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The commonly used validation metrics for the local agreement

of a structure model with the observed electron density,

namely the real-space R (RSR) and the real-space correlation

coefficient (RSCC), are reviewed. It is argued that the primary

goal of all validation techniques is to verify the accuracy of the

model, since precision is an inherent property of the crystal

and the data. It is demonstrated that the principal weakness of

both of the above metrics is their inability to distinguish the

accuracy of the model from its precision. Furthermore, neither

of these metrics in their usual implementation indicate the

statistical significance of the result. The statistical properties

of electron-density maps are reviewed and an improved

alternative likelihood-based metric is suggested. This leads

naturally to a �2 significance test of the difference density

using the real-space difference density Z score (RSZD). This

is a metric purely of the local model accuracy, as required

for effective model validation and structure optimization by

practising crystallographers prior to submission of a structure

model to the PDB. A new real-space observed density Z score

(RSZO) is also proposed; this is a metric purely of the model

precision, as a substitute for other precision metrics such as

the B factor.
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1. Background

Global metrics of accuracy of the structure model (such as

Rfree) do not identify local errors in a model. A better metric

of local accuracy of the model is consistency with the electron

density in real space. This assumes that the electron density

itself, and therefore the phases from which it is derived, are

accurate. This is a reasonable assumption because density-

based validation is normally performed near the completion of

refinement when the model is mostly correct and only a small

number of minor errors remain to be resolved.

2. Outline

2.1. Review existing real-space electron-density metrics

(i) Real-space R (RSR).

(ii) Real-space correlation coefficient (RSCC).

(iii) Why both these metrics are sub-optimal as validation

metrics.

(iv) What are the characteristics of an optimal metric?

2.2. Other issues related to current implementations of RSR
and RSCC

The sensitivity of any real-space metric of electron density

depends critically on the following.
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(i) Accurate representation of the electron density corre-

sponding to the model (�calc).

(ii) Accurate scaling of the model density �calc to the

observed density �obs.

(iii) Accurate estimation of the limiting radius of the metric

in the density: this requires an accurate calculation of the

atomic peak density profile as actually observed in the map.

2.3. Proposed new electron-density metrics based on the
difference Fourier map

(i) The Q–Q difference plot.

(ii) The real-space difference density Z score (RSZD).

(iii) The real-space observed density Z score (RSZO).

2.4. Other issues related to calculation of electron-density
maps

(i) Correct treatment of centric reflections in map calcula-

tions.

(ii) Correct treatment of overlapping atom densities.

(iii) Testing of statistical significance of a real-space metric.

3. Definitions

3.1. Accuracy versus precision

Accuracy means ‘how close are the results on average to the

truth (regardless of their precision)?’ (see Fig. 1 for a simple

illustration). Hence, accuracy is measured by observed error

(or often just ‘error’). Provided the experimental data are

accurate, accuracy is a property of the model: it can be

improved by model building and refinement using the current

data.

Precision means ‘if you were to repeat the experiment, how

much would you expect the results to vary (regardless of their

accuracy)?’. Hence, precision is measured by expected error

(usually known as ‘uncertainty’). Provided the refinement is

performed optimally, model precision is an inherent property

of the crystal and the experimental data: it can only be

improved by making a more ordered

crystal form and/or by collecting better

(e.g. more accurate and/or higher reso-

lution) data.

3.2. What do we actually mean by
‘validation’?

In usage, the term ‘validation’

appears to have the following two quite

distinct meanings.

(i) Validation of the structure model:

is it the model that is most consistent

with the data (diffraction experiment +

prior information)? Assuming the data

are accurate, the model that is most

consistent with the data (i.e. that

corresponding to the global maximum

of the total likelihood, assuming

minimal overfitting to errors in the data) is the most accurate

one: this is what crystallographers usually mean by ‘valida-

tion’.

(ii) Validation of the utility of the model: how useful is the

model in terms of the reliability of the conclusions (e.g. about

structure–function relationships) that you or others wish to

draw from it, assuming that the accuracy of the model has

been verified? Now the optimal measure of ‘reliability’ is the

precision of the model: this is likely to be what end-users of

structures understand by validation.

3.3. What is the goal of validation?

Ideally, if the goal of validation is to measure accuracy

[meaning (i)], then for maximum sensitivity the validation

metric should correlate only with model accuracy. Similarly, if

the goal is to measure precision [meaning (ii)], then the metric

should correlate only with model precision. Otherwise, it is

impossible to tell how much of the observed effect on the

validation metric to ascribe to lack of accuracy and how much

to ascribe to lack of precision.

4. Current methods for validation in real space using
the electron density

(i) Real-space R (version 1; Jones et al., 1991), implemented

in O (Uppsala Software Factory).

(ii) Real-space R (version 2; Gerard Kleywegt), imple-

mented in MAPMAN (USF).

(iii) Real-space R (version 3; Eleanor Dodson), imple-

mented in SFALL + OVERLAPMAP (CCP4; Winn et al.,

2011).

(iv) Real-space correlation coefficient (RSCC) in O,

MAPMAN and SFALL + OVERLAPMAP.

4.1. Real-space R (RSR; version of Jones and coworkers)

The real-space R (version of Jones and coworkers) is

computed for a group of atoms (e.g. main-chain or side-chain

research papers

Acta Cryst. (2012). D68, 454–467 Tickle � Statistical quality indicators 455

Figure 1
Simple illustration of the difference between accuracy and precision.



atoms in a single residue). The observed and calculated elec-

tron densities are sampled on a grid which covers the atoms.

For �calc a single Gaussian atom density model with fixed

overall B factor is used. This estimate of �calc is not on an

absolute scale so must be rescaled with a single overall scale

factor to �obs. The real-space R is then defined as

RSR ¼
P
j�obs � �calcj=

P
j�obs þ �calcj; ð1Þ

where the sum is over grid points within a specified limiting

radius centred on each atom. The range of RSR is 0 (‘good’)

to �1 (‘bad’). Note that �obs and �calc may be zero or negative

owing to omission of the F000 term, incomplete data or limited

resolution (‘series termination’).

4.1.1. Issues specific to the RSR version of Jones and co-
workers. The RSR version of Jones and coworkers assumes a

fixed peak profile for all atoms: in reality, it will depend on

scattering factor (atom type), B factor, data completeness and

maximum and minimum d-spacings (resolution limits). Even if

the atomic scattering factor is assumed to be Gaussian, the

resolution-limited electron-density profile is the convolution

of that three-dimensional Gaussian with a sphere enclosing

constant scattering power and zero scattering outside the

sphere (Blundell & Johnson, 1976, x5.4). The truncated

Fourier transform of the atomic scattering factor f(s) between

sin(�)/� limits smin and smax, assuming an isotropic B factor,

gives

�ðrÞ ¼ �½f ðsÞ� ¼ ð8=rÞ
Rsmax

smin

f ðsÞ expð�Bs2Þ sinð4�rsÞs ds: ð2Þ

Fig. 2 shows this function plotted for an O atom (smin = 0 and

B = 20 Å2), showing the dependence of the atom density

profile on the resolution cutoff dmin (= 0.5/smax). The integral

(2) is computed numerically using Legendre–Gauss quad-

rature: f(s) is a sum of four Gaussians fitted to tabulated

atomic scattering factors (International Tables for Crystal-

lography, 1999; the parameters of the Gaussians for a given

element were taken from the CCP4-installed library file

$CLIBD/atomsf.lib).

4.2. Real-space R (versions of Kleywegt and Dodson)

The real-space R versions of Kleywegt and Dodson are

defined as for the Jones version, except that �calc obtained by

a Fourier transform of the calculated structure factors is used

instead of Gaussian atomic peak profiles and hence all factors

that affect the atomic density profiles are automatically taken

into account. The values of the limiting radii used are chosen

arbitrarily and vary between implementations (Fig. 3a); this

causes RSR to vary wildly according to the software used

(Fig. 3b). The values may be fixed (e.g. rmax = 1.5 Å in

MAPMAN) or may depend only on B factor [e.g. rmax =

2.5(B + 25)1/2/2� Å in SFALL].

Fig. 4 shows plots of the main-chain mean B factor and RSR

versus residue sequence number for PDB entries 1f83 and

3g94 (both for botulinum neurotoxin type B catalytic domain

in complex with synaptobrevin II; Hanson & Stevens, 2000)

and 2w96 (cyclin-dependent kinase 4 complex with cyclin D1;

Day et al., 2009). Entry 1f83 was found to contain gross in-

accuracies: the errors were subsequently corrected and 1f83
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Figure 2
Theoretical electron-density function plotted for an O atom (B = 20 Å2)
showing the dependence of the atom density profile on the resolution
cutoff dmin.

Figure 3
(a) Plot of the atomic radius limits used in the distributed versions of
MAPMAN and SFALL as a function of the atomic B factor, showing the
large discrepancy in the values used; (b) plot of the real-space R for a
Leu side chain with simulated normally distributed random errors in the
electron density (resolution cutoff dmin = 2.5 Å) based on the atomic
radius limits shown in (a). This shows the effect on the RSR of the large
difference in radius limits and also the dependence of the RSR on the B
factor in each case.



was obsoleted (2007) and replaced by 3g94; the latter was then

also retracted (Hanson & Stevens, 2009) because the im-

precise density observed for the ligand did not support the

conclusions drawn. The CDK4–cyclin D1 complex was deter-

mined concurrently and independently to that of Day et al.

(2009) by Takaki et al. (2009) and proved to be identical within

the expected limits of precision. These three structures thus
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Figure 4
(a) Plot of average B factor and real-space R as a function of residue
sequence number for the main-chain atoms (including C�) of the 1f83
structure based on the atomic radius limits defined in x5.6; (b) the same
for 3g94; (c) the same for 2w96. The strong correlation of RSR with B
factor is evident and is clearly not related to inaccuracies in the model.

Figure 5
(a) Plot of average B factor and (1 � real-space sample correlation
coefficient) as a function of residue sequence number for the main-chain
atoms (including C�) of the 1f83 structure based on the atomic radius
limits defined in x5.6; (b) the same for 3g94; (c) the same for 2w96. The
strong correlation of RSCC with B factor is evident and is clearly not
related to inaccuracies in the model.



provide a nice comparative test of the various real-space

density scores: we can take 1f83 and 3g94 as representatives of

an inaccurate and an imprecise structure, respectively.

4.3. Real-space correlation coefficient (RSCC)

RSCC is the standard linear sample correlation coefficient

(also known as ‘Pearson’s product–moment sample correla-

tion coefficient’),

RSCC ¼ corrð�obs; �calcÞ ¼
covð�obs; �calcÞ

½varð�obsÞvarð�calcÞ�
1=2
; ð3Þ

where var(�) is the sample variance and cov(�) is the sample

covariance (i.e. relative to the sample means). The values of

the limiting radii are as for RSR and the range of RSCC is

from �0 (‘bad’) to 1 (‘good’). Fig. 5 shows plots of the main-

chain mean B factor and RSCC versus residue sequence

number for PDB entries 1f83, 3g94 and 2w96; the ordinate

plotted is (1 � RSCC) for easier comparison with the RSR

and B-factor plots.

Note that the alternative ‘population’ correlation coeffi-

cient, which measures correlations of the deviations in �obs

and �calc from the overall population means (i.e. zero) instead

of correlations of deviations from the local sample means, is

more sensitive to lower correlations than the sample CC

(Fig. 6).

4.4. Issues for all versions of RSR and RSCC

4.4.1. Limiting atom radius. Real-space metrics are likely to

depend critically on the value of the limiting atom radius used.

For RSR and RSCC the peak profile is assumed to either be

fixed or to be a function of B factor only, whereas in reality the

peak profile and therefore the optimal limiting radius also

depends on scattering factors (atom type) and maximum and

minimum d-spacings (resolution limits). If the radius is too

small, insufficient density is included and the ‘signal’ compo-

nent is reduced; if it is too large, the ‘noise’ increases. Either

way, the signal-to-noise ratio deteriorates.

4.4.2. Scaling of density. Inappropriate scaling of the �calc

density will inevitably introduce errors in the calculation of the

various metrics. In some implementations the ‘unweighted’ Fc

is used and �calc must be rescaled to �obs using a single overall

scale factor. The scale factor of Fc to the Fourier coefficient

(2mFo � DFc) is resolution-dependent so a single scale factor

is not appropriate. The required resolution-dependent scale

factor is in fact already calculated by the refinement program:

D. Hence, the use of Fc with a single resolution-independent

scale factor is likely to introduce errors; the already correctly

scaled coefficient for �calc is DFc. Note that the use of RSCC

implicitly assumes that a single overall scale factor is appro-

priate.

4.5. Other issues for all versions of RSR and RSCC

Most implementations of RSR and RSCC ignore overlaps

in contributions to �obs from adjacent groups, so that atoms

at the boundaries between different groups contribute twice.

Also, the testing of statistical significance (i.e. how meaningful

are the calculated values of the validation metric?) is not

possible with RSR as defined (using absolute values), since

this form of R is not found in any published statistical tables.

Significance testing of RSCC is in principle possible, although

to the author’s knowledge this has never been used in practice.

The major issue with both RSR and RSCC is that they are

strongly correlated with metrics of model precision (e.g. the

atomic B factor; see Figs. 4, 5 and 7). This means that it is not

possible to say that high values in the RSR and (1 � RSCC)

plots of 1f83 correlate with the known inaccuracies in this

structure while at the same time explaining away similar high

values in the plots for 3g94 and 2w96. Hence, these metrics are

not optimal to validate model accuracy.
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Figure 6
Plot of average B factor and (1 � real-space ‘population’ correlation
coefficient) as a function of residue sequence number for the main-chain
atoms (including C�) of the 1f83 structure based on the atomic radius
limits defined in x5.6. This shows the same strong correlation with B factor
as the standard ‘sample’ RSCC, but the advantage is that it detects
weaker correlations (note the difference in the scale for 1 � RSCC).

Figure 7
Plot of the real-space R and real-space sample correlation coefficient for a
Leu side chain with simulated normally distributed random errors in the
electron density (resolution cutoff dmin = 2.5 Å) based on the atomic
radius limits defined in x5.6 as a function of the atomic B factor. This
shows the correlation of RSR and RSCC with B factor, even for a correct
model.



4.6. Caveat

Note that I am NOT saying that RSR and RSCC measure

only precision: my point is that they are correlated with both

accuracy and precision. This means that you do not know how

much of the observed effect on RSR or RSCC to ascribe to

lack of accuracy and how much to ascribe to lack of precision.

It is instructive to consider why RSR and RSCC are correlated

with both accuracy and precision.

RSR is straightforward: assuming that the standard uncer-

tainty in the difference density �(��) is the same for all grid

points, RSR can be written as

RSR ¼

P
j�obs � �calcj=�ð��ÞP
j�obs þ �calcj=�ð��Þ

: ð4Þ

Here, the normalized difference density in the numerator is

related to the log-likelihood, which is a direct measure of

accuracy (see x5). On the other hand, the normalized density

sum in the denominator is directly related to the model

precision (see x6.1). Hence, RSR is correlated with both

accuracy and precision.

RSCC is more complicated: again assuming the constancy

of �(��) and defining

Zobs ¼ ð�obs � �obsÞ=�ð��Þ;

Zcalc ¼ ð�calc � �calcÞ=�ð��Þ; ð5Þ

where the overbar indicates the sample mean for the ‘sample’

RSCC or the population mean for the ‘population’ RSCC,

which can therefore be written as

RSCC ¼
covðZobs;ZcalcÞ

½varðZobsÞvarðZcalcÞ�
1=2

¼

P
ZobsZcalcP

Z2
obs

P
Z2

calc

� �1=2

¼

P
Z2

obs þ
P

Z2
calc �

P
ðZobs � ZcalcÞ

2

2
P

Z2
obs

P
Z2

calc

� �1=2
: ð6Þ

Again, the sum of squares of differences term
P
ðZobs � ZcalcÞ

2

here is strongly correlated with accuracy, whereas the other

terms
P

Z2
obs and

P
Z2

calc are correlated with precision.

Hence, RSCC also correlates with both accuracy and preci-

sion.

5. The difference Fourier map and validation

The difference Fourier map has been used from the early days

for small-molecule refinements and at one time it was also

used routinely for macromolecular refinement: the positions

and heights of difference map peaks were used to calculate

shifts in atomic parameters (Watenpaugh et al., 1971; Blundell

& Johnson, 1976, x14.4). Even if it was not used in the

refinement itself, the difference map has historically always

been used to check for errors after model building or refine-

ment, so it appears a rather obvious step to propose a

validation metric based on the difference density. Indeed, it

seems odd that alternative electron-density validation statis-

tics such as RSR and RSCC have been put forward when a

widely known and perfectly good (and, as I hope to demon-

strate, superior) method had already existed for many years.

The challenge (which turns out to be nontrivial) is to formu-

late an effective metric for the difference density.

As the accuracy of the model improves during model

building and refinement, the difference density is system-

atically reduced towards a zero (or at least an insignificant)

value. Hence, the Z score, i.e. the normalized difference

density ��/�(��), being directly related to the log-likelihood,

is a measure only of model accuracy, not model precision, so

the use of the difference map for validation of model accuracy

is an obvious step.

Note that even if the alternative RSR or RSCC metrics are

used, it is still necessary to check for unexplained density

(both negative and positive) in the difference map that is not

in proximity to the current model, since these metrics only

provide statistics for the parts of the map that are covered by

research papers

Acta Cryst. (2012). D68, 454–467 Tickle � Statistical quality indicators 459

Figure 8
(a) Histogram of the 1f83 normalized difference Fourier map (red points),
with the theoretical normal distribution (green curve) showing that
the distribution of �� is very close to normal; (b) histogram of the 1f83
normalized Fourier map (red points), with the theoretical normal
distribution (green curve) showing that the distribution of �obs is far
from normal (histograms for 3g94 and 2w96 show the same effect in each
case).



the atomic model (which for a typical solvent content may be

only half of the total unit-cell volume).

5.1. The observed distribution of the difference density

A histogram (Fig. 8a, red points) of �� demonstrates that

its spatial distribution is very close to the standard theoretical

normal distribution (Fig. 8a, green curve). Since �� mostly

has an expectation of zero at the completion of refinement, so

that it consists mostly of random error, its error distribution is

essentially the same as its spatial distribution. Note that �obs

obviously does not have a zero expectation: its expectation

varies spatially in a nonrandom way, hence it does not have a

normal spatial distribution (Fig. 8b); however, it is still not

unreasonable to assume that it has a normal error distribution

(although it is unclear what value should be used for its

standard uncertainty).

5.2. The Q–Q difference plot

A Q–Q (quantile–quantile) difference plot of the �� map

(Fig. 9) shows deviations from normality (‘outliers’) much

more clearly than the histogram plot (deviations in the ‘tails’

are greatly amplified relative to those in the central portion).

A Q–Q plot (Wilk & Gnanadesikan, 1968) plots expected (x)

against observed (y) quantiles (i.e. Z scores): if the quantile

distributions differ it will show as a deviation from the straight

line y = x. A Q–Q difference plot is simply a Q–Q plot with

(y � x) as the ordinate (i.e. in place of y), so that an observed

normal distribution plotted against a theoretical normal

distribution will give the straight line y = 0 parallel to the x axis

instead of the diagonal line y = x; this makes it easier to

measure the deviations from normality from the plot. To

construct a Q–Q difference plot, the normal expected quantile

hZi is plotted against the difference between the observed

quantile Z and hZi, i.e. x axis = hZi, y axis = Z� hZi, where for

the ith sample point of n ordered in monotonically increasing

values of Z (equations 7 and 8; Makkonen, 2008)

hZii ¼ ��1½i=ðnþ 1Þ�; ð7Þ

Zi ¼
��i

�ð��Þ
ð8Þ

and ��1 is the inverse cumulative normal distribution func-

tion.

For a perfect normal distribution, the Z score is everywhere

equal to its expected value, so the differences along the y

axis = Z � hZi are zero for all values on the x axis = hZi.

Deviations from y = 0 indicate departures from normality.

Note that this does not mean that the difference density is zero

everywhere, rather that the observed density conforms to that

expected for a normal distribution of errors. All grid points are

plotted, not just those covered by the model; this means that

the Q–Q plot is still a global – not a local – measure, since in

the absence of an atomic model there is no means of identi-

fying specific points in the plot with errors in the model.

5.2.1. The Q–Q difference plot as a validation metric. We

can obtain a metric of overall model accuracy in terms of

consistency of the model with the difference density by simply

taking the range of the vertical axis of the Q–Q difference

plot, which shows the departures from normality (i.e. the ideal

range is zero; see Table 1). The negative end of the range is a

measure of misplaced atoms and the positive end of the range

is a measure of unexplained density. The very large positive

value for 1f83 (15.8�) is actually owing to a single misplaced

Zn atom, but even if this problem is fixed (as it is in 3g94) the

large value obtained still indicates significant unexplained

density, i.e. 4.8 standard deviations in excess of that expected

for normally distributed random errors (usually taken as�3�).

The y coordinate of the plot depends only on the deviation of

the distribution of the difference density from the normal

distribution; it does not depend on the solvent content or the

unit-cell volume.

5.3. Difference density Z score measures local model
accuracy

Model accuracy measures the consistency of the model with

the data and the optimal measure of consistency of the model

with the data is the likelihood of the model given the data. The

optimal model is therefore the one that corresponds to the

global maximum of the likelihood function, assuming that the

parameterization of the model is optimal (assuming minimal

overfitting to errors in the data). The likelihood is directly

related to the difference density Z score (9) [since we are

assuming a normal error distribution, the contribution to the

likelihood is the Gaussian probability density function of Z��,

i.e. exp(�Z 2
��/2), omitting the arbitrary constant],
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Figure 9
Q–Q difference plots corresponding to the histogram of �� in Fig. 8(a)
for the 1f83, 3g94 and 2w96 difference Fourier maps showing deviations
from the theoretical plot for a normal distribution (y = 0 for all x) in the
‘tails’ of the distribution.

Table 1
Q–Q difference plot ranges.

PDB entry Range of vertical axis

1f83 �4.3 15.8
3g94 �1.7 4.8
2w96 �0.5 1.8



Z�� ¼
��

�ð��Þ
: ð9Þ

Hence, Z is an obvious measure of local model accuracy.

Importantly, this metric is uncorrelated with model precision:

imprecise local regions of the model do not necessarily show

significant difference density.

5.3.1. Estimation of the standard uncertainty in Dq. The

difference Fourier density �� is a function of three experi-

mental variables (see x5.7): the observed structure amplitude

Fo and the calculated amplitude Fc and phase ’c. Hence, ��
consists of contributions from three distinct sources: (i)

random experimental errors in the observations Fo (photon

counting and instrumental errors, errors owing to inadequate

treatment of mosaic spread and diffuse scattering, and other

errors in the integration-profile model); (ii) errors in the

structure-factor model itself (i.e. the algebraic form of the

structure factor used to model anisotropy, anharmonicity,

disorder and multipole effects in the atom distribution func-

tions and scattering factors, which can only be adequately

parameterized when sufficiently high-resolution data are

available); and (iii) errors in the parameters of the structure-

factor model (including errors in the scaling, bulk-solvent and

atomic parameters and errors arising from misplaced and

missing atoms and failure to adequately model disorder).

Errors in the structure-factor model give rise to errors in both

Fc and ’c.

The fundamental assumption in the calculation of �� as a

true representation of the errors in the model is that Fo equals

the true value of the amplitude and ’c is the true value of the

phase; it is assumed that only the amplitude Fc may differ from

its true value. Hence, errors in Fo and ’c will propagate as

errors in �� that are not correlated with the model and

therefore appear as random ‘background noise’, whereas

errors in Fc are correlated with the model and therefore

constitute the ‘signal’ that we wish to detect. For macro-

molecular structures at typical resolutions the model-error

component in (Fc, ’c) dominates (it is typically �4 times the

data error; e.g. it explains why the precision in the data may be

better than 5% but the R factor remains at 15–20%, even with

optimal parameterization and with all the errors in the model

corrected). The phase-error component of the model error

contributes equally to all grid points independent of position

in the unit cell (Blow & Crick, 1959; Blundell & Johnson, 1976,

x12.2), with the exception of those grid points on special

positions, where the error variance is multiplied by the point-

symmetry multiplicity of the special position.

In practice the ‘signal’ and ‘noise’ components of �� can

never be completely separated, particularly where the signal is

comparable to or weaker than the noise. Most of the differ-

ence density arising from errors in the amplitude Fc appears in

the ordered regions of the crystal since any ‘signal’ in the bulk-

solvent region arising from errors in Fc from the structure-

factor model will be averaged out by the solvent disorder.

Consequently, the best estimate of �(��) arising from the

data and phase errors should be from the bulk-solvent region.

The CCP4 program EXTENDS (Winn et al., 2011) uses the

method of iterative outlier rejection to determine an overall

average �(��), with the overall r.m.s.d.(��) as an initial

estimate. An improved estimate of �(��) can then be

obtained from a Q–Q plot of the density points in the bulk-

solvent region: only the central portion of the plot is used (in

practice points lying between �1.5� are used, although the

precise cutoff used is not critical) in order to exclude as far as

possible nonrandom difference density owing to errors in the

atomic model. The gradient of the best-fit line passing through

these points gives the correction factor for �(��); that is, if

�(��) is already correctly estimated the gradient of the

central portion of the Q–Q plot will be exactly 1 (Wilk &

Gnanadesikan, 1968). In practice, this correction is found to

be very small [<1.5% change in �(��) for the three cases

investigated] and this has a negligible effect on the results.

5.4. A real-space difference density Z score based on the
maximum deviation of Dq

A simple and obvious method of using the difference

density Z score as a real-space density validation metric is to

take the maximum (i.e. peak) value over grid points within a

pre-calculated limiting radius centred on each atom in a

residue or split between main-chain and side-chain atoms,

exactly as is performed for RSR and RSCC,

maxðZ��Þ ¼
maxðj��jÞ

�ð��Þ
: ð10Þ

Overlaps between neighbouring atom densities are handled by

partitioning the �obs values in proportion to �calc obtained

from the truncated Fourier transform (2) of the scattering

factors. The range of max(Z��) is 0 (‘good’) to 1 (‘bad’).

5.4.1. Issues with the max(ZDq) metric: the ‘multiple
comparisons’ problem. Unfortunately, the max(Z��) metric

as it stands is unsatisfactory as a density-validation metric for

two reasons: firstly, significant statistical bias giving an over-

estimate of significance is inherent in taking the maximum (or

minimum) value of a set of random variables, assumed here

to be independent and identically distributed (iid), since the

larger the sample, the higher the probability is that large

deviations may occur purely through chance fluctuations. This

problem of ‘multiple comparisons’ is a well established one

in randomized clinical trials (Smith et al., 1987), where it is

possible to observe an apparently significant yet meaningless

treatment effect when different tests are run comparing the

treatment under trial with the best existing treatment simply

by running enough tests. In the present application ‘multiple

comparisons’ refers to the comparison of the set of �obs values

with their corresponding �calc values (or equivalently

comparison of the set of �� values with zero).

The second reason is that even after allowance for the

‘multiple comparisons’ effect on the maximum value of |��|,

use of the maximum value alone may also underestimate the

significance because it does not take account of the possibility

that there may be multiple, but an a priori unknown number

of, grid points with significant Z scores in the sample. The
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‘multiple comparisons’ problem has been the subject of

numerous articles in the statistical literature (see Hsu, 1996,

for a relatively recent and comprehensive review of the theory

and methods). No single solution to the problem is appro-

priate in all situations simply because, as always, the answer

depends on the precise question being asked of the data;

hence, the method of solution must be closely tailored to the

problem.

5.4.2. Significance testing of the max(ZDq) metric after
correction for the ’multiple comparisons’ effect. The issue

of the overestimate of significance arising from the ‘multiple

comparisons’ effect, when it is assumed that the variates are

iid but that only one value is significant, can be addressed by

application of the Dunn–Šidák correction (Sokal & Rohlf,

1995) to the maximum value. Assuming a null hypothesis of

purely random errors with iid normal variates, the cumulative

distribution function (CDF) of the maximum value (also

known as the ‘maximum order statistic’) gives the probability

that the maximum value is less than or equal to some specified

value (say xmax). This is obtained by noting that for this to be

true each value in the sample must be less than or equal to

xmax and since the distributions of the values are assumed to be

independent, the required probability is that for the simulta-

neous occurrence of multiple independent events and is

obtained by the multiplying the individual probabilities.

We are concerned here with ‘two-tailed significance tests’,

in other words whether the Z score exceeds some threshold

either in the negative or the positive direction (or equivalently

whether the absolute score |Z| or the positive or absolute

negative score taken separately exceeds some positive

threshold). The cumulative probability p for the absolute

value of the random variable |Xi| is then given by the CDF for

the half-normal distribution (‘two-tailed probability’),

pðjXij � xmaxÞ ¼ 2�ðxmaxÞ � 1; ð11Þ

where

xmax ¼ maxðj��jÞ=�ð��Þ ð12Þ

and

�ðxÞ ¼ pðX � xÞ ð13Þ

is the CDF for the normal distribution (‘one-tailed prob-

ability’, where x may take any value, negative or positive).

Hence, if the sample size is n, then since by definition all

absolute values |X1|, |X2|, . . . , |Xn| must be less than or equal

to the absolute maximum value |X(n)|, the required CDF of

the absolute maximum value |X(n)| is (14), i.e. the Dunn–Šidák

corrected probability,

pðjXðnÞj � xmaxÞ ¼
Qn
i¼1

pðjXij � xmaxÞ

¼ ½2�ðxmaxÞ � 1�n; ð14Þ

where (11) has been substituted to obtain the second

expression.

As an example, suppose we observe a maximum deviation

of xmax = 4� (either negative or positive) in a sample of 100

independent values. What is the true significance of this

result? From statistical tables (see, for example,

http://itl.nist.gov/div898/handbook/eda/section3/eda3671.htm)

p(X � 4) = �(4) = 0.99997; hence, p(|X|� 4) = (2	 0.99997�

1) = 0.99994 [or the standard ‘p-value’ = p(|X| > 4) = 1 �

0.99994 = 0.00006]. Hence, p[|X(100)| � 4] = 0.99994100
’ 0.994

(p-value = 0.006). Generally, non-statisticians seem to prefer Z

scores to p-values for expressing levels of significance (e.g.

‘Z = 3�’ rather than ‘p = 0.0027’) and so for those people the

significance of this result can probably be more easily assessed

by converting it back to the equivalent normal Z score: for the

two-tailed probability of 0.994 obtained above, the equivalent

one-tailed probability is (1 + 0.994)/2 = 0.997, which corre-

sponds (using the aforementioned table in reverse) to

Z = 2.75�. Hence, the apparently significant maximum value of

4� is in reality not significant even at the usual 3� level of

significance; focusing only on the maximum value inevitably

overstates the significance of the results.

5.4.3. Statistically independent difference density values
from resampling. A sample-size correction of the difference

density score (14), as well as those versions of the score to

be described in the following sections, is necessary because

electron-density maps are always oversampled to avoid

missing significant peaks; this means that adjacent values will

be correlated and hence the assumption of independence

made above would be invalid if the oversampled density

values were used directly. The Shannon–Nyquist sampling

theorem (Shannon, 1949) implies that the density values

become statistically independent when the sampling interval is

dmin/2. For example, if the map is sampled at the usual interval

of about dmin/4 in each direction, the sample size for inde-

pendence must be reduced by a factor of two in each direction,

i.e. by about eight overall to yield the sample size n used in

(14) and in the following sections. However, the values cannot

simply be resampled on the three-dimensional grid without

loss of accuracy; instead, the necessary correction can be

performed very simply by resampling the ordered list of values

(e.g. by keeping approximately every eighth value), with

simple linear interpolation where the resampled value would

fall in between measured values, and there will be little loss of

accuracy provided that the extreme values (i.e. the possible

outliers) are kept.

5.5. Real-space ZDq score based on v2 for all density points in
the sample

The obvious alternative to using only the maximum value is

to assume that all the sample values may be significant and to

include all of them in the calculation of the probability. The

joint probability density function (JPDF) of the absolute

sample values (again assumed to be half-normal and iid) is

given by

PjX1j;jX2j;...;jXnj
ðx1; x2; . . . ; xnÞ ¼

Qn
i¼1

½2’ðxiÞ�

¼ ð2=�Þn=2 exp �
Pn
i¼1

x2
i =2

� �

¼ ð2=�Þn=2 expð��2=2Þ: ð15Þ
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Here ’(�) is the usual probability density function (PDF) for

the standardized normal distribution; hence, 2’(�) is that for

the half-normal distribution. The CDF of �2 for n degrees of

freedom (i.e. the sample size after resampling and interpola-

tion as described in the preceding section) is a standard

textbook function: the lower regularized gamma function

p �2
�
Pn
i¼1

x2
i

� �
¼ P

Pn
i¼1

x2
i =2; n=2

� �
: ð16Þ

This obviously must reduce to the normal probability (11) for

the specific case n = 1, so (16) is merely a generalization of (11)

for n points. Notice that P in (16) without subscripts is the

standard notation for the lower regularized gamma function

and is a CDF; it should not be confused with the same symbol

P that is conventionally used in (15) for a specific PDF or

JPDF: no ambiguity arises because the latter will always be

subscripted with the appropriate random variables to make it

specific for the probability density function in question.

For example, suppose n = 100 and that |xi| = 1.1 for all i (in

fact it is only necessary to assume that the r.m.s. value of the xi

is 1.1 since this will give the same value of �2). Then, �2 = 100

	 1.12 = 121 and P(121/2; 100/2) = 0.925 (p-value = 0.075; see

http://itl.nist.gov/div898/handbook/eda/section3/eda3674.htm,

using the table of upper critical values), which corresponds to

a two-tailed normal Z score of 1.8� and so is not significant

(i.e. most likely just owing to random error). Now assume the

same n but all |xi| = 1.4, so now �2 = 196 and P(196/2; 100/2) =

0.999999967 (p-value = 3.3 	 10�8), which corresponds to a

normal Z score of 5.5� and so is now highly significant (i.e.

highly unlikely to be random error).

Note that expressing the result as a normal Z score does not

imply that the distribution is normal (in this example it is

obviously a �2 distribution); it is merely a more convenient

way of expressing the result than using cumulative prob-

abilities or p-values since most crystallographers seem to be

more comfortable with Z scores.

The example above demonstrates that it is not necessary

that any individual difference density Z score exceeds 3�
for the result to be significant; having all |xi| = 1.4� is easily

sufficient for it to be unlikely to be a result of random error

and therefore for the score to be highly significant. This

underlines the importance of taking into account all the

potentially significant individual values.

5.5.1. Real-space ZDq score in the general case of multiple
significant map values. In the case that only a few values in the

sample are significant, summing the squares of all n deviates

is likely to result in any significant signal that is present

becoming diluted by the noise and so potentially being missed.

This is clearly an issue with the current implementations of

RSR and RSCC. For example, suppose now that xmax = 6�
with n = 100; also assume that the r.m.s. of the other 99 values

of xi is 1. Application of the Dunn–Šidák correction to the

maximum value gives a corrected Z score of 5.2� and so is still

highly significant. However, �2 = 62 + 99 	 12 = 135, which

for 100 degrees of freedom gives a cumulative probability

P(135/2; 100/2) = 0.989 (p-value = 0.011) corresponding to a

normal Z score of 2.5�, which is clearly not significant

according to this metric, so if we had used this method we

would have missed an obvious significant error.

Clearly, everything hinges on the assumed null hypothesis,

since this is the starting point for any calculation of statistical

significance for which quite different estimates are likely to

be obtained depending on the assumptions made. Hence, it is

apparent that no single null hypothesis is capable of covering

all possibilities, so it seems reasonable to propose the use of

multiple null hypotheses. The main mistake that we wish to

avoid is making ‘type II’ (false negative) errors, in which a

false null hypothesis of no statistical significance is accepted as

true (Neyman & Pearson, 1933), thus failing to spot significant

errors in the model, while at the same time minimizing the

frequency of ‘type I’ errors (false alarms). Therefore, we must

distinguish between the possible hypotheses by selecting the

one that maximizes the probability of obtaining a result less

extreme than the one actually observed (i.e. the cumulative

probability) on the assumption that the corresponding null

hypothesis is true, or equivalently the one that minimizes the

probability of obtaining a result more extreme than that

observed (i.e. the p-value).

To this end, we take a subset of the highest values of the

original n, say x(i) for i = k to n, where the notation x(i) indi-

cates the value of the ith-order statistic (so the first method

described above corresponds to the special case of the

maximum order statistic for which k = n). Then, for each value

of k = 1 to n we compute �k
2 and its associated cumulative

probability and choose that value of k which gives the highest

probability pmax as the most likely,

pmax ¼ max
k

p �2
k �

Pn
i¼k

x2
ðiÞ

� �
: ð17Þ

The cumulative probability of �2 for the case where a subset

of the highest values is chosen is no longer the regularized

gamma function because of the bias inherent in selecting the

highest values (this is the multiple comparisons problem

again). The JPDF of the order statistics of the half-normal

distribution for sample size n is (Gibbons & Chakraborti,

2003, chapter 2)

PjXð1Þj;jXð2Þj;...;jXðkÞj;...;jXðnÞ j½xð1Þ; xð2Þ; . . . ; xðkÞ; . . . ; xðnÞ�

¼ n!2n
Qn
i¼1

’½xðiÞ�; ð18Þ

where the n! term comes from the number of permutations of

n objects. The corresponding marginal CDF of �k
2 is obtained

in the usual way from (18), i.e. by integrating out all the

variables x(i),

Cð�2
k; n; kÞ ¼

n!2n

ðk� 1Þ!ðn� kÞ!

R Qn
i¼1

’½xðiÞ�

� 	
dxð1Þdxð2Þ . . . dxðnÞ;

ð19Þ

where the domain of integration is such that x(i) � x(k) for i = 1

to k � 1, x(i) > x(k) for i = k + 1 to n and the domain of �k
2 is

�2
k �

Pn
i¼k

x2
ðiÞ: ð20Þ
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The additional factorial terms appearing in the denominator

of (19) account for the fact that the orderings within the

subsets of the (k� 1) x(i) values for i < k and the (n� k) values

for i > k are irrelevant; the only thing that matters is whether

any value x(i) is < or > x(k).

Analytical integration of (19) is straightforward with

respect to the variables x(i) for i = 1 to k, since these are not

involved in the �k
2 constraint (20) and we already know the

answers for the special cases k = 1 and k = n; however, in the

general case it would appear that further progress requires

numerical integration. Given that the dimensionality (n � k)

of the remaining integral could be several hundred, the only

feasible method available for dealing with the general case

is Monte Carlo integration (i.e. by random sampling of the

integrand; other non-stochastic methods are suitable only for

dimensions less than about 20). A problem then is that the

range of cumulative probabilities taken as significant falls

in the very narrow range 0.9973 (corresponding to 3�) to

1 (
 1�), so that an accuracy much better than 0.27% is

required in the numerical integration; unfortunately, high

accuracy is very difficult to achieve with stochastic methods

when the dimensionality is high.

5.5.2. Practical solution to the approximation of the real-
space Zdiff score in the general case of multiple significant
map values. Given the difficulty in evaluating the cumulative

probability of �k
2 in the general case, the following reasonable

approximation (21) for the maximal value of the cumulative

probability of �k
2 is suggested for practical usage,

pmax ¼ max
k

p �2
k �

Pn
i¼k

x2
ðiÞ

� �

’ max
k

P
Pn
i¼k

x2
ðiÞ=2; ðnþ 1� kÞ=2

� �
If2�½xðkÞ� � 1;

k � 1; nþ 1� kg: ð21Þ

In (21) the first function P on the right-hand side is the lower

regularized gamma function representing the usual cumulative

probability of �k
2 for the values x(i) for i � k. The second

function I is the ‘multiple comparisons’ correction; I is the

cumulative probability of an order statistic, namely the

regularized incomplete beta function (or ‘incomplete beta

integral’: Gibbons & Chakraborti, 2003, chapter 2). In the

special case k = 1 no correction is necessary and this term is

taken as 1; in the case k = n the expression reduces to the

previous Dunn–Šidák expression for the maximum value (14),

so (21) generalizes and gives identical results in the two

previous special cases (14) and (16). In all cases the resulting

cumulative probability is converted to a normal Z score as

previously described.

Table 2 shows, for independent sample sizes n = 20, 100, 200

and 500, the number of independent normalized difference

density values |��/�(��)| at or above a specified threshold

that are required to produce a significant (>3�) RSZD score

using (21), assuming that all of the other values are �1�. For

example, for an independent sample size of 100 at least three

independent values of |��/�(��)| � 3� must be present for

RSZD to score at least 3�; in other words, such a distribution

of values is unlikely to occur as a result of chance random

errors. Note that this is after resampling, so all the counts must

be multiplied by eight to obtain the corresponding actual

numbers of grid points in a map sampled with spacing dmin/4.

Obviously, for higher density values fewer are needed to

produce a significant score. Also note that the fraction of

values needed at or above a given threshold value is not

constant as might be expected, but depends on the sample size

n: small samples are statistically less reliable so require a

higher proportion of significant data points to achieve the

same overall level of significance. Large samples require

relatively fewer data points but they must have higher values

to overcome the ‘multiple comparisons’ effect, where large

values are more likely to occur occur purely as a result of

random error.

Fig. 10 shows the RSR, RSCC and RSZD scores plotted

together as a function of B factor for a Leu side chain at 2.5 Å

resolution, where purely normally distributed random errors

in the electron density have been simulated. It is seen that the

RSR and RSCC scores are both strongly correlated with the

B factor, whereas RSZD is not; furthermore, the RSZD score
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Table 2
Minimum number of independent normalized difference density values
|��/�(��)| at or above the specified threshold t in a sample of size n that
is required for the resulting RSZD score (21) to be significant (>3�),
assuming all other density values are �1�.

t

n 1.5 2.0 2.5 3.0 3.5 4.0 4.5 �5.0

20 17 5 3 2 2 1 1 1
100 25 11 6 3 2 2 1 1
200 34 14 8 4 3 2 1 1
500 49 21 12 6 3 2 2 1

Figure 10
Plot of the real-space difference density Z score (as defined in x5.8 for a
Leu side chain with simulated normally distributed random errors in the
electron density (resolution cutoff dmin = 2.5 Å) based on the atomic
radius limits defined in x5.6 as a function of the atomic B factor. The
suggested level of significance for RSZD (3�) is also shown (dotted line).
This shows that RSZD is always well below the level of significance for a
correct model regardless of B factor and is uncorrelated with the B factor.
The plots of the real-space R and the real-space sample correlation
coefficient from Fig. 7 are shown for comparison.



falls well below the criterion for significance (3�) independent

of the B factor (for purely random errors the expected value of

RSZD is approximately 1�). In contrast, for RSR and RSCC

no sensible criterion for significance which is independent of B

factor can be specified.

5.6. The limiting radius of the atomic density

The radius enclosing the atomic density is made a function

of both B and dmin by use of the radius integral of �calc (22)

(Fig. 11a) computed by a truncated Fourier transform (2)

Radius integral ¼
Rrmax

0

�calcðrÞ dr: ð22Þ

The radius rmax is such that the corresponding value of the

radius integral is 95% of the theoretical value at infinite radius

(Fig. 12).

The volume integral (23) (Fig. 11b) would be the theoreti-

cally correct one to use, but unfortunately it fails to converge

for large values of the radius,

Volume integral ¼
Rrmax

0

�calcðrÞ dV ¼ 4�
Rrmax

0

�calcðrÞr
2 dr: ð23Þ

5.6.1. Limiting atomic radius rmax as a function of dmin and
B for an O atom. Table 3 shows the limiting atomic radius rmax

used by various software, and that obtained using the radius

integral, as a function of dmin and B for an O atom.

5.7. Difference density Fourier coefficient

If we use the ‘minimally biased’ Fourier coefficient for �obs

and the already correctly scaled DFc coefficient for �calc we

obtain the correct Fourier coefficient for �� without the need

for an additional scaling step, which as previously indicated if

not performed correctly is very likely to introduce errors into

the calculation of the density-validation metric.

For acentric reflections,
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Figure 11
(a) Theoretical electron-density function and its relative radius integral
plotted for an O atom (B = 20 Å2), showing the dependence on the
resolution cutoff dmin (corresponding colours are used for the integral
plots); (b) the same for the relative volume integral.

Table 3
Radius limit rmax (Å) for an O atom as a function of resolution cutoff dmin

and B factor by various methods.

B (Å2)

dmin (Å) Method 10 20 30 40 50 60 70 80 90

All MAPMAN† 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
All SFALL‡ 2.35 2.67 2.95 3.21 3.45 3.67 3.88 4.08 4.27
3.5 Equation (22) 1.72 1.78 1.83 1.89 1.95 2.02 2.08 2.15 2.22
3.0 1.51 1.58 1.65 1.72 1.80 1.88 1.97 2.06 2.14
2.5 1.31 1.39 1.49 1.59 1.70 1.80 1.91 2.02 2.12
2.0 1.12 1.24 1.38 1.52 1.66 1.79 1.91 2.02 2.13
1.5 0.96 1.16 1.35 1.52 1.66 1.79 1.91 2.02 2.13
1.0 0.91 1.16 1.35 1.52 1.66 1.79 1.91 2.02 2.13

† The distributed version of MAPMAN uses rmax = 1.5 Å (independent of element, dmin

and B). The Uppsala Electron Density Server (http://eds.bmc.uu.se/eds) version of
MAPMAN uses variable rmax (Professor G. Kleywegt, personal communication). ‡ S-
SFALL uses rmax = 2.5(B + 25)1/2/2� Å (independent of element and dmin).

Figure 12
Illustration of the method used to obtain the radius limit from the radius
integral; theoretical density is for an O atom (B = 20 Å2) at 2.5 Å
resolution cutoff.



�� ¼ �obs � �calc

¼ F½ð2mFo �DFcÞ expði’cÞ� � F½DFc expði’cÞ�

¼ F½2ðmFo �DFcÞ expði’cÞ�: ð24Þ

For centric reflections,

�� ¼ �obs � �calc

¼ F½mFo expði’cÞ� � F½DFc expði’cÞ�

¼ F½ðmFo �DFcÞ expði’cÞ�: ð25Þ

Note that using Fc in place of DFc in the calculation of �calc

gives the wrong answer for �� for both acentric and centric

reflections! The extra factor of 2 for acentrics relative to

centrics in the Fourier coefficient of �� is the bias correction,

i.e. peaks in a noncentrosymmetric difference Fourier appear

at roughly half height, whereas those in a centrosymmetric

map appear at full height (Blundell & Johnson, 1976, x14.2).

Some refinement programs (e.g. REFMAC and BUSTER) use

a form of the magnitude of the centric Fourier coefficient for

�obs that differs from the literature value mFo derived theor-

etically (Main, 1979; Read, 1986); the resulting ‘centric error

effect’ is sufficiently large that it is detectable in a Q–Q

difference plot if the space-group symmetry is sufficiently

high.

5.8. RSZD� and RSZD+ scores

We can make the RSZD score a little more useful by scoring

the negative and positive values of �� separately: ‘RSZD�’

for points with �� < 0 (misplaced atoms) and ‘RSZD+’ for

points with �� > 0 (unexplained density or missing atoms).

Fig. 13 shows RSZD� and RSZD+ plots for the main-chain

atoms (including C�) of 1f83, 3g94 and 2w96. Suggested cutoff

lines at �3� are shown; the difference in the number of

outliers in the case of 1f83 and 3g94 compared with 2w96 is

apparent. Table 4 shows the number and percentage of resi-

dues for each structure with RSZD� or RSZD+ scores

exceeding 1�, 2� and 3� thresholds. The low accuracy of the

1f83 structure compared with that of 3g94 (which itself clearly

still has some issues) and 2w96 is apparent from the much

higher percentage of residues with scores above each of the

thresholds.

6. Model precision and reliability

Model precision measures the reliability of the model: if we

collected a new data set and obtained from it another

consistent but significantly different model, the more precise

model should be the more reliable one. Various atomic and

overall parameters, namely atomic number (scattering factor),
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Figure 13
(a) Plot of average B factor and real-space difference density Z scores
RSZD� and RSZD+ (as defined in x5.8) as a function of residue
sequence number for the main-chain atoms (including C�) of the 1f83
structure; (b) the same for 3g94; (c) the same for 2w96. The suggested
levels of significance (�3�) are also shown (dotted lines). This shows the
much higher frequency of RSZD+ scores above the level of significance
for 1f83 and 3g94 compared with 2w96, indicating significant regions of
positive density in the difference Fourier corresponding to errors in the
models.

Table 4
Number and percentage of protein residues with RSZD� and RSZD+
scores exceeding 1�, 2� and 3� thresholds for 1f83, 3g94 and 2w96
(excluding heteroatoms).

RSZD� RSZD+

PDB entry >1� >2� >3� >1� >2� >3�

1f83 276 (59.9) 92 (20.0) 19 (4.1) 346 (75.1) 194 (42.1) 74 (16.1)
3g94 162 (35.1) 30 (6.5) 5 (1.1) 264 (57.3) 103 (22.3) 39 (8.5)
2w96 186 (36.0) 58 (11.2) 9 (1.7) 174 (33.7) 45 (8.7) 11 (2.1)



site-occupancy factor and other measures of disorder, B

factor, outer resolution limit, data precision [mean I/�(I)] and

data completeness, are all strongly correlated with model

precision (Tickle et al., 1998; Parisini et al., 1999).

6.1. Validating model precision

A very simple metric of model precision that takes all

correlated effects into account is the signal-to-noise ratio of

the average �obs in a specified region (26), since weak �obs

density for whatever reason clearly implies that the model is

imprecise and therefore unreliable,

RSZO ¼
meanð�obsÞ

�ð��Þ
: ð26Þ

Here, the uncertainty in �obs is assumed to be equal to �(��),

not r.m.s.d.(�obs), since the latter is not a measure of the

uncertainty in �obs (it is essentially a measure of the solvent

content of the crystal).

RSZO does not correlate with model accuracy since plainly

it does not depend on the model via �calc. The range of RSZO

is 0 (‘bad’) to1 (‘good’). Fig. 14 shows the mean B factor and

RSZO plot for 1f83, highlighting the regions of low precision

(a suggested cutoff line at 1� is shown). The point is that it

does not necessarily follow that the regions of high B factor

are in error, although it is true that errors are more likely in

these regions.

7. Summary

If the goal is to validate model accuracy use a metric that is

correlated only with accuracy, whereas if the goal is to validate

model precision use a metric that is correlated only with

precision. All RSZD (�) metrics are correlated only with

accuracy; RSZO is correlated only with precision; RSR and

RSCC (including variants) are correlated with both accuracy

and precision. Either way, calculate your chosen validation

metric accurately!

A computer program EDSTATS (Perl script and precom-

piled Linux/Intel executable with Fortran 90 source code and

documentation) which computes the average B factor, RSR,

RSCC, RSZD(�) and RSZO scores as a function of residue

sequence number for a user-supplied PDB file, difference

Fourier and Fourier maps (CCP4 format) may be obtained at

no charge on request from the author.

I should like to thank my colleagues on the CDK4 project

team at Astex for useful discussions and the referees for

constructive comments.
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Figure 14
Plot of average B factor and RSZO score as a function of residue
sequence number for the main-chain atoms (including C�) of the 1f83
structure. The suggested level of significance for RSZO (1�) is also shown
(dotted line). Residues with scores below the level of significance have
weak average �obs density and so should not be considered reliable.
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