessed by the MEX executables

(i.e. without copying or transfer through disk) and processed

by fast C++ code, with the generated results being visible from

the MATLAB memory space. This approach is applied to

accelerate operations that involve massive loops on pixels in

a tomogram, such as three-dimensional rotations and I/O

operations.

In addition to the MEX files explicitly written in Dynamo,

MATLAB itself includes an extensive library of mathematical

operations that have been vectorized, i.e. they are delivered as

built-in precompiled functions and do not suffer any penalty

derived from the execution of internal loops. Matrix-vector

multiplications and multidimensional Fourier transform

belong to this category.

MEX files and code vectorization ensure that the use of

MATLAB does not introduce any slowdown in the numerical

performance of Dynamo while running mathematical

computations during alignment or classification projects.

Dynamo is also structured to optimize its graphical perfor-

mance (responsiveness of GUIs, latency while browsing

tomograms) inside MATLAB. MATLAB versions subsequent

to R2014b (i.e. released after 2015) integrate a major re-

modelling of the MATLAB core that boosts the performance

of the object-oriented programming (OOP) system and the

graphics engine internally used to harness the application of

OpenGL for the handling of graphical objects. Dynamo

automatically inherits the performance increases that come

with each semiannual MATLAB release. The fast OOP system

of MATLAB ensures that the code maintainability in Dynamo

does not come at the cost of reduced performance of the visual

interfaces. The current graphics engine (R2016b) allows on-

screen refreshing of matrices of 1000 � 1000 pixels in size at a

rate of 36 fps on a MacBook laptop (2.9 GHz Intel Core i5,

16 Gb). This is sufficient to allow a smooth visual transition

when browsing slices inside a binned tomogram.

3.2. Distribution to third parties

MATLAB is commercial software. Users that are not

interested in purchasing a MATLAB license can still install

and use Dynamo outside the MATLAB environment. The

standard Dynamo distribution contains a precompiled version

of the package that includes all required libraries, known as

MATLAB Compiler Runtime (MCR), which is distributed

free of charge by MathWorks and deployed automatically in

the user’s system during the installation of Dynamo. This

standalone version provides all of the regular Dynamo func-

tionalities: GUIs and commands for project creation, editing

and execution are available, as well as the whole suite of tools

for tomogram visualization and annotation provided by the

Catalogue system.

The standalone version of Dynamo can be used in two ways:

interactively by opening a Dynamo console, which allows the

entering of commands and access to a workspace much like in

a regular MATLAB session, or directly through the operative

system. The syntax $ dynamo <dynamo command> orders the

Linux shell to operate a single Dynamo command without

opening a Dynamo session. This way of invoking Dynamo

commands outside the interactive console incurs a time

penalty: each time a command is invoked this way, the MCR

libraries need to be initialized. Depending on the hardware

and on the system configuration, this may cause a delay

varying between fractions of seconds and 1 min. Additionally,

commands invoked separately will belong to different variable

workspaces, and will be able to interchange information only

through the hard disk. For this reason, integration of Dynamo

into third-party software is better accomplished through the

syntax $ dynamo <command file>, where <command file>

stands for a text file that contains several Dynamo commands,

one per line, and may include programming tools as loops or

conditionals. With this syntax, the initialization of the MCR

libraries occurs only once and all the commands included in

<command file> will also share the same memory workspace.

3.3. Generic MATLAB library

In addition to streamlined workflows, Dynamo includes

several specific modules for general tomography tasks,

including alignment, annotation and reconstruction of tilt

series, both for command-line and interfaced use. Expansions

recently integrated in Dynamo rely on mbtools, which is a

general-purpose MATLAB library originally conceived to

support the development of Dynamo. It implements several

development utilities that compensate for the lack of native

tools in MATLAB for the production of large-scale code such

as refactoring and visual editors (IDEs) for object-oriented

programming. Its main modules deal with the automated

creation of GUIs, the creation of workflows and flexible

visualization and manipulation of generic streams of data. In

the context of Dynamo, these abstract classes translate into

unified browsers for navigating slices in a tomogram, particles

in a set of extracted subtomograms, individual tomograms

inside a catalogue or micrographs in a tilt series. As the

mbtools are designed to avoid any Dynamo-specific depen-

dencies, they have been used in other contexts, such as

visualization and image tracking of light-microscopy data.

3.4. Parallelization

The subtomogram-averaging pipeline in Dynamo handles

several levels of parallelization: fine-grain parallelization

concerns the parallel processing of a single task, while coarse-

grain parallelization distributes the processing of different

data particles among several devices operating in parallel.

Fine-grain parallelization is performed by the multiprocessors

of a GPU simultaneously computing each of the tasks required

by the alignment of a single subtomogram.

Coarse-grain parallelization can be applied to the many

processes in Dynamo that are executed through loops where

the same operation is performed on different data units in an

independent or weakly coupled way, such as the alignment of

particles, the averaging of aligned particles and, in principal

component analysis (PCA) classification tasks, the computa-

tion of elements in a cross-correlation matrix by independent

blocks.

research papers

482 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging Acta Cryst. (2017). D73, 478–487

3.5. MATLAB Parallel Toolbox

The MATLAB Parallel Toolbox offers a convenient way to

parallelize pieces of code. A loop operated with the commands

parfor/end instead of the regular for/end will execute the

loop content (assuming no dependence) in a parallel fashion

among a predefined set of processors. During the alignment

step in a Dynamo project, the work unit of the loop content is

the alignment of just one particle,

where the index i runs over all of the particle indices, with an

unpredictable order of execution. Particles are presented as

a task queue to the thread pool handled by the MATLAB

parallel engine. Whenever a processor finishes the alignment

of a particle, the pool immediately assigns to it a new, as yet

unaligned particle. This approach inherently ensures an

optimal workload balance among the cores during runtime,

keeping all of them busy at any given time. This first-come-

first-served scheme is preferred over the deterministic assig-

nation of a predefined, equally sized set of particles to each

core, as this may incur idle processors if the actual CPU time

required for each batch is different and is not determinable

before runtime (depending on the optimization method, some

particles may need to scan more angles than others; also, some

cores may be more powerful than others, or some of them may

be slowed down by other operations running simultaneously

in the system). This functionality is included in the standalone

version of Dynamo, so that a Parallel Toolbox license is not

necessary to run multicore projects in single nodes.

3.6. Cluster computing

Using Dynamo on several nodes (as in a CPU cluster) is the

only scenario where the provided standalone version is not

a simple compiled version of the MATLAB code. Running

MATLAB on a cluster requires an additional MathWorks

product: the Distributed Computing Server (MDCS). If such a

license is available, Dynamo will run smoothly without any

further installation. In the case that an MDCS license is not

available for the cluster, the package can still be installed as a

standalone. Unfortunately, the MDCS is not compilable. In

other words, there is no compilable tool that allows the

creation of a single MATLAB instance that controls

computing threads in different nodes in the same memory

workspace. Instead, the standalone version for clustering

operates by spawning different MPI tasks, each one a de facto

independent MATLAB process (all of them running against

the same MCR library) and with a different memory space.

Different instances of MATLAB can communicate only

through file I/O, precluding the creation of a single, unified

thread pool. For this reason, the basic implementation of

Dynamo for clusters just assigns a set of particles to each core

before runtime. This procedure is unable to balance the

workload in clusters with heterogeneous resources, and is also

unable to handle single cores failing to complete their task

because of hardware or system failures (both of which are

rather frequent events in large-scale computing installations).

From version 1.2.x, the MPI parallelization works on a first-

come-first-served basis. In opposition to the MATLAB native

task pooling used for the single-node case, communication

between threads residing in different nodes occurs through file

semaphores. A compiled MATLAB instance will access a new

particle only if a semaphore (defined on disk and visible to all

of the instances) is open. Dynamo implements the semaphore

in two variants: if the user knows the mkdir command to be

atomic in the cluster file system (a condition not necessarily

met in NFS mounted file systems), Dynamo will run out of the

box in the cluster. Otherwise, a second semaphoring system

can be used. This fallback system is based on the Linux

command lockfile, which is NFS-resistant. Unfortunately,

it is not part of most standard Linux distributions, and will

require installation by the user previous to the use of Dynamo.

3.7. Parallelism in generic functions

Several Dynamo commands that can be invoked from the

command line offer the option to be executed in parallel using

the MATLAB Parallel Toolbox. Some commands relate

directly to the parallelization of operations on groups of

particles, such as dtcrop, which is used to extract subtomo-

grams from (sets of) tomograms, daverage or ddcheck, but

the option is generally available in any command that imple-

ments a parallelizable operation; for instance, example scripts

that perform the same lengthy processes on each model on a

group (for instance, the computation of smooth triangulation

grids that describe membranes) or operations on full tomo-

grams (filtering, binning), where the volumetric data are

automatically distributed in chunks that are sent to different

processors.

Users can check whether a particular command allows

parallel execution through checking the documentation of the

function (help or doc). By syntax convention, the inclusion of

the flag -mw (or -matlab_workers) followed by the number of

physical cores sends the order to the thread pool. When the

-mw flag is invoked through a MATLAB session and a Parallel

Toolbox license is not available, Dynamo will issue a warning

message and run in single-core mode. If the command is

invoked through a standalone session, no license is needed.

3.8. GPU computing

Graphic processing units (GPUs) are special-purpose

processors that were originally developed for calculations

required in three-dimensional graphic rendering and other

display functions. Since the late 2000s, they have been

increasingly used for general-purpose calculations in scientific

computing. Several packages for electron microscopy include

support for GPUs in tasks such as movie alignment (Li et al.,

2013), tilt-series alignment (Castaño-Dı́ez et al., 2010), tomo-

graphic reconstructions (Castaño-Dı́ez et al., 2007; Vázquez et

al., 2010), subtomogram averaging (Galaz-Montoya et al.,

research papers

Acta Cryst. (2017). D73, 478–487 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging 483

2015), single-particle analysis (Kimanius et al., 2016), particle

picking and CTF determination (Zhang, 2016).

The speedup delivered by a GPU in relation to a CPU is

highly dependent on the algorithm. Despite the high memory

bandwidth of modern GPU devices (480 Gb s�1 in K80 or

336 Gb s�1 in Titan X), they demonstrate their full potential

only in compute-intensive applications, i.e. algorithms where

the data-transfer requirements are significantly below the

actual computing time. Subtomogram averaging is thus a

paramount example of suitability for GPU computations: after

loading a particle, a template and a mask into the GPU, the

device proceeds to execute a large loop of the scanning angles,

each step comprising several volumetric computations as

rotations and Fourier transforms.

3.9. GPU in Dynamo

Dynamo includes two GPU implementations of the align-

ment procedure. The compact version is fully written in

CUDA/C++. During the runtime of the project, the MATLAB

codebase of Dynamo simply operates a system call that

invokes a single GPU-oriented executable which aligns all of

the particles in the data set. This executable handles the whole

logistics of the particle alignment, including I/O actions, loop

execution and mathematical operations, duplicating the

functionality of the equivalent MATLAB code that would be

used in the CPU. If several GPU devices are available, each

one will be governed by a different CPU thread and will align

an equal number of particles. Particle assignment is decided in

the CPU before runtime of the GPU code, and communication

between the Dynamo project and the spawned GPU compu-

tations occur exclusively by file exchange through the hard

disk.

From Dynamo v.1.2.x, the software also includes a modular

implementation that directly embeds GPU kernels into the

main MATLAB code. This approach makes use of the newly

introduced gpuArray type. This data-storage type allows one

to keep and manipulate objects in the memory of a GPU

device directly from the MATLAB workspace. Many of the

functionalities needed for alignment are already included in

MATLAB as optimized and GPU-enabled built-in functions

(Fourier transforms and linear algebra); the missing func-

tionalities are provided by Dynamo as precompiled kernel

objects. These kernel objects parallelize in the GPU the

function of MEX files in the CPU: they are written in C++/

CUDA and their executable can share memory with variables

residing in the MATLAB workspace, in particular with

gpuArray variables physically located in the GPU device.

This software design implies an enormous flexibility

towards future developments, ensuring that MATLAB code

prototypes devised for the CPU can be immediately ported for

GPUs. For users, this modularity allows the effortless use of

GPU-enabled Dynamo functions (as three-dimensional rota-

tion or backprojection) in their own MATLAB code. Further,

the CUDA kernels provided in Dynamo are not MATLAB-

specific, and documentation is provided so that users can

compile them into their own C++ or Python applications.

Additionally, the smooth integration of GPU/CPU code

provided by the modular version allows one to launch mixed

GPU/CPU pools through the MATLAB Parallel Toolbox.

This way, in a machine with 64 cores and a GPU, Dynamo can

reserve one of the cores to control a GPU process to align

particles extracted from a task pool simultaneously alongside

the remaining 63 CPU cores, optimizing the use of all available

processing resources in a single node at any given time.

3.10. Distribution of GPU code

When used in MATLAB, the GPU modular version needs a

particular version of CUDA (compatible with the MATLAB

version run by the user) and a license for the MATLAB

Parallel Computing Toolbox. If this is not the case, the

compact GPU version can be executed (after compilation by

the user against the local CUDA libraries) both inside

MATLAB or through the standalone version.

3.11. GPU devices

The NVIDIA company delivers GPUs that are specifically

conceived for scientific computing. These devices include an

error-correcting code (ECC) mechanism that protects the

memory from random corruption events. While the use of

ECC memory is necessary for numerically sensitive proce-

dures, its use introduces a considerable fabrication cost. The

bulk of the computations performed in subtomogram aver-

aging is directed towards the calculation of single scalars that

define the similarity of pairs of volumes by cross-correlation.

Such procedures are unlikely to be affected by rare, spatially

isolated bit flips inside volumetric data, making the use of less

expensive, non-ECC devices a possibility.

3.12. Performance comparison

We have tested the speedup attained by different devices

compared with a single CPU core during the execution of a

single three-dimensional fast Fourier transform (FFT) in

single precision. The time estimation was performed in

MATLAB by repeated computation of an fftn command on

the same array of data inside a for/end loop and estimating

the cost of a single operation as the total time divided by the

number of loop steps. This command uses the CuFFT (Jodra et

al., 2015) libraries when its argument is of type gpuArray (i.e.

is located in the GPU), and the FFTW libraries (Frigo &

Johnson, 1998) otherwise, thus delivering state-of-the-art

performance for both the GPU and CPU.

The loop was evaluated several times with increasing

lengths until consistent results were achieved. This compar-

ison procedure ignores the memory-transfer overhead. This

approach is realistic, as subtomogram-averaging computations

will typically launch large amounts of fftn computations on

pieces of data already residing in the GPU memory.

As a CPU reference, we used an Intel Core i5-5287U at

2.9 GHz in a MacBook Pro. This provides a fair baseline for a

performance comparison with GPU devices, as this CPU was

found to outperform the core-by-core processors frequently

research papers

484 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging Acta Cryst. (2017). D73, 478–487

used in large multicore machines (the Xeon E5-2697 v3 at

2.60 GHz and the Xeon E5-2630 v3 at 2.40 GHz were tested).

MATLAB automatically multithreads FFT computations.

In order to determine an accurate comparison of a single core

with a GPU, the CPU fftn commands were run in parallel and

the total time was divided by the number of physical cores.

The tested GPU cards have different architectures and price

ranges, as reported in Table 1.

The K620 is a classical graphical card, intended for display

control and with limited computing resources. Titan X and

GTX 1080 are non-ECC devices from the newest generation

(Pascal); note that there is a device also called Titan X from

a previous generation (Maxwell). A previous architecture,

Kepler, is represented by the high-end K20m and K80, furn-

ished with ECC memory. The device commonly known as K80

is in fact a dual card consisting of two GK210 units; the results

reported here were initially computed on such a single unit

and extrapolated for the performance of two. For all cards,

prices in US$ were obtained as of December 2016 and are

merely orientative. These prices were used for the columns

marked as ‘speedup per $1000’ in Table 2.

Note that the reported speedups do not directly translate

into the speedups attained by Dynamo in the runtime of an

actual project: Table 2 is merely intended as an orientational

guide for comparison among GPU devices and an estimation

of the expected value. If the user accepts the lack of ECC

memory, the Pascal-based cards presented here are the best

choice, with Titan X providing the best performance and GTX

1080 providing the best performance in relation to its price.

Interestingly, even a commodity GPU such as the GTX K620,

which was devised mainly for on-screen image rendering, is

able to deliver a noticeable (and inexpensive) speedup over a

single core.

3.13. Cloud computing

A research group that considers embarking on the use of

GPU devices might face some initial difficulties. While

purchasing and installing a single card in a previously available

workstation may be inexpensive and straightforward, the

setup of a powerful, dedicated GPU server requires a larger

‘activation energy’. In addition to the price of the GPU

devices and a rackmount server to harness them, the available

hardware infrastructure (data centre) needs to be prepared to

host the GPU units in terms of energy supply and ventilation.

Thus, a research group that needs only occasional access to

GPU resources might become discouraged by the initial

investment of time and effort.

An obvious alternative is the use of externally maintained

servers. GPUs are frequently offered by the centralized clus-

ters maintained by hosting research institutions and by other

dedicated facilities as national supercomputing centres. Even

when such resources are not available, not sufficient or not

convenient, users can resort to commercial solutions.

3.14. Computing on Amazon EC2

The Amazon company provides access to virtualized

computing environments through its Amazon Web Services

(AWS). Using the Elastic Compute Cloud (EC2), users with

an AWS account can request access to the computing

resources needed for a given numerical experiment, paying

only for the computation time actually used, and enormously

simplifying the access and use of GPU machines: initial and

overhead costs disappear, no further hardware maintenance

and upgrade is required, system administration is run by

Amazon, and NVIDIA provides correctly configured virtual

environments. Furthermore, all resources (computing power,

memory and storage) can be flexibly scaled to the needs of the

current project.

The use of single nodes of the EC2 cloud runs through

highly configurable virtual servers called instances. Launching

an instance requires the selection of a software setup and

a physical hardware configuration (storage requirements can

be flexibly determined before launch or adjusted during

runtime). The software setup defines the tools and the system

environment seen by the instance at launch time. Templates

for software setup are called AMIs (Amazon Machine

Images). Amazon provides a series of basic AMIs, comple-

mented by a large library of third-party contributions (AWS

Marketplace), which are both commercial and free. The

preconfigured environment provided by the chosen AMI will

run on a hardware defined by the selected instance type.

Amazon provides a series of fixed hardware configurations,

with different number of CPUS, GPUS and RAM resources.

Once the instance is launched and running, it can be accessed

by a regular ssh command and used in the same way as any

other remotely accessed server terminal.

Storage space is purchased independently as one of the

configurable options of the instance (prices vary per region

and are typically in the range 0.02–0.03 US$ per Gb per month

as of December 2016). Regular data transfer incurs no cost,

while accelerated data transfer is charged at 0.04–0.08 US$ per

Gb.

3.15. Preconfigured Dynamo environment

Dynamo maintains a ready-to-use, publically available

AMI. This AMI contains an installation of CUDA 7.5 with

suitable drivers and a full installation of the Dynamo stand-

alone, including all necessary libraries. An EC2 user that

launches an instance of the Dynamo AMI just needs to ssh

into the running instance and type the command dynamo in the

terminal to start working on a Dynamo project.

AWS provides several types of GPU-enabled servers based

on the K80 card. The most powerful one is the p2.16xlarge

research papers

Acta Cryst. (2017). D73, 478–487 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging 485

Table 1
Features of compared GPU models.

GPU model CUDA cores Clock speed (MHz) Price estimate ($)

Quadro K620 384 1059 190
GTX 1080 2560 1670 700
Titan X Pascal 3072 1000 1700
K20m 2496 706 2200
K80 (dual) 2 � 2496 562 4400

type. Each instance of this type provides eight K80 cards (and

thus 16 GPU units, as the K80 is a dual card) complemented

with 32 physical CPU cores (64 logical cores) and 732 GB of

memory. Dynamo will use these additional CPU cores to

parallelize the averaging step and in parallel with the GPUs

during the alignment step.

While the Dynamo AMI is provided for free, users pay for

the time consumed by their instance. As of December 2016,

the maximum cost per hour of a p2.16xlarge instance is

�14 US$. This fixed price corresponds to on-demand request

of computing time to immediately start an interactive session.

Running instances with flexible timing schemes (On Spot

instances) can decrease the cost by 90% from the on-demand

price, depending on the punctual supply and demand situation

of the requested instance type.

The Dynamo AMI can be used on CPU-only instances. This,

however, is not cost-beneficial: depending on other config-

uration factors (mainly RAM and network performance) the

cost per CPU processor and hour is about 0.22 US$ (using

the best instance type, based on an Intel Xeon E7 8880v3 at

2.3 GHz s�1; December 2016 prices). The price per K80-based

GPU processor and hour is four times greater: 0.88 US$. As

the speedup factor provided by a single GPU in Dynamo

typically ranges between 15� and 40� (depending on the

CPU and the problem size), computing time in GPU instances

is roughly four to ten times cheaper.

Notice that the GPU capabilities currently offered by

Amazon are based on the K80 architecture, which does not

deliver an optimal performance:cost ratio. A potential future

expansion of the EC2 based on Pascal-type GPUs would be

likely to cause a significant cost reduction.

4. Conclusions

The Dynamo package offers a flexible software infrastructure

for tomography-related projects, embracing most of the

possibly required processing steps inside an integrated envir-

onment. Its internal structure exploits the simplicity of the

MATLAB programing language in several aspects, in parti-

cular its parallelization and GPU-enabling engines, the

application of which inside Dynamo 1.2.x has been described

and documented to facilitate their use as modular components

in other applications. Dynamo aims at helping cryo-electron

tomography practitioners to adopt the GPU technology as

a standard computing device, especially for subtomogram

averaging. Advanced users or developers are provided with

ready-to-use tools that greatly simplify the production of

efficient GPU code. New users have the option of simply

running Dynamo GPU projects in the cloud on a pay-as-you-

go basis, avoiding costly initial purchases and the complex

software and hardware setup.

Acknowledgements

Thanks are given to Henning Stahlberg for hosting the

Dynamo AMI, to Alex Noble for discussion and correction of

the manuscript, to Elizabeth Villa and Robert Buschauer for

the use of AWS resources, to the CSCS Center for Super-

computation of Switzerland for continuous access to GPU

devices, to Christopher Bleck for discussions on the applica-

tion of the generic Dynamo libraries on light-microscopy data

and to Morgan Beeby for sharing tomographic data for

visualization purposes.

References

Bharat, T. A., Russo, C. J., Löwe, J., Passmore, L. A. & Scheres,
S. H. W. (2015). Structure, 23, 1743–1753.

Briggs, J. A. (2013). Curr. Opin. Struct. Biol. 23, 261–267.
Castaño-Dı́ez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. (2012).

J. Struct. Biol. 178, 139–151.
Castaño-Dı́ez, D., Kudryashev, M. & Stahlberg, H. (2017). J. Struct.

Biol. 197, 135–144.
Castaño-Dı́ez, D., Mueller, H. & Frangakis, A. S. (2007). J. Struct.

Biol. 157, 288–295.
Castaño-Dı́ez, D., Scheffer, M., Al-Amoudi, A. & Frangakis, A. S.

(2010). J. Struct. Biol. 170, 117–126.
Frigo, M. & Johnson, S. G. (1998). Proceedings of the 1998 IEEE

International Conference on Acoustics, Speech and Signal Proces-
sing, pp. 1381–1384. https://doi.org/10.1109/ICASSP.1998.681704.

Galaz-Montoya, J. G., Flanagan, J., Schmid, M. F. & Ludtke, S. J.
(2015). J. Struct. Biol. 190, 279–290.

Heumann, J. M., Hoenger, A. & Mastronarde, D. N. (2011). J. Struct.
Biol. 175, 288–299.

Huiskonen, J. T., Parsy, M. L., Li, S., Bitto, D., Renner, M. & Bowden,
T. A. (2014). J. Vis. Exp., e51714.

Jodra, J. L., Gurrutxaga, I. & Muguerza, J. (2015). 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), pp. 323–327. https://doi/org/10.1109/3PGCIC.2015.66.

Khoshouei, M., Pfeffer, S., Baumeister, W., Forster, F. & Danev, R.
(2016). J. Struct. Biol. 197, 94–101.

Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. (2016).
Elife, 5, e18722.

Li, X., Mooney, P., Zheng, S., Booth, C. R., Braunfeld, M. B.,
Gubbens, S., Agard, D. A. & Cheng, Y. (2013). Nature Methods, 10,
584–590.

research papers

486 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging Acta Cryst. (2017). D73, 478–487

Table 2
Speedup attained by the tested GPUs for three-dimensional (3D) FFT computations at different cube sizes.

CPU

K620 GTX 1080 Titan X K20m K80

Cube size
Time per 3D
FFT (ms) Speedup

Speedup
per $1000 Speedup

Speedup
per $1000 Speedup

Speedup
per 1000$ Speedup

Speedup
per $1000 Speedup

Speedup
per $1000

32 5.8 35� 176 45� 64 49� 27 38� 17 100� 23
64 6.2 16� 78 45� 65 50� 28 39� 18 102� 23
128 68.3 14� 71 131� 188 179� 100 78� 36 198� 43
256 566.0 13� 67 178� 254 261� 145 100� 45 236� 54
512 6719.8 — — 137� 296 202� 112 73� 33 178� 40

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB14

Lučić, V., Förster, F. & Baumeister, W. (2005). Annu. Rev. Biochem.
74, 833–865.

Lučič, V., Rigort, A. & Baumeister, W. (2013). J. Cell Biol. 202,
407–419.

Pfeffer, S., Burbaum, L., Unverdorben, P., Pech, M., Chen, Y.,
Zimmermann, R., Beckmann, R. & Förster, F. (2015). Nature
Commun. 6, 8403.

Roseman, A. M. (2003). Ultramicroscopy, 94, 225–236.
Scheres, S. H. W., Melero, R., Valle, M. & Carazo, J. M. (2009).

Structure, 17, 1563–1572.

Schur, F. K., Dick, R. A., Hagen, W. J., Vogt, V. M. & Briggs, J. A.
(2015). J. Virol. 89, 10294–10302.

Schur, F. K., Obr, M., Hagen, W. J., Wan, W., Jakobi, A. J.,
Kirkpatrick, J. M., Sachse, C., Krausslich, H. G. & Briggs, J. A.
(2016). Science, 353, 506–508.

Vázquez, F., Garzón, E. M. & Fernández, J. J. (2010). J. Struct. Biol.
170, 146–151.

Wan, W. & Briggs, J. A. (2016). Methods Enzymol. 579, 329–
367.

Zhang, K. (2016). J. Struct. Biol. 193, 1–12.

research papers

Acta Cryst. (2017). D73, 478–487 Castaño-Dı́ez et al. � Dynamo package for tomography and subtomogram averaging 487

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5098&bbid=BB24

