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Density modification often suffers from an overestimation of

phase quality, as seen by escalated figures of merit. A new

cross-validation-based method to address this estimation bias

by applying a bias-correction parameter ‘�’ to maximum-

likelihood phase-combination functions is proposed. In tests

on over 100 single-wavelength anomalous diffraction data sets,

the method is shown to produce much more reliable figures of

merit and improved electron-density maps. Furthermore,

significantly better results are obtained in automated model

building iterated with phased refinement using the more

accurate phase probability parameters from density modifica-

tion.
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1. Introduction

Density modification (DM) can significantly improve an

electron-density map by incorporating features that are

expected to appear in the map, such as flatness or disorder

of the solvent region (Wang, 1985), the similarity of regions

related by noncrystallographic symmetry (Bricogne, 1974) and

the similarity of the density-map histogram to histograms of

deposited macromolecules (Zhang & Main, 1990).

Errors are introduced when the experimental map is

modified according to the expectations. The errors may have

different sources, for example inaccurate identification of

solvent regions from the experimental map or inaccurate

noncrystallographic symmetry operators. In order to reduce

the effect of the introduced errors, the modified map is

recombined with the original experimental information and

the resulting combined map is passed to the next cycle of

density modification.

In order to combine the experimental and modified phases

optimally, a likelihood function can be constructed for the

estimation of errors in the experimental and modified phases

and subsequent estimation of the combined phases. While the

likelihood function of the experimental phases and a corre-

sponding estimation of their errors is known from experi-

mental phasing, the errors in the density-modified phases can

be estimated from the agreement between the observed

and modified amplitudes. Traditionally, the estimation is

performed using the �A algorithm (Srinivasan & Ramachan-

dran, 1965; Srinivasan, 1966; Read, 1986), where the �A

parameter and the closely related Luzzati error parameter

(Luzzati, 1952) are the estimated measures of accuracy of the

model structure factors.

1.1. Bias in density modification

In order to obtain an unbiased estimation of a parameter

from an agreement between the observations and the model,
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the model should be derived independently from the obser-

vations. However, the density-modified map is obtained from

the experimental map, leading to an artificially high correla-

tion between the observed and modified amplitudes. For

example, in an extreme case of ‘null’ modification (Cowtan &

Main, 1996), the density-modified map is equal to the

experimental map and a perfect agreement exists between the

null-modified and observed amplitudes. The �A and Luzzati

error estimates then become much higher than their ‘true’

values and the errors in the null-modified phases would be

estimated as much smaller than the errors in the experimen-

tally derived phases although they are identical.

The underestimation of errors in the modified phases leads

to suboptimal phase combination. The combined phases

become biased towards the modified phases, which is referred

to as model bias. Furthermore, it leads to statistical bias in the

estimation of the resulting phase quality as the measure of

combined phase quality, the figure of merit, becomes over-

estimated. Despite this distinction, the source of both types of

bias is the same and a single term ‘bias’ will be used to describe

the negative consequences of consistent underestimation of

errors in the modified phases.

The probability distribution of combined phases is usually

constructed by a multiplication of the experimental phases

distribution by the distribution of model phases. However, the

multiplication is equivalent to an assumption of independence

of the two probability distributions. Clearly, this assumption

is incorrect for the reasons explained above, which further

amplifies the problem of bias in density-modification proce-

dures.

1.2. Current bias-reduction methods

Several techniques have been developed to reduce the bias.

The � correction (Abrahams, 1997) can be applied to the

modified map, aiming to subtract the contribution of the

experimental structure factor from the modified structure

factor, thus reducing the correlation between the experimental

and model amplitudes. As a special case, � correction leads to

solvent flipping (Abrahams & Leslie, 1996) instead of solvent

flattening.

Another widely used technique is the synthesis of a

2mFo � DFc map instead of a centroid mFo map for the next

cycle of density modification. It has been shown that the

2mFo � DFc map supresses electron-density peaks resulting

from errors in the model, thus reducing the effect of model

bias in the density map (Main, 1979; Read, 1986). Further-

more, the 2mFo � DFc map is less correlated with the

experimental map than the centroid map, thus also reducing

the correlation between the experimental and the modified

structure factors in the next cycle.

‘Statistical density modification’ (Terwilliger, 1999, 2000;

Cowtan, 2000) uses a different density-modification scheme

from ‘classical density modification’ as described so far: based

on the map expectations, a probability distribution of density

is constructed instead of a single modified map. This distri-

bution is then transformed to reciprocal space, where it is

combined with the experimental probability distribution,

assuming their independence, and the combined distribution is

in turn used for a likelihood-based estimation of phases for

the next cycle map. The assumption of independence may be

better justified than in classical density modification as the

probability distribution describing the map expectations is less

influenced by the experimental data.

Recently, a phase-combination scheme which incorporates

experimental phase information in the form of Hendrickson–

Lattman (HL) coefficients (Hendrickson & Lattman, 1970) in

the distribution of the modified phases (Cowtan, 2010; Pannu

et al., 1998) has been shown to outperform the �A phase

combination traditionally used in classical density modifica-

tion. Furthermore, incorporation of the experimental phase

information employing multivariate statistics has also been

implemented for single anomalous diffraction (SAD) experi-

ments (Skubák et al., 2010). Unlike the implementation using

HL coefficients, the SAD function does not explicitly assume

independence of the model and the observations. Although

the independence assumption was considered to be a major

cause of bias in classical density-modification algorithms (e.g.

Cowtan, 1999; Abrahams, 1997), its removal by the SAD

function only leads to a slight reduction in bias. This suggests

that the correlation between the model and the observations,

despite its decrease by current bias-reduction techniques,

remains artificially large and is the major reason for bias in the

current classical density-modification programs.

Several cross-validation approaches have been proposed

previously to address the problem of correlation between

the model and the observations. Roberts & Brünger (1995)

suggested monitoring the bias by looking at the difference

between R and Rfree values. In another approach, the bias is

removed by a complete cross-validation in which the reflec-

tions are divided into 10–20 groups and a single cycle of

density modification is repeated with each group excluded in

turn as a free set. The union of the free sets is then used in the

synthesis of the next cycle map, which successfully reduces the

bias (Cowtan & Main, 1996). However, the performance of the

method is suboptimal as part of the data is always excluded

from density modification and the method is slower since

every cycle has to be repeated 10–20 times. Estimation of error

parameters from a fixed free set (Cowtan & Main, 1996; Pannu

& Read, 1996) removes the efficiency problem, but still

permanently excludes part of the data from density modifi-

cation and creates a new problem of obtaining reliable

estimates of error parameters from just the cross-validation

set. Below, we propose a cross-validation-based approach to

estimate the artificial contribution to the correlation between

the observed and model amplitudes and to apply an appro-

priate correction to the recently implemented likelihood

functions for phase combination.

2. Methods

2.1. b-correction method

The recently introduced likelihood functions for phase

combination (Cowtan, 2010; Skubák et al., 2010) assume a
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Gaussian distribution of structure factors, with the covariance

between the model and the observed structure factor defined

as

hFoFci ¼ hjFojjFcj½cosð’o � ’cÞ þ i sinð’o � ’cÞ�i: ð1Þ

The imaginary part is small compared with the real part for

a large number of reflections and can be omitted. As the

observed phases ’o are not known, the cosine term is usually

estimated by a Luzzati error D parameter, which is either

refined directly or estimated from a refined �A value,

hFoFci ’ DhjFojjFcji: ð2Þ

As discussed above, the h|Fo||Fc|i term is artificially large

compared with other terms in the covariance matrix. Direct or

indirect refinement of the D parameter against the working

set of reflections cannot correct for the artificial increase and

its refinement against the free set would mean permanent

exclusion of part of the data from the density-modification

procedure and potential reliability and stability problems.

Therefore, we introduce a � error parameter which expresses

the expected artificial increase in the correlation between |Fo|

and |Fc| and is applied after refinement of the D parameter,

hFoFci ’ �DhjFojjFcji: ð3Þ

In our implementation, the � parameter is estimated using

a simple cross-validation technique. The observations are

divided into a free set and a working set and several cycles of

density modification are performed using the working set of

reflections. The � parameter is then estimated as the ratio

of the covariance between the observed and the calculated

structure-factor amplitudes of the free and working set of

reflections,

� ’
covðjF free

o j; jF
free
c jÞ

covðjFwork
o j; jFwork

c jÞ
: ð4Þ

After � estimation, density modification is performed using all

available observations, with the � parameter kept constant at

its estimated value. In every cycle, the � parameter is applied

after refinement of the Luzzati parameter by the likelihood

function against all data. Although the � parameter can

formally be considered as a correction to the Luzzati error

parameter, their separation is essential in order to enable all

observations to be used during refinement of the Luzzati

parameter and during modification of the density.

2.2. Testing methodology

The method was implemented in the phase-combination

program MULTICOMB (Skubák et al., 2010) and tested on a

wide range of real SAD data sets. The testing sample was the

same as used in Skubák et al. (2010) and consisted of 102 data

sets providing a wide range of resolution (from 0.94 to 3.29 Å)

and anomalous scatterers, including selenium, sulfur, solvent

molecules, bromides, calcium and zinc. The experimental maps

for the density-modification programs were generated by the

CRANK (Pannu et al., 2011) structure-solution suite. CRANK

performed substructure detection using either AFRO (Pannu

et al., unpublished work) and CRUNCH2 (de Graaff et al.,

2001) or SHELXC (Sheldrick, 2008), SHELXD (Schneider &

Sheldrick, 2002) and SHELXE (Sheldrick, 2002). BP3 (Pannu

& Read, 2004) was used for substructure phasing.

The performance and behaviour of the �-correction method

was tested with two classical density-modification programs:

SOLOMON (Abrahams & Leslie, 1996) from CCP4 (v.6.1.1;

Collaborative Computational Project, Number 4, 1994) and

Parrot (v.1.0.0; Cowtan, 2010) from CCP4 run within the

CRANK suite. As SOLOMON and Parrot use different

phase-combination, density-modification and bias-reduction

algorithms, tests with both programs enable a better insight

into the behaviour of the �-correction method.

For phase combination, SOLOMON employs the multi-

variate SAD–DM function as implemented in MULTICOMB

and Parrot employs a Hendrickson–Lattman coefficient-based

incorporation of experimental phase information. In order to

test the �-correction method with Parrot, the internal Parrot

phase combination was replaced by an external MLHL func-

tion (Pannu et al., 1998) implemented in MULTICOMB which

is based on the same theoretical principles and leads to

negligible differences in Parrot performance (the difference

in average map correlation was 0.004 and the correlation

between the map correlations was 0.992 in tests on the

specified sample of 102 data sets). Both programs make use of

classical bias-reduction techniques: SOLOMON implements a

theoretical � correction, Parrot uses perturbation � correction

(Cowtan, 1999) and both programs use 2mFo � DFc-type map

synthesis.

The free reflections for the � estimation were selected

randomly by SFTOOLS (B. Hazes, unpublished work) from

CCP4, with the free set containing 5% of the total number of

reflections for each data set. Five cycles of density modifica-

tion were performed for �-parameter estimation, followed by

20 cycles of �-corrected density modification from the initial

experimental map. Solvent flattening and histogram matching

were used in all density-modification runs. Furthermore,

automated noncrystallographic symmetry averaging as

implemented in a development version (1.0.1) of Parrot was

tested in x3.5.

The average statistical bias of the phase-quality estimation

for the 102 data sets is calculated as

bias ¼
P
hmi � hcosð�’Þi; ð5Þ

where the summation runs through all the data sets, hmi is the

average figure of merit of a data set after density modification

and �’ is the difference between phase after density modifi-

cation and phase calculated from a final deposited model for a

reflection. The quality of a density-modified map is judged by

its correlation with the map constructed from the deposited

model, calculated by SFTOOLS. The map quality can also be

judged by the automated model-building performance.

Either three cycles of Buccaneer (v.1.1.9; Cowtan, 2006) or

ten cycles of ARP/wARP (v.7.1; Perrakis et al., 1999) iterated

with REFMAC (Murshudov et al., 2011) were used for auto-

mated model building. The model-building performance is

judged by the fraction of the model C� atoms correctly built: a

residue is regarded as ‘correct’ if its C� atom is placed within
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1 Å of a C� position from the deposited model (e.g. Badger,

2003). The fraction of the model correctly built is calculated by

a compare-protein script (Ness & Skubák, unpublished work)

within the CRANK suite.

3. Results

3.1. Bias reduction

As shown in Table 1, the �-correction method strongly

reduces the statistical bias of density-modified phase-quality

estimation for both SOLOMON and Parrot. Furthermore,

Table 1 indicates that both classical density-modification

programs can produce less biased figures of merit than the

statistical density-modification program Pirate.

The bias after SOLOMON is slightly smaller than the

Parrot bias when the � correction is either used by both

programs or not used by either of them. This is probably

caused by the removal of the explicit assumption of inde-

pendence by the SAD–DM function used by SOLOMON.

However, the � correction is more important for bias reduc-

tion than removal of the assumption of independence.

The � correction reduces the statistical bias from the first

cycle of density modification and the reduction increases in

subsequent cycles, as shown in Fig. 1. With the � correction

applied, the Parrot bias rises slowly in the first ten cycles and

remains close to constant towards the end of density modifi-

cation, while the average SOLOMON bias reaches its

maximum in the second cycle and decreases afterwards. The

reason for this behaviour is not known to us.

Despite the improvements, the average statistical bias after

density modification remains nonzero. In particular, data sets

with low phase quality still suffer from an underestimation of

the phase errors, as illustrated in Fig. 2. However, the phase

quality of these data sets is typically overestimated by the

previous phasing step. The almost symmetrical arrangement of

data points around the diagonal in Fig. 3(b) shows that very

little new bias is introduced during �-corrected density

modification by SOLOMON. Thus, a method for bias reduc-

tion of experimental phase error estimation could lead to

further improvements.

3.2. The figure of merit as phase-quality estimator

A precise estimation of the density-modified phase quality

is essential for proper decision-making during or after density

modification. Furthermore, density-modified phase prob-

ability statistics (i.e. Hendrickson–Lattman coefficients) can

be used later in the structure-determination process. In the

previous section, we have shown that � correction decreases

bias in the estimation of phase quality by figure of merit.

However, smaller bias of an estimator does not necessarily

imply a better estimation of error owing to a potential bias–

variance tradeoff.

The r.m.s. error of estimation of the mean cosine of the

phase error of a data set by average figure of merit is

summarized in Table 1. It shows that the �-correction method

leads to significantly better phase-quality estimation for both

SOLOMON and Parrot and surpasses the estimation by

statistical density modification of Pirate. Furthermore, �
correction does not introduce a bias–variance tradeoff as it

also decreases the estimation variance. Fig. 2 provides a

graphical representation of the improvements in bias, variance

and error of the estimation.

The r.m.s. estimation error can be further decreased by

performing a regression estimation of the relation between

figure of merit and cosine of phase error. For each data set, we

determined the shape of the regression curve by a nonpara-

metric Nadaraya–Watson kernel regression (Nadaraya, 1965;

Watson, 1964) using all data sets except the current data set.

Such a leave-one-out cross-validated regression curve was

research papers

348 Skubák & Pannu � Reduction of density-modification bias Acta Cryst. (2011). D67, 345–354

Table 1
Average statistical bias as defined by (5), correlation between average
figure of merit (FOM) of a data set and mean cosine of the phase error
(CPEM) of a data set, r.m.s. error of direct estimation of CPEM by FOM
and r.m.s. error of a cross-correlated kernel regression estimation of
CPEM by FOM.

FOM and CPEM are calculated after 20 cycles of density modification by
Parrot with MULTICOMB MLHL phase combination, by SOLOMON with
MULTICOMB SAD–DM phase combination and by Pirate for all 102 data
sets.

Parrot + MLHL SOLOMON + SAD–DM

Original
With �
correction Original

With �
correction Pirate

Average bias 0.280 0.143 0.250 0.099 0.181
Correlation of FOM

and CPEM
0.650 0.901 0.618 0.904 0.621

R.m.s. estimation error 0.316 0.166 0.305 0.137 0.219
R.m.s. regression

estimation error
0.145 0.079 0.173 0.083 0.126

Figure 1
The average statistical bias of the sample of 102 data sets after each cycle
of density modification with and without � correction by Parrot and
SOLOMON.
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Figure 2
Average figure of merit of a data set as an estimator of the cosine of the mean phase error (CPEM) of a data set after (a) Parrot without � correction, (b)
Parrot with � correction, (c) SOLOMON without � correction, (d) SOLOMON with � correction and (e) Pirate. The data point in the bottom left corner
of (a) is an outlier caused by the MULTICOMB MLHL function minimizer becoming stuck.



used for estimation of the phase quality of the data set. A

separate regression was performed for each of the density-

modification programs with and without � correction. The

r.m.s. error of the kernel regression estimation is determined

by the variance of the distributions in Fig. 2. Although the

kernel regression significantly decreases the estimation error,

its practical use by density-modification programs is ques-

tionable since a reliable regression curve determined from

tens or preferably hundreds of data sets would be needed for

each density-modification program and for different sets of

program options.

3.3. Map improvement from b-corrected density
modification

Table 2 summarizes the effect of � correction on density-

modification performance. On average, the quality of density-

modified maps slightly improves if � correction is used,

enabling better tracing of the structure by Buccaneer. The

improvement can be attributed to model-bias reduction

caused by correction of the underestimation of model phase

errors. The performance gain is slightly better for SOLOMON

compared with Parrot, which may be explained by stronger

bias reduction in the case of SOLOMON using the SAD–DM

function.

The performance depends on the quality of the density-

modified map, as shown in Fig. 4. While maps with lower

quality usually benefit from the correction, the quality of

maps with a correlation with the deposited map higher than

approximately 0.8 does not change significantly. This is owing

to the little amount of bias in high-quality maps, as illustrated

by a � parameter of close to one.

Classical density-modification programs often attempt to

reduce the bias introduced by limiting the number of density-

modification cycles. For example, the default number of cycles

of Parrot is three. However, Fig. 5 shows that a preliminary

end of the density-modification procedure can lead to signif-

icantly worse map quality. The use of � correction enables as

many cycles to be used as needed for convergence of density

modification, without a significant bias being introduced by

multiple cycles (Figs. 1 and 6).

3.4. ’Null’ density modification

Although null density modification cannot improve the

quality of the initial map, it is a useful validation method for

bias-reduction techniques as it represents an extreme case of

the greatest bias that can be introduced, with figures of merit

typically rapidly approaching one after a few cycles of density

modification. A good bias-reduction technique should be able

to decrease the bias introduced during ‘null’ density modifi-

cation and let the figures of merit converge closer to the real

cosines of the phase error.

Fig. 6 shows the development of the average statistical bias

during SOLOMON density modification with and without �
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Table 2
Average map correlation after density modification by Parrot and
SOLOMON and average fraction of the model correctly built by
Buccaneer.

Parrot + MLHL SOLOMON + SAD–DM

Original With � correction Original With � correction

Map correlation 0.617 0.627 0.631 0.651
Fraction built 0.609 0.624 0.612 0.666

Figure 3
Average figure of merit corrected for bias after phasing versus cosine
of the mean phase error (CPEM) for each data set after 20 cycles of
�-corrected density modification by (a) Parrot and (b) SOLOMON. The
phasing bias-corrected figure of merit is defined as mcorr = m � [mph �

cos(�’ph)], where m is the figure of merit after density modification, mph is
the figure of merit after experimental phasing and �’ph is the phase error
after phasing.



correction. Despite the � correction, bias builds up rapidly

with every cycle and reaches 0.7 after 20 cycles of density

modification if the � correction is not used, which corresponds

to figures of merit for all data sets of close to one. In contrast,

the average bias in �-corrected ‘null’ density modification only

rises slightly in the first two cycles and remains constant at

approximately 0.2 during the rest of the procedure. ‘Null’

density modification by Parrot leads to similar results (data

not shown).

3.5. b correction and NCS averaging
The previously discussed tests were performed without

using information about noncrystallographic symmetry (NCS)

in density modification. Fig. 7(a) shows the performance of

Parrot with and without NCS averaging for 39 data sets

for which NCS operators were automatically determined by

Parrot from a heavy-atom substructure. On average, NCS

averaging significantly improved the electron-density map
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Figure 4
Average map correlation (MC) after density modification by (a) Parrot
and (b) SOLOMON with � correction (x axis) and without � correction
(y axis).

Figure 6
Average statistical bias after each cycle of ‘null’ density modification with
and without � correction by SOLOMON.

Figure 5
Improvement of map quality during density modification by Parrot and
SOLOMON with and without � correction.



quality. In a few cases the averaging led to worse maps (the

points above the diagonal line), which turned out to be caused

by incorrect determination of the NCS operators by Parrot.

The errors introduced into the maps by averaging of regions

not related by NCS are suppressed by � correction, while the

quality of the maps for which correct NCS operators were

identified remains approximately the same, as shown in

Fig. 7(b).

Furthermore, we have tested whether figures of merit can

be used to identify the data sets with incorrect NCS operators

determined. Two separate density-modification runs with and

without NCS averaging were performed for all data sets and

the runs providing higher figures of merit were selected.

Fig. 7(d) shows that all significant regressions caused by NCS

averaging have been corrected by this decision-making. The

use of � correction was essential for the successful identifi-
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Figure 7
Correlation of a map constructed from a deposited model with the map after Parrot density modification without NCS averaging and without �
correction (y axis) plotted against the map correlation after Parrot using NCS averaging (x axis) (a) without � correction, (b) with � correction, (c) with
figure-of-merit-based decision-making and without � correction and (d) with figure-of-merit-based decision making and with � correction. Only the data
sets for which Parrot determined NCS operators from the heavy-atom substructure are shown. Solvent flattening and histogram matching were used in
all tests.



cation of regression by figures of merit, as the decision-making

was not reliable without it (Fig. 7c).

Fig. 8 shows that � correction leads to a significant decrease

of the statistical bias of density modification with NCS aver-

aging. The average statistical bias of the set of 39 data sets

decreased from 0.251 to 0.142. However, the reduction of bias

is slightly smaller compared with density modification of the

same set of data sets without NCS averaging, where the

average bias decreased from 0.266 to 0.125. This effect is

probably caused by the relation between the free and the

working set of reflections imposed by NCS averaging

decreasing the reliability of �-parameter estimation. A

possible workaround to this problem is the selection of free

reflections from thin shells.

3.6. Subsequent use of phase probability distributions from
density modification

The quality of phase probability distributions after density

modification is especially important when these quantities are

subsequently used in the structure-determination process, for

instance in model building. We have tested the performance of

model building by ARP/wARP iterated with REFMAC using

different phase probabability distributions on all data sets. The

results are summarized in Table 3.

The average fraction of the model correctly built increases if

the previously determined Hendrickson–Lattman coefficients

are incorporated in refinement by REFMAC’s MLHL target

function compared with the Rice function, which does not use

any information about experimental phases. However, on

average there is hardly any improvement when using the

Hendrickson–Lattman coefficients after density modification

over the coefficients from experimental phasing because of

the strong bias in the density-modified error estimates. The

reduction of the bias owing to � correction enables automated

building of data sets that fail otherwise, leading to a significant

increase in the average fraction built. The trend is similar if the

coefficients are from either Parrot or SOLOMON.

4. Discussion

� correction has been shown to strongly reduce the statistical

and model bias that occur in the classical density-modification

programs SOLOMON and Parrot. The bias introduced in

�-corrected ‘classical density modification’ can be smaller than

the bias introduced by ‘statistical density modification’, as

shown by comparison with the program Pirate. The bias

reduction is slightly better for SOLOMON, which can be

attributed to the removal of the explicit assumption of inde-

pendence by the SAD–DM phase-combination function used

by SOLOMON. The majority of the statistical bias remaining

after �-corrected density modification by SOLOMON is not

introduced in density modification but comes from experi-

mental phasing.

The figures of merit after �-corrected density modification

are significantly more accurate estimators of the quality of

density-modified phases. This is important for decision-

making during and after density-modification procedures. As

an example, we have shown that � correction enables the

identification of data sets with incorrect NCS operators used

for NCS averaging. Futhermore, the improved quality of the

density-modified phase probability distributions is important

for subsequent use of phase probability parameters such as

Hendrickson–Lattman coefficients in model building and

refinement. Indeed, the use of �-corrected phase probability

distributions by REFMAC’s MLHL target function signifi-

cantly improves automated model building by ARP/wARP

iterated with refinement by REFMAC.
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Figure 8
Average figure of merit of a data set versus the mean cosine of phase error
(CPEM) of a data set after Parrot with NCS averaging (a) without �
correction and (b) with � correction.



Currently, classical density-modification programs often

stop the density-modification process prematurely after a few

cycles in an attempt to prevent bias developing in subsequent

cycles. This premature end of density modification leads to

suboptimal maps being obtained. � correction solves this

problem as it enables the use of as many cycles as needed for

convergence of density modification without the introduction

of significant bias. Indeed, we have shown that the statistical

bias can even decrease during the density-modification

process in some cases and it remains approximately constant

after the second cycle in the extreme case of ‘null’ density

modification.

The bias reduction is slightly less effective if NCS averaging

is performed. This can be attributed to less reliable cross-

correlated �-parameter estimation caused by the relation

between the free and working sets of reflections imposed by

NCS averaging. Selection of free reflections from thin shells

may help to improve the results further. However, random

selection is still sufficient for significant reduction of the bias

introduced during density modification using NCS averaging.

Density modification with � correction using a known �
parameter is as fast as density modification without �
correction. Thus, the only slowdown associated with the

method is incurred by the few additional density-modification

cycles required for the cross-validated estimation of the �
parameter.

Although all of the tests in this paper were performed on

SAD data sets, the method is not restricted to SAD data, as

suggested by preliminary testing on MAD data sets. However,

in general MAD data sets tend to provide better experimental

phases and less density-modification bias, leading to the need

for fewer and less powerful DM bias-reduction techniques.

The �-correction method attempts to model the artificial

increase in correlation between the model and the data rather

than removing it. Therefore, it does not replace the current

methods for correlation reduction such as � correction and

2mFo � DFc-type map synthesis. Instead, it should be used in

addition to these methods.
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Table 3
Average fraction of the model correctly built by ARP/wARP v.7.1 using
different phase information in REFMAC reciprocal-space refinement.

The same map after density modification by Parrot or SOLOMON with �
correction was used as input to ARP/wARP in all four tests.

Parrot
+ MLHL

SOLOMON
+ SAD-DM

Rice: no phase information 0.549 0.587
MLHL with HL from phasing 0.598 0.629
MLHL with HL from DM 0.603 0.619
MLHL with HL from DM with � correction 0.651 0.680
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