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The process of re®nement is such a large problem in function

minimization that even the computers of today cannot

perform the calculations to properly ®t X-ray diffraction data.

Each of the re®nement packages currently under development

reduces the dif®culty of this problem by utilizing a unique

combination of targets, assumptions and optimization

methods. This review summarizes the basic methods and

underlying assumptions in the commonly used re®nement

packages. This information can guide the selection of a

re®nement package that is best suited for a particular

re®nement project.

Received 5 April 2004

Accepted 21 September 2004

1. Introduction

Re®nement is the optimization of a function of a set of

observations by changing the parameters of a model.

This is the de®nition of macromolecular re®nement at its

most basic level. To understand re®nement, we need to

understand the de®nitions of its various parts. The four parts

are `optimization, `a function', `observations' and `the para-

meters of a model'.

While formally different topics, these concepts are tightly

connected. One cannot choose an optimization method

without considering the nature of the dependence of the

function on the parameters and observations. In some cases,

one's con®dence in an observation is so great that the para-

meters are devised to make an inconsistent model impossible.

These observations are then referred to as constraints.

This paper will discuss each of these topics in detail. An

understanding of each topic and their implementation in

current programs will enable the selection of the most

appropriate program for a particular project.

2. Observations

The `observations' include everything known about the crystal

prior to re®nement. This set includes commonly noted

observations, such as unit-cell parameters, structure-factor

amplitudes, standardized stereochemistry and experimentally

determined phase information. In addition, other types of

knowledge about the crystal, which are usually not thought

about in the same way, include the primary structure of the

macromolecules and the mean electron density of the mother

liquor.

For a particular observation to be used in re®nement, it

must be possible to gauge the consistency of the model with

this observation. Current re®nement programs require that

this measure be continuous. If a property is discrete, some



mathematical elaboration must be created to transform the

measure of the model's agreement into a continuous function.

As an example consider chirality; the C� atom of an amino

acid is in either the d or the l con®guration. It cannot be 80%

l and 20% d. Since the agreement of a model to this piece of

knowledge is discrete, the derivative of the agreement func-

tion is not informative. To allow the correction of this sort of

error, most programs use some function in which the chirality

is expressed as its sign (e.g. a chiral volume or improper

dihedral angle). Since the additional information in these

residual functions is simply the ideal bond lengths and angles,

restraining chirality in this fashion causes geometrical

restraints to be included in the re®nement via two different

routes. This duplication makes it dif®cult to assign proper

weights to this information.

This problem is not encountered with most types of obser-

vations. Diffraction amplitudes, bond lengths and angles

calculated from the model can be varied by small changes in

the model's parameters.

Each observation should be accompanied by an indication

of its con®dence. If the errors in an observation follow a

normal distribution then the con®dence in the observation is

indicated by the standard deviation (`�') of that distribution.

In more complicated situations, a complete description of the

probability distribution will be required. Experimental phases

are examples of this dif®cult class of observations. Their

uncertainties can be quite large and multiple maxima are

possible, as is the case with SIR phases.

2.1. Stereochemical restraints

When a diffraction data set is missing high-resolution

re¯ections, the details of the molecule cannot be visualized.

Fortunately, the molecule can be viewed as a set of bond

lengths, bond angles and torsion angles, instead of the

conventional view of a set of atoms ¯oating in space (see

Fig. 1). The advantage derived from this geometrical view of a

structure is that the values of the bond lengths and angles and

their standard uncertainties are known from high-resolution

small-molecule structures (Allen, 2002).

To be honest, the most interesting aspects of a molecule are

the angles of rotation about its single bonds. If the ' and  
angles of the backbone of the polypeptide chain and the

� angles of the side chains were known, most of the questions

about the structure could be addressed. The scatter of bond

angles and planarity seen in accurate structures is large

enough, however, that one cannot constrain a model to

`ideal' values. For example, if a peptide ! angle (the angle of

rotation about the C and N atoms in the peptide bond) differs

from the value that results in a planar peptide bond [as it can;

see KoÈ nig et al. (2003) as one example of many] but is forced

into a plane, the protein's backbone will be distorted over

many residues to compensate for the error. Re®nement with

constrained bond lengths and angles was implemented in the

early 1970s in Diamond's (1971) real-space re®nement

program, but was eventually abandoned, in part because of

this problem.

Even though stereochemical constraints on bond lengths

and angles do not work, this knowledge can still be applied as

restraints. Constraints simplify the re®nement problem by

reducing the number of parameters. Restraints instead work

by increasing the number of observations; a penalty is imposed

for deviations from ideal stereochemistry, just as a penalty is

imposed for deviations from observed structure-factor

amplitudes.

The practice in the ®eld is to track the ratio of the number

of observations to the number of parameters; the larger the

ratio, the better the quality of the result of the re®nement. This

useful metric is only valid when the observations are inde-

pendent of each other and when the parameters are related to

the different types of observations in roughly comparable

ways.

As a trivial example of this issue, consider two data-

collection strategies: (i) 10% of the re¯ections are each

measured ten times and (ii) 100% of the re¯ections are each

measured once. Clearly, the latter data set contains more

information. While a re¯ection measured ten times is recorded

with greater precision than one only measured once, it does

not provide as much information as ten unique re¯ections. In

acknowledgment of this difference, we average together the

multiple measurements of each re¯ection and count `merged'

re¯ections instead of the total measurements.

With stereochemical restraints (i.e. observations), the

situation is not as clear. The knowledge that a particular pair

of atoms is separated by 1.3 AÊ is redundant with some of the

diffraction data of 1.3 AÊ resolution and higher but indepen-

dent from diffraction data of resolution much lower than

1.3 AÊ . In a re®nement problem with 2 AÊ resolution diffraction

data, this stereochemical restraint would count as one inde-

pendent observation. In a problem with 0.9 AÊ data, it would be

redundant to the diffraction data and probably would not add

any useful additional information to the re®nement. This

information redundancy requires that the geometrical

restraints be weighted relative to the diffraction restraints in

an essentially empirical fashion. When the resolution of the

diffraction data set is low, we want to give the geometrical

restraints a high weight. When we have a high-resolution data

set, we want to use a low weight, dropping to zero when the

limit of diffraction is so high that the stereochemical restraints

are providing no additional information. The probabilistic

formulation used for maximum likelihood should adjust this

weighting automatically, but in practice it is usually necessary

to choose an empirical weighting factor to maintain reason-

able stereochemistry for all parts of the model.

3. The parameters of the model

The general perception of the parameters of a molecular

model are dominated by the PDB ®le format (Bernstein et al.,

1977). In this format a molecule is a collection of atoms, each

de®ned by its location, a `B' factor and an occupancy. (Each

atom also has an atomic type, but since these are not

continuously variable they are not considered as parameters

here.)
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The B factor provides an estimate of an atom's vibration

about its central position. The usual form is either to de®ne the

B factor as isotropic, meaning that the atom vibrates equally in

all directions and can be visualized as lying within a sphere, or

to de®ne an anisotropic B factor, which describes vibration of

the atom within an ellipsoid centered at the atomic coordinate.

Six parameters are required to de®ne such an ellipsoid (Stout

& Jensen, 1989). The B factor is isotropic when the off-

diagonal elements of this matrix are equal to zero and the

diagonal elements are all equal to each other. Therefore, only

one number is required to de®ne an isotropic B factor.

In the traditional formulation, each atom is de®ned by (i)

three numbers that give its location in the unit cell, (ii) either

one number for an isotropic B factor or six numbers for an

anisotropic B factor and (iii) one number for its occupancy.

These numbers form the principle set of parameters for the

model.

In a medium-sized protein there are about 2500 atoms. With

®ve parameters for each atom there would be 12 500 para-

meters and with ten parameters per atom there would be

25 000 parameters. For such a protein, a diffraction data set to

2 AÊ resolution would contain about 22 000 re¯ections. Since

the mathematical relationship between the structure factors

and the model is nonlinear, macromolecular re®nement will

not produce useful results unless there are many times more

re¯ections in the data set than parameters in the model.

Clearly, a re®nement of a model with anisotropic B factors at

2 AÊ resolution will be problematic and one with isotropic B

factors is borderline.

(This dif®culty is not restricted to molecules of a particular

size. The larger the molecule the greater the number of

parameters, but the unit cell will also increase in size, which

increases the number of re¯ections at a given resolution. The

ratio of observation to parameters essentially depends only on

resolution, for all sizes of molecules. There is some effect

arising from the solvent content of the cell, with large solvent-

content cells resulting in relatively larger sets of re¯ections at

the same resolution.)

At such resolutions something must be done to simplify the

parameterization of the model (or increase the number of

observations). Simpli®cation can be achieved by imposing

constraints on the parameters, forcing the model to be exactly

consistent with the prior knowledge or recasting the para-

meters into some form where the lack of compliance is

impossible. The creation of program code to implement these

solutions can be very dif®cult. Some of the traditional solu-

tions were devised because of limitations of time and

computer technology and are not easily justi®ed today.

The ®rst parameter to go is the occupancy. Because the

difference-map feature that results from an error in occupancy

is very similar to that resulting from an error in an isotropic B

factor, only quite high-resolution diffraction data can generate

difference maps that have suf®cient clarity to distinguish the

two. Since the two parameters are linked in this fashion, it

would be advantageous to eliminate one of them. Fortunately,

most of the atoms in the crystal are chemically bonded toge-

ther and have the same occupancy, which is very close to 1.0.

Applying this knowledge as a constraint allows the model to

be re®ned with one fewer parameter per atom.

While this simpli®cation is appropriate for the atoms in the

macromolecule, it is not for individual water molecules. It is

quite likely that particular water molecules are not present

with full occupancy, but the problem of discriminating

between a low occupancy and a high B factor remains. The

traditional solution is to again hold the occupancy ®xed at 1.0.

While this solution is not credible, it does allow the atom to

re®ne to ¯atten the difference map and it lowers the R value

almost as much as re®ning both parameters would. Because of

this constraint, the B factor must be rede®ned to be a

combination of motion and occupancy. This generalization in

interpretation of the B factor is implicit in most macro-

molecular models, but is not clearly stated in the deposited

models.

Unless the resolution of the diffraction data is very high,

re®nement of a model containing anisotropic B factors results

in structures that are physically unreasonable. To avoid this

absurdity, re®nement is performed with isotropic B factors.

This choice is not made because the motions of the atoms are
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Figure 1
Stereochemical restraints in a dipeptide. This ®gure shows the bonds,
bond angles and torsion angles for the dipeptide Ala-Ser. Black lines
indicate bonds, red arcs indicate bond angles and blue arcs indicate
torsion angles. The values of the bond lengths and bond angles are, to the
precision required for most macromolecular-re®nement problems,
independent of the environment of the molecule and can be estimated
reliably from small-molecule crystal structures. The values of most torsion
angles are in¯uenced by their environment and, although small-molecule
structures can provide limits on the values of these angles, they cannot be
determined uniquely without information speci®c to this crystal. It is
instructive to note that this example molecule contains 12 atoms and
requires 36 degrees of freedom to de®ne their positions (12 atoms times
three coordinates for each atom). The molecule contains 11 bonds, 14
bond angles and ®ve torsion angles, which together de®ne 30 degrees of
freedom. The unaccounted-for degrees of freedom are the six parameters
that de®ne the location and orientation of the entire dipeptide. This result
is general; the sum of the number of bonds, the number of bond angles,
the number of torsion angles and six will always be three times the
number of atoms. Other stereochemical restraints, such as chiral volume
and planarity, are redundant. For example, the statement that the
carbonyl C atom and the atoms that bond to it form a planar group is
equivalent to saying that the three bond angles around the carbonyl C
atom sum to 360�. These types of restraints are added to re®nement
packages to compensate for their (incorrect) assumption that deviations
from ideality for bond angles are independent of each other.



actually believed to be isotropic, but simply to limit the

number of parameters. The result is the paradox that the

crystals that probably have the largest anisotropic motions are

modeled with isotropic B factors.

3.1. Rigid-body parameterization

One common restructuring of the standard set of para-

meters is that performed in rigid-body re®nement. When there

is an expectation that the model consists of a molecule whose

structure is essentially known but whose location and orien-

tation in the crystal are unknown, the parameters of the model

are refactored. The new parameters consist of a set of atomic

positions speci®ed relative to an arbitrary coordinate system

and up to six parameters to specify how this coordinate system

maps onto the crystal: up to three to describe a translation of

the molecule and three to de®ne a rotation. The traditional set

of coordinates is calculated from this alternative factorization

with the equation

xt � R��1; �2; �3�xr � t;

where xt is the positions of the atoms in the traditional crys-

tallographic coordinate system, R(�1, �2, �3) is the rotation

matrix, which rotates the molecule into the correct orienta-

tion, and t is the translation required to place the properly

orientated molecule into the unit cell.

In principle, all of these parameters could be re®ned at the

same time, but re®nement is usually performed separately for

each parameter class, because of their differing properties. The

values of the orientation and location parameters are de®ned

by diffraction data of quite low resolution and the radius of

convergence of the optimization can be increased by ignoring

the high-resolution data. In addition, in those cases where

rigid-body re®nement is used, one usually knows the internal

structure of the molecule quite well, while the location and

orientation are more of a mystery.

For this reason, molecular replacement can be considered to

be a special case of macromolecular re®nement. Since the

internal structure of the molecule is known with reasonable

certainty, one creates a model parameterized as the rigid-body

model described above. One then `re®nes' the orientation and

location parameters. Since this is a small number of para-

meters and no good estimate for starting values exists, one

uses search methods to locate an approximate solution and

gradient descent optimization to ®ne-tune to orientation

parameters.

The principal drawback of the rigid-body parameterization

is that macromolecules are not rigid bodies. If the external

forces of crystal packing differ between the crystal where the

model originated and the crystal where the model is being

placed, then the molecule will be deformed. Optimizing the

rigid-body parameters alone cannot result in a ®nal model for

the molecule.

3.2. NCS-constrained parameterization

When the asymmetric unit of a crystal contains multiple

copies of the same type of molecule and the diffraction data

are not of suf®cient quantity or quality to de®ne the differ-

ences between the copies, it is useful to constrain the

non-crystallographic symmetry (NCS) to perfection. In such a

re®nement the parameterization of the model is very similar to

that of rigid-body re®nement. There is a single set of

atomic parameters [positions, B factors and occupancies

(usually constrained equal to unity)] for each type of molecule

and an orientation and location (six parameters) for each

copy.

As with rigid-body re®nement, the orientation and location

parameters are re®ned separately from the internal structure

parameters. Firstly, the orientation and location parameters

are re®ned at low (typically 4 AÊ ) resolution while the atomic

parameters are held ®xed. The atomic parameters are then

re®ned against all the data while the external parameters are

held ®xed.

Both rigid-body re®nement and constrained NCS re®ne-

ment have a problem with parameter counts. When the

location and orientation parameters are added to create a

rigid-body model, the total number of parameters in the

model increases by six, but the new parameters are redundant.

For example, the entire molecule can be moved up the y axis

by changing the rigid-body y coordinate or by adding a

constant to all the y coordinates of the individual atoms. This

type of redundancy does not create a problem when one class

of parameters are held ®xed. If all the parameters are re®ned

at once, however, it is at best confusing and at worst (when the

optimization method uses second derivatives) it will cause

numerical instabilities.

The constrained NCS parameterization has the same

shortcoming as rigid-body parameterization. Each copy of the

macromolecule experiences a different set of external

forces as a result of their differing crystal contacts and it is

expected that the copies will respond by deforming in

differing ways. The constraint that their internal structures

be identical precludes the model from re¯ecting these differ-

ences. If the diffraction data are of suf®cient resolution to

indicate that the copies differ but are not high enough to

allow re®nement of unconstrained parameters (without

explicit consideration of NCS), then the model will develop

spurious differences between the copies (Kleywegt & Jones,

1995).

Relaxing the constraints and implementing NCS restraints

is the usual solution chosen to overcome this problem. Most

implementations of NCS restraints continue to assume that

the molecules are related by a rigid-body rotation and

translation, except for the random uncorrelated displacements

of individual atoms. If two molecules differ by an

overall bending, the NCS restraints will impede the models

from matching that shape. The program SHELXL

(Sheldrick & Schneider, 1997) contains an option for

restraining NCS by suggesting that the torsion angles of the

related molecules be similar, instead of the positions of the

atoms being similar after rotation and translation. By

removing the rigid-body assumption from its NCS restraints,

this program allows deformations that are suppressed by other

programs.
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3.3. Torsion-angle parameterization

The replacement of atomic coordinates by torsion angles

dramatically reduces the total number of parameters (see

Fig. 1). This decrease is advantageous when the resolution of

the diffraction data is quite low (lower than 3 AÊ ). At these

resolutions there are many fewer re¯ections to de®ne the

values of parameters in the traditional model. Even with the

addition of bond-length and angle information as restraints,

these models tend to get stuck in local minima or over®t the

data.

Increasing the weight on the stereochemical restraints to

compensate for the lack of diffraction data does not work well

because the sizes of the off-diagonal elements of the normal

matrix also increase in signi®cance (see x5.2.3), which causes

optimization methods that ignore these elements to become

ineffective.

Simulated annealing also has dif®culty accommodating high

weights on bond lengths and angles (Rice & BruÈ nger, 1994).

When the `force constant' of a bond is large, the bond's

vibrational frequency increases. The highest frequency motion

determines the size of the time step required in the slow-

cooling molecular-dynamics calculation, so increasing the

weight on stereochemistry greatly increases the amount of

time taken by the slow-cooling calculation.

The programs commonly used to re®ne models at these low

resolutions [X-PLOR (BruÈ nger et al., 1987) and CNS

(BruÈ nger et al., 1998)] use simulated-annealing and gradient-

descent methods of optimization. Optimization methods that

use the off-diagonal elements of the normal matrix are not

used in these circumstances, because their radii of conver-

gence are not large enough to correct the errors that typically

are found in low-resolution models.

One solution to the problem of large stereochemistry

weights is to choose a parameterization of the model where

the bond lengths and angles simply cannot change. If the

parameters of the model are the angles of rotation about the

single bonds, the number of parameters drops considerably

and there is no need for a stereochemical weight (it is effec-

tively in®nite). There are on average about ®ve torsion angles

and about eight atoms per amino acid. Changing from an

atomic model to a torsion-angle model will replace 24 posi-

tional parameters with ®ve angular parameters. This nearly

®vefold reduction in parameters greatly improves the obser-

vation-to-parameter ratio, in addition to improving the power

of simulated-annealing and gradient-descent optimization.

The nature of torsion-angle parameters makes the imple-

mentation of their re®nement much more dif®cult than that of

the other parameters described here. When working with

atomic positions, for example, one can estimate the shifts to be

applied by considering the improvement in the residual

function by moving each atom in turn, holding the other atoms

®xed in space. This form of calculation cannot be performed

with torsion-angle parameters. If the ®rst main-chain torsion

angle is varied, the majority of the molecule is moved out of

density and any amount of shift is rejected. The variation of a

torsion angle can only lead to improvement if other torsion

angles are simultaneously varied in compensatory fashion.

The most ¯exible solution to this problem to date is described

by Rice & BruÈ nger (1994).

This parameterization is the same as that of Diamond

(1971) (although the actual method of optimization is quite

different) and suffers the same limitations. If there are real

deviations from ideal bond angles, a model that ignores that

possibility will be distorted. The modern implementation in

CNS (Rice & BruÈ nger, 1994) is not seriously affected by this

problem for two reasons. Firstly, these re®nements are

performed at rather low resolution and the distortions are not

as signi®cant and secondly, the torsion-angle re®nement is

followed by conventional re®nement after the large errors

have been corrected.

3.4. TLS B-factor parameterization

Probably the most signi®cant inappropriate constraint

applied generally to protein models is the isotropic B factor. It

is quite certain that atoms in crystals that diffract to resolu-

tions lower than 2 AÊ move anisotropically and yet they are

routinely modeled as isotropic. While the excuse for this

choice is the undeniable need to reduce the number of para-

meters in the model, this clearly is not a choice likely to

improve the ®t of the model to the data.

Schomaker & Trueblood (1968) described a parameteriza-

tion that allows the description of anisotropic motion with

many fewer parameters than an independent anisotropic B

factor for each atom. This parameterization is called TLS

(translation, libration and screw). In this system the motion of

a group of atoms is described by three matrices, one for a

purely translational vibration of the group, a second for

libration (or wobbling) of the group about a ®xed point and a

third for a translation and libration that occurs in concert. The

explicit assumption of TLS B factors is that the group of atoms

move as a rigid unit. More complicated motions can be

modeled by nesting several TLS groups within a larger group,

creating a tree-like data structure.

TLS B factors are dif®cult to implement as parameters in a

re®nement program. The programs RESTRAIN (Haneef et al.,

1985) and, more recently, REFMAC (Murshudov et al., 1997;

Winn et al., 2001) include the option of re®ning TLS B factors.

In the TLS formalism, 20 parameters are used to describe

the motion of the entire group of atoms. Since the anisotropic

B of one atom requires six parameters, any TLS group

composed of more than three atoms results in a decrease in

the total number of parameters. Of course, a large number of

small TLS groups will not reduce the parameter count very

much and will only be re®nable with higher resolution data

than a TLS model containing large groups. Then again, a TLS

model composed of large groups might not be able to mimic

the set of anisotropic B factors required to ®t the data.

In the absence of a related structure re®ned with aniso-

tropic B factors at atomic resolution, it is dif®cult to objec-

tively de®ne rigid groups larger than side chains with aromatic

rings.
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4. The function

In crystallographic re®nement, three functions are commonly

used. They are the empirical energy function, the least-squares

residual and maximum likelihood.

4.1. Empirical energy

The idea that the best model of a protein would be that with

the lowest energy has been used since the early 1970s (for an

example, see Levitt, 1974). To a person with a background in

biochemistry, such a measure is quite intuitive. The program

will give the difference between two conformations or two

models in kcal molÿ1, which is a familiar unit.

There are two principal problems with this function as a

re®nement residual. The ®rst problem is that it has been

impossible so far to devise an empirical energy function that is

accurate enough to reproduce experimental results. If the

function is not reliable, the models generated using it cannot

be trusted either. The second problem is that there is no

statistical theory underlying this function. None of the vast

array of mathematical tools developed in other ®elds can be

applied to an analysis of the quality of the model or the nature

of its remaining errors.

While the re®nement packages X-PLOR (BruÈ nger et al.,

1987) and CNS (BruÈ nger et al., 1998) use the language of

energy in their operation, the actual function used is closer to

one of the other two functions. It is important to remember

that these programs are not even attempting to calculate

`energies' that relate to binding energies and stability.

4.2. Least squares

Least squares is the simplest statistical method used in

macromolecular re®nement. Like empirical energy, the history

of least squares in macromolecular structure determination

extends back to the 1970s (Konnert, 1976) and the approach

continues to be used today.

The least-squares residual function is

f �p� � Pall data

i

�Qo�i� ÿQc�i; p��2=�o�i�2; �1�

where Qo(i) and �o(i) are the value and standard deviation for

observation number i. Qc(i, p) is the model's prediction for

observation i using the set of model parameters p. The larger

the difference between the observation and the model's

prediction, the worse the model. The more precisely we know

an observation, the more important that observation becomes

in the overall sum. One varies the parameters of the model to

®nd a set that gives the lowest sum of deviants.

The values of the parameters found by minimizing this

function are those that have the smallest individual standard

deviation or the smallest probable error (Mandel, 1984). This

statement is only true, however, if the assumptions of the

method are correct. The assumptions of least squares are that

the errors in the observations obey a normal distribution with

completely known (`observed') variances and that, given

perfect observations and the best parameters, the model

would predict the observations perfectly.

In recent years it has been shown (Bricogne, 1988, 1993;

Read, 1990) that these assumptions are incorrect in many

re®nement problems. The simplest example occurs when the

model is incomplete, say missing a domain. With an imperfect

model of this type it is impossible for any set of parameters to

reproduce all the observations. The re®nement function must

account for the unknown contribution of the unmodeled part

of the molecule and least squares cannot do that.

4.3. Maximum likelihood

To construct a re®nement function that does not make the

assumptions of least squares, one must generalize the method.

Such a generalization is called maximum likelihood. Currently,

maximum-likelihood options are available in the programs

CNS (BruÈ nger et al., 1998), REFMAC (Murshudov et al., 1997)

and BUSTER/TNT (Bricogne & Irwin, 1996; Tronrud et al.,

1987). These programs are listed in order of increasing

sophistication of their implementation of maximum like-

lihood.

Maximum likelihood is a generalized statistical framework

for estimating the parameters of a model on the basis of

observations (Bricogne, 1997; Sivia, 1996, p. 64). This

approach differs from least squares in that maximum like-

lihood can accommodate observations with uncertainties of

arbitrary character and model parameters whose values are

also expected to have such uncertainties.

While the maximum-likelihood method is completely

general, macromolecular re®nement is such a dif®cult problem

that no computer can perform a likelihood re®nement in

complete generality. The authors of each computer program

must make particular assumptions about the nature of the

uncertainties in the observations and the parameters of the

®nal model in order to produce a program that will produce a

result in a reasonable amount of time.

While least squares is rather simple and is usually imple-

mented similarly in all programs, maximum likelihood

depends critically on a detailed model of how errors are

distributed and the consequences of these errors. Each

implementation of maximum likelihood makes it own set of

assumptions and one may work better than another in any

particular problem.

4.3.1. Overview of Bayesian inference. Maximum like-

lihood itself is an approximation of the general Bayesian

inference procedure (Sivia, 1996). Bayesian inference is a

means of combining all information known about a problem in

a completely general fashion.

One starts by calculating, for every combination of values of

the parameters of the model, how probable that set of para-

meters is when all of the information known prior to the

current experiment is considered. In crystallographic re®ne-

ment, this information would include basic properties (e.g.

that anisotropic B factors must be positive de®nite and

isotropic B factors must be positive), stereochemical infor-

mation (e.g. atom CA of a particular residue is about 1.52 AÊ

from atom C and its isotropic B factor is about 4 AÊ 2 smaller)

and various conventions (e.g. that at least one atom of each
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molecule should lie in the conventional asymmetric unit of the

unit cell). This probability distribution is named the prior

distribution.

The second probability distribution is called the likelihood

distribution. This distribution contains, for every combination

of values for the parameters of the model, the probability that

the experiment would have turned out as it did, assuming that

set of values was correct. If the predicted outcome of the

experiment for a particular set of values differs from the actual

experimental results by much more than the expected uncer-

tainty in both the measurements and

the ability of the model to predict, then

the probability is quite low.

Any set of values are only worth

considering if they have high prob-

abilities in both distributions. There-

fore, the two distributions are

multiplied to generate a new prob-

ability distribution, called the posterior

probability, which includes all of the

information about the values of the

parameters. If the posterior distribution

contains a single well de®ned peak, that

peak is the solution. The width of the

peak would indicate how precisely

these values are known. If there are

multiple peaks of about the same height

or if there is a single peak that is diffuse,

then the experiment has not produced

information suf®cient to distinguish

between the various possible sets. In

this case, one can study the posterior

probability distribution to help design

the next experiment.

Unfortunately, calculating the prior

and likelihood distributions for all

combinations of values for the para-

meters of a macromolecular model is

well beyond the capability of current

computers.

As described here, the posterior

probability is not normalized. To

normalize it, one must divide it by the

probability of the experimental data

given what was known about such data

prior to the experiment. In the case of

diffraction data this information would

include Wilson (1942, 1949) statistics

and the non-negativity of structure-

factor amplitudes. Since we have one

set of experimental data this normal-

ization factor is simply one number and

can be ignored without affecting the

shape of the posterior probability

distribution.

4.3.2. The maximum-likelihood
approximation. The maximum-like-

lihood method depends on the

assumption that the likelihood distri-

bution has a single peak whose location

is approximately known. This assump-

tion allows one to ignore nearly all of
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Figure 2
Probability distributions for one re¯ection in the maximum-likelihood worldview. (a) The
maximum-likelihood method begins with the assumption that the current structural model itself
contains errors. This ®gure represents the probability distributions of the atoms in the model.
Instead of a single location, as assumed by the least-squares method, there is a cloud of locations
that each atom could occupy. While not required by maximum likelihood, the computer programs
available today assume that the distributions of positions are normal and have equal standard
deviations [the value of which is de®ned to be that value which optimizes the ®t of the model to the
test set of diffraction data (Pannu & Read, 1996; BruÈ nger, 1992)]. (b) The distribution of structures
shown in (a) results in a distribution of values for the complex structure factors calculated from that
model. An example of one of the distributions is shown. The value of the structure factor calculated
from the most probable model is labeled Fcalc. The nonlinear relationship between real and
reciprocal space causes this value not to be the most probable value for the structure-factor
distribution. As shown by Read (1986), the most probable value has the same phase as Fcalc but has
an amplitude that is only a fraction of that of Fcalc. This fraction, conventionally named D, is equal to
unity when the model is in®nitely precise and is zero when the model is in®nitely uncertain. The
width of the distribution, named �calc, also arises from the coordinate uncertainty and is large when
D is small and zero when D is unity. The recognition that the structure factor calculated from the
most probable model is not the most probable value for the structure factor is the key difference
between least squares and the current implementations of maximum likelihood. (c) In re®nement
without experimental phase information, the probability distribution of the calculated value of the
structure factor must be converted to a probability distribution of the amplitude of this structure
factor. This transformation is accomplished by mathematically integrating the two-dimensional
distribution over all phase angles at each amplitude. This integral is represented by a series of
concentric circles. (d) The probability distribution for the amplitude of the structure factor. The bold
arrow below the horizontal axis represents the amplitude of Fcalc, calculated from the most probable
model. As expected, the most probable amplitude is smaller than |Fcalc|. With this distribution the
likelihood of any value for |Fobs| can be evaluated, but more importantly one can calculate how to
modify the model to increase the likelihood of |Fobs|. In this example, the likelihood of |Fobs| is
improved by either increasing |Fcalc| or increasing the precision of the model. This action is the
opposite of the action implied by the least-squares analysis of Fig. 3.



the volume of the distribution and concentrate on the small

region near the starting model. Finding the values for the

parameters that result in the greatest likelihood reduces to a

function-optimization operation very similar in structure to

that used by the least-squares re®nement programs of the past.

To increase this similarity, the negative logarithm of the

likelihood function is minimized in place of maximizing the

likelihood itself.

The basic maximum-likelihood residual is

f �p� � Pall data

i

�Qo�i� ÿ hQc�i; p�i�2=��o�i�2 � �c�i; p�2�; �2�

where the symbols are very similar to those in (1). In this case,

however, the quantity subtracted from Qo(i) is not simply the

equivalent quantity calculated from the parameters of the

model but the expectation value of this quantity calculated

from all the plausible models similar to p. �c(i, p) is the width

of the distribution of values for Qc(i, p) over the plausible

values for p. For diffraction data, the `quantities' are the

structure-factor amplitudes. The expectation value of the

amplitude of a structure factor (h|Fcalc|i) calculated from a

structural model, which itself contains uncertainties, is calcu-

lated by integrating over all values for the phase, as in Fig. 2(c).

The mathematics of this integral are dif®cult and beyond the

scope of this overview. The calculation of h|Fcalc|i is discussed

by Pannu & Read (1996) and Murshudov et al. (1997).

The maximum-likelihood method also depends on the

assumption that the prior probability distribution contains no

information. This assumption is certainly not valid in macro-

molecular re®nement, where there is a wealth of information
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Figure 3
Probability distribution for one re¯ection in the least-squares worldview.
In least-squares analysis it is assumed that the observed and calculated
structure factors have exactly the same phase, so the only error to
consider is in the magnitude of the observation. The true value of |Fobs| is
assumed to be represented by a one-dimensional Gaussian centered at its
measured value and with a spread related to its estimated standard
uncertainty, �obs. The calculated amplitude is assumed to have no spread
at all. In this example, the parameters of the model should be modi®ed to
cause |Fcalc| to decrease.

Figure 4
Probability distribution for maximum likelihood in the presence of
unbuilt structure. This ®gure shows the probability distribution in the
complex plane for the case where, in addition to the modeled parts of the
crystal, there is a component present in the crystal for which an explicit
model has not been built. This distribution is an elaboration of that shown
in Fig. 2(b). That distribution is convoluted with the probability
distribution of the structure factor calculated from the envelope where
the additional atoms are believed to lie and weighted by the number of
atoms in this substructure (which can be represented as a distribution
centered on the vector Fpart). The resulting distribution has a center that
is offset by Fpart and a width that is in¯ated relative to that of Fig. 2(b) by
the additional uncertainty inherent to the unbuilt model.

Figure 5
The principal properties of optimization methods considered here are the
`rate of convergence', `radius of convergence', `CPU time' and
`conservativity'. The rate of convergence is the number of iterations of
the method required to reach an optimum solution. The radius of
convergence is a measure of the accuracy required of the starting model.
The CPU time represents the amount of time required to reach the
optimum. The conservativity is a measure of the tendency of a method of
optimization to preserve the values of parameters when changes would
not affect the ®t of the model to the data. The locations of several
optimization methods on these continuums are indicated by the
placement of their names. The search method uses no derivatives and
is located furthest to the left. The simulated-annealing method occupies a
range of positions, which is controlled by the temperature of the slow-
cooling protocol. Steepest descent (sd) uses only ®rst derivatives, while
the conjugate-gradient (cg), preconditioned conjugate-gradient (pcg) and
full-matrix methods use progressively more second derivatives.



about macromolecules. Somehow, maximum likelihood must

be modi®ed to preserve this knowledge. This problem is

overcome by the authors of the current re®nement programs

by including the stereochemical information in the likelihood

calculation as though it were the results of the `experiment',

essentially the same approach as that taken in least-squares

programs.

Perhaps a simpler way of viewing this solution is to call the

procedure `maximum posterior probability' and optimize the

product of the likelihood and prior distributions by varying

the values of the parameters in the neighborhood of a starting

model.

4.3.3. Comparing maximum likelihood and least squares.
Fig. 3 shows the mathematical world that crystallographic

least-squares re®nement inhabits. There are two key features

of least squares that are important when a comparison to

maximum likelihood is made: (i) the identi®cation of the

measurement of the observation as the only source of error

and (ii) the absence of any consideration of the uncertainty of

the phase of the re¯ection. Figs. 2 and 4 show probability

distributions used in maximum-likelihood equivalent to

Fig. 3.

A fundamental difference between the least-squares

worldview and that of maximum likelihood is that least

squares presumes that small random changes in the values of

the parameters will cause small random changes in the

predicted observations. While atomic positions are recorded

to three places beyond the decimal point in a PDB ®le, this

degree of precision was never intended to be taken seriously.

Usually somewhere in the paper a statement similar to `the

coordinates in this model are accurate to 0.15 AÊ ' is made.

When calculating structure factors to be compared with the

observed structure-factor amplitudes, the structure factor of

the particular model listed in the deposition is not the value

desired. Instead, the central (or best) structure factor of the

population of structures that exist within the error bounds

quoted by the author is needed. When there is a linear rela-

tionship between the parameters of the model and the

observations, this distinction is not a problem. The center of

the distribution of parameter values transforms to the center

of the distribution of observations.

When the relationship is not linear this simple result is no

longer valid. One must be careful to calculate the correct

expectation value for the predicted observation with consid-

eration of the uncertainties of the model. This complication

was anticipated by Srinivansan & Parthasarathy (1976) and

Read (1986), but was not incorporated into re®nement

programs until the 1990s.

The mathematical relation that transforms a coordinate

model of a macromolecule into structure factors is shown in

Fig. 2. The uncertainty in the positions and B factors of the

model causes the expectation value of the structure factor to

have a smaller amplitude than the raw calculated structure

factor but the same phase. The greater the uncertainty, the

smaller the amplitude of the expectation value, with the limit

of complete uncertainty being an amplitude of zero. As

expected, when the uncertainty of the values of the para-

meters increases the uncertainty of the prediction of the

structure factor also increases.

Fig. 4 shows the Argand diagram for the case where one

also has atoms in the crystal which have not been placed in the

model. If one has no knowledge of the location of these atoms

then the vector Fpart has an amplitude of zero and the phase of

the center of the distribution is the same as that calculated

from the structural model (as was the case in Fig. 2). If,

however, one has a vague idea where the unbuilt atoms lie,

their contribution (Fpart) will have a non-zero amplitude and

the center of the probability distribution for this re¯ection will

have a phase different from that calculated from the current

model. The ability to alter the probability distribution by

adding this additional information reduces the bias of the

distribution toward the model already built. Such models can

only be re®ned with BUSTER/TNT (Roversi et al., 2000) at

this time.

5. The optimization method

Function-minimization methods fall on a continuum (see

Fig. 5). The distinguishing characteristic is the amount of

information about the function that must be explicitly calcu-

lated and supplied to the algorithm. All methods require the

ability to calculate the value of the function given a particular

set of values for the parameters of the model. Where the

methods differ is that some require only the function values

(simulated annealing is such a method; it uses the gradient of

the function only incidentally in generating new sets of para-

meters), while others require the gradient of the function as

well. The latter class of methods are called gradient-descent

methods.

The method of minimization that uses the gradient and all

of the second derivative (i.e. curvature) information is called

the `full-matrix' method. The full-matrix method is quite

powerful, but the requirements of memory and computations

for its implementation are beyond current computer tech-

nology except for small molecules and smaller proteins. Also,

for reasons to be discussed, this algorithm can only be used

when the model is very close to the minimum ± closer than

most `completely' re®ned protein models. For proteins, it has

only been applied to small molecules (<2000 atoms) that

diffract to high resolution and have previously been exhaus-

tively re®ned with gradient-descent methods.

The distance from the minimum at which a particular

method breaks down is called the `radius of convergence'. It is

clear that the full-matrix method is much more restrictive than

the gradient-descent methods and that gradient-descent

methods are more restrictive than simulated annealing. Basi-

cally, the less information about the function calculated at a

particular point, the larger the radius of convergence will be.

5.1. Search methods

Of the many methods of minimizing functions, the simplest

methods to describe are the search methods. Pure search

methods are not used in macromolecular re®nement
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because of the huge amount of computer time that would be

required, but are routinely used in molecular replacement. To

determine the best orientation of the trial model in a crystal,

one simply calculates the ®t of the model to the observations

for an exhaustive set of trials. Once the entire set of calcula-

tions have been completed, the best one is simple to

identify.

The common motif of search methods is that they each have

some means of selecting which combination of parameters to

test and simply keep track of the best one found so far. One

can systematically sample all combinations or randomly pick

values for the parameters. If the function being minimized has

some property that restricts the possible solutions, this infor-

mation can be used to guide the search (such as packing

restrictions in molecular replacement).

The more combinations tested, the greater the chance that

the absolute best solution will be stumbled upon and the

greater the precision of the answer. It is rare for a search

method to ®nd the best parameters exactly. Usually, the

answer from a search method is used as the starting point

for a gradient-descent minimization, which will ®ne-tune the

result.

Simulated annealing (Kirkpatrick et al., 1983; Otten & van

Ginneken, 1989) is a search method; a random set of models

are compared with the observations. Because it is known that

the correct model must have good bond lengths and angles,

the random model generator is chosen to ensure that all its

output has reasonable geometry. The random generator used

is a molecular-dynamics simulation program. Since the para-

meters of the model have `momentum' they can `move'

through ¯at regions in the function and even over small ridges

and into different local minima. The `annealing' part of the

method is to start with high `velocities' (`temperature'), to

allow the model great freedom, and slowly reduce the

momentum until eventually the model is trapped in a

minimum that is hoped to be the global minimum.

The explanation of simulated annealing involves a lot of

quotes. These words (e.g. momentum and temperature) are

analogies and should not be taken too seriously.

The principal advantage of simulated annealing is that it is

not limited by local minima and can therefore correct errors

that are quite large, thus saving time by reducing the effort

required for manual rebuilding of the model.

The principal disadvantage is the large amount of computer

time required. Since so much time is required to complete a

proper slow-cool protocol, the protocols used in crystallo-

graphic re®nement are abbreviated versions of what is

recommended in the wider literature. Because of this

compromise, the model can get trapped with poor conforma-

tions. It also becomes possible that some regions of the model

that were correct at the start will be degraded by the process.

To reduce the chance of this degradation occurring, the slow-

cool runs should be very slow and the starting temperature

should be lowered when the starting model is better (e.g. when

the starting model is derived from the crystal structure of a

molecule with very similar sequence and/or the addition of a

relatively small adduct).

5.2. Gradient-descent methods

An analysis of the full-matrix method and all gradient-

descent methods begins with the Taylor series expansion of

the function being minimized. For a generic function [f(p)] the

Taylor series expansion is

f �p� � f �p0� �
df �p�

dp

���� ����t
p � p0

�pÿ p0�

� 1

2
�pÿ p0�t

d2f �p�
dp2

���� ����
p � p0

�pÿ p0� � � � � ; �3�

where p0 is the current set of parameters of the model and p is

the parameters of any similar model. In all re®nement

programs the higher order terms (represented by ` . . . ') are

ignored. This assumption has considerable consequences,

which will be discussed later.

We can change the nomenclature used in (3) to more closely

match those in re®nement by de®ning p0 to be the parameters

of the current model and s to be a `shift vector' that we want to

add to p0. s is equal to p ÿ p0. The new version of (3) is

f �p0 � s� � f �p0� �
df �p�

dp

���� ����t
p � p0

s� 1

2
st d2f �p�

dp2

���� ����
p � p0

s; �4�

and its derivative is

df �p�
dp

���� ����
�p � p0�s�

� df �p�
dp

���� ����
p � p0

� d2f �p�
dp2

���� ����t
p � p0

s: �5�

Since the ®rst and second derivatives can be calculated given

any particular value for p0, this equation allows the gradient of

the function to be calculated given any shift vector. In addi-

tion, the equation can be inverted to allow the shift vector to

be calculated given the gradient of the function and the

second-derivative matrix.

At the minimum (or maximum) of a function, all compo-

nents of the gradient are zero. Therefore, we should be able to

calculate the shift vector between the current model (p0) and

the minimum. The equation for this is simple,

s � ÿ d2f �p�
dp2

���� ����ÿ1

p � p0

df �p�
dp

���� ����
p � p0

: �6�

The full-matrix method uses this equation, evaluated with the

current parameters, to calculate s. [The matrix does not have

to be inverted to solve this equation for s (Golub & van Loan,

1989; Konnert, 1976).] s is then added to p0 to give the set of

parameters that cause the function to be minimal and, in the

case of re®nement, the best ®t to the observations.

In the classic example of ®tting a line to a set of points, one

evaluates this single expression and the minimum is discov-

ered. The truncated Taylor series is exact and the shift vector

is also exact. In re®nement something is obviously different. In

macromolecular re®nement the higher-order terms of (4) are

not equal to zero, resulting in the shift vector giving only the

approximate location of the minimum.

The quality of the estimate is limited by the size of the terms

that are ignored. The terms of the Taylor series have

increasing powers of s. If s is small, these higher-order terms
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also become small. Therefore, as p0 becomes closer to the

minimum, s becomes more accurate. Dropping the higher

order terms of the series creates the limited radius of

convergence of these methods.

The full-matrix method and all the gradient-descent

methods that are derived from it become a series of successive

approximations. An initial guess for the parameters of the

model (p0) is manufactured in some way. For the shift vector to

actually give an improved set of parameters, the guess must be

suf®ciently close to the minimum. The `suf®ciently close'

criterion is dif®cult to formulate exactly.

The property of the full-matrix method that compensates

for its restricted radius of convergence is its `power of

convergence'. If the starting model is within the radius of the

full-matrix method, that method will be able to bring the

model to the minimum quicker than any other method.

5.2.1. The normal matrix. The aspect of the full-matrix

minimization method that prevents it being used in common

re®nement is the dif®culty in calculating the term

d2f �p�
dp2

���� ����ÿ1

p � p0

: �7�

This matrix written out in full is

@2f �p�
@p2

1

@2f �p�
@p2 @p1

� � � @2f �p�
@pn @p1

@2f �p�
@p1 @p2

@2f �p�
@p2

2

� � � @2f �p�
@pn @p2

..

. ..
. . .

. ..
.

@2f �p�
@p1 @pn

@2f �p�
@p2 @pn

� � � @2f �p�
@p2

n

0BBBBB@

1CCCCCA
ÿ1

: �8�

This matrix contains n� n elements, where n is the number of

parameters in the model. In a typical case n will be of the order

of 10 000. The number of elements in the second-derivative

matrix, often called the normal matrix, would be 100 000 000.

It takes a lot of computer time to calculate it (Tronrud, 1999),

a lot of memory to store it and a lot more computer time to

solve for the shifts. The gradient-descent methods make

various assumptions about the importance of different parts of

the normal matrix in order to reduce these requirements.

To understand the relative importance of the different

elements of the normal matrix, one needs to understand the

meanings of each part. The most important classi®cation of the

elements is the distinction between the elements on the

diagonal and those off it. The elements on the diagonal are

affected by a single parameter and are therefore easier to

analyze. The off-diagonal elements are affected jointly by two

parameters.

The information contained in the off-diagonal elements

describes how the effect on the function of changing one

parameter is affected by changes in a second. In essence, it is

related to the correlation of the two parameters. It is

instructive to consider the simple case where each parameter

is varied in turn. Parameter a is varied to minimize the func-

tion. Parameter b is then changed. If the off-diagonal element

for a and b has a non-zero value then parameter a will have to

be readjusted and the larger that value the greater the

adjustment required.

The diagonal elements contain information about the effect

of a parameter's value on its own effect on the function. This,

of course, will always be large. (If the diagonal element is zero

then any value for that parameter will be equivalent, a prop-

erty that is usually undesirable in a parameter.)

5.2.2. Sparse-matrix method. One can examine the rela-

tionship between the parameters in the model to determine

which pairs will have signi®cant off-diagonal elements in the

normal matrix. The pairs whose off-diagonal elements are

predicted to be small can then be ignored. Such selective

attention only pays off when the vast majority of elements can

be discarded.

With some functions all the off-diagonal elements may be

ignored, while other functions do not allow any to be ignored.

One must treat functions on a case-by-case basis to determine

which elements to use. An analysis of the residual function for

X-ray diffraction shows that the size of the off-diagonal

elements is related to the extent of electron-density overlap of

the two atoms (Agarwal, 1978). Since atoms are fairly

compact, all off-diagonal terms between parameters in atoms

are negligible, except for atoms bonded to one another, and

the terms for those pairs are small. Since an atom has a large

overlap with its own electrons, the diagonal elements are very

large compared with any off-diagonal ones.

The stereochemical restraints commonly used in protein

re®nement have a different pattern. Here, the parameters of

atoms connected by a bond distance or angle have a strong

correlation. Atoms not restrained to one another have no

correlation at all. The off-diagonal terms that are non-zero are

as signi®cant as the diagonal ones.

This knowledge allows one to calculate the normal matrix as

a sparse matrix, i.e. the vast majority of the off-diagonal

elements are never calculated and do not even have computer

memory allocated for their storage. The only elements calcu-

lated are the diagonal ones (including contributions from both

the crystallographic and stereochemical restraints) and the

off-diagonal elements for parameters from atoms directly

connected by geometric restraints.

Even with the simpli®cation of the normal matrix intro-

duced by the sparse approximation, the problem of solving for

the parameter shifts is dif®cult. There are an enormous

number of numerical methods available for solving problems

like this and these methods depend strongly on the nature of

the approximation to the normal matrix being used. It is

important to note, however, that each method includes

assumptions and approximations that should be understood

before the method is used.

The re®nement programs PROLSQ (Hendrickson &

Konnert, 1980), REFMAC (Murshudov et al., 1997) and

SHELXL (Sheldrick & Schneider, 1997) use the sparse-matrix

approximation to the normal matrix. They calculate the shifts

to apply to the model using a method called `conjugate

gradient' (Konnert, 1976), which is unrelated to the conjugate-

gradient method used to minimize functions (Fletcher &

Reeves, 1964). It is a sign of confusion to state that X-PLOR
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(BruÈ nger et al., 1987) and CNS (BruÈ nger et al., 1998) use the

same method as these programs.

5.2.3. Diagonal matrix. A further step in simplifying the

normal matrix is made by ignoring all off-diagonal elements.

The normal matrix becomes a diagonal matrix, which is

inverted by simply inverting each diagonal element in turn. In

essence, working with the matrix becomes a one-dimensional

problem. Since any correlation between parameters has been

assumed to be zero, the shift for a particular parameter can be

calculated in isolation from the shifts of all other parameters.

With this approximation, the full-matrix of equation (6)

becomes

si � ÿ
@f �p�
@pi

���� ����
p � p0

�
@2f �p�
@p2

i

���� ����
p � p0

: �9�

5.2.4. Steepest descent. A further simpli®cation can be

made if all the diagonal elements of the normal matrix have

the same value. In this case, none of the elements need be

calculated. The average value can be estimated from the

behavior of the function value as the parameters are shifted.

The shift for a particular parameter is simply

si � ÿ
@f �p�
@pi

���� ����
p � p0

: �10�

The steepest descent method has the advantage of a large

radius of convergence. Since the gradient of a function points

in the steepest direction uphill, the steepest descent method

simply shifts the parameters in the steepest direction downhill.

This method is guaranteed to reach the local minimum, given

enough time.

Any method that actually divides by the second derivative is

subject to problems if the curvature is negative or, worse yet,

zero. Near a minimum, all second derivatives must be positive.

Near a maximum, they are all negative. As one moves away

from the minimum, the normal matrix elements tend toward

zero. The curvature becomes zero at the in¯ection point that

surrounds each local minimum.

The full-matrix method becomes unstable somewhere

between the minimum and the in¯ection point. The diagonal

approximation method has a similar radius of convergence,

although larger than that of the full-matrix method. The

steepest descent method, however, simply moves the para-

meters to decrease the function value. The method will move

toward the minimum when the starting point is anywhere

within the ridge of hills surrounding the minimum.

The steepest descent method is very robust. It will smoothly

converge to the local minimum whatever the starting para-

meters are. However, it will require a great number of itera-

tions and therefore a great deal of time to do so.

The problem with steepest descent is that no information

about the normal matrix is used to calculate the shifts to the

parameters. Whenever the assumptions break down (the

parameters have correlation and have different diagonal

elements) the shifts will be inef®cient.

5.2.5. Conjugate gradient. Just as one can calculate an

estimate for the slope of a function by looking at the function

value at two nearby points, one can estimate the curvature of a

function by looking at the change in the function's gradient at

two nearby points. These gradients are routinely calculated in

steepest descent re®nement. The gradient is calculated, the

parameters are shifted a little and the gradient is calculated

again. In steepest descent the two gradients are never

compared, but if they were some information about the

normal matrix could be deduced.

The conjugate-gradient method (Fletcher & Reeves, 1964)

does just this. The analysis of Fletcher and Reeves showed that

the steepest descent shift vector can be improved by adding a

well de®ned fraction of the shift vector of the previous cycle.

Each cycle essentially `learns' about one dimension of curva-

ture in the n-dimensional re®nement space (where n is the

number of parameters in the model.) Therefore, after n cycles

everything is known about the normal matrix and the

minimum is found.

The shift vector for cycle k + 1 using the conjugate gradient

is

sk�1 � ÿ
df �p�

dp

���� ����
p � pk

��k�1sk; �11�

where �k+1 is the ratio of the length of the function's present

gradient to that of the previous cycle. During the ®rst cycle

there is no previous cycle and therefore the ®rst cycle must be

steepest descent.

The fundamental limitation of the conjugate-gradient

method is that it is guaranteed to reach the minimum in n

cycles only if the Taylor series does indeed terminate, as

assumed in (4). If there are higher order terms, as there are in

crystallographic re®nement, then n cycles will only get the

model nearer to the minimum. One should start over with a

new run of n cycles to get the model even closer.

Even n cycles is a lot in crystallography. No one runs

thousands of cycles of conjugate-gradient re®nement, nor can

so many cycles be run with current software, because the shifts

become too small to be represented with the precision of

current computers. Small shifts are not necessarily un-

important ones. These small shifts can add up to signi®cant

changes in the model, but they cannot be calculated.

The conjugate-gradient method was elaborated by Powell

(1977). This paper included a discussion of an alternative

equation for the calculation of �k, which was equivalent for a

quadratic function but gave superior results for some non-

quadratic functions. In addition, a strategy was described for

restarting the conjugate-gradient search more often than once

every n cycles, which avoids, to a limited extent, cycles with

very small shifts.

X-PLOR and CNS use the conjugate-gradient method as

modi®ed by Powell (1977), subsequent to simulated annealing.

5.2.6. Preconditioned conjugate gradient. The conjugate-

gradient method is better than the steepest descent method

because the former uses some information about the normal

matrix to improve the quality of the shift vector. It would seem
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reasonable to believe that the shift vector could be improved

further if additional information were added. For instance, the

diagonal elements of the normal matrix can be calculated

directly and quickly.

All this information is combined together in the precondi-

tioned conjugate-gradient method (Axelsson & Barker, 1984;

Tronrud, 1992). This method operates like the conjugate-

gradient method except that the preconditioned method uses

the shifts from the diagonal matrix method for its ®rst cycle

instead of those from the steepest descent method. The shift

vector for the preconditioned conjugate gradient is

sk�1 � ÿ
df �p�

dp

���� ����
p � pk

�
d2f �p�

dp2
i

���� ����
p�pk

��0k�1sk; �12�

where the trick is calculating �0k�1 correctly. This matter is

discussed in detail by Tronrud (1992).

6. Summary

Table 1 summarizes the properties of the re®nement programs

discussed in this review. The ®eld of macromolecular re®ne-

ment is blessed with a variety of programs that can be used to

improve our structural models. With a ®rm understanding of

the differences between these programs, one should be able to

choose the one that best ®ts the needs of any project.

This work was supported in part by NIH grant GM20066 to

B. W. Matthews.
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Table 1
Properties of a selection of re®nement programs.

This table lists a summary of the properties of six commonly used re®nement
programs. The meanings of the various codes are as follows. Parameters: xyzb,
position, isotropic B factor and occupancy; aniso, anisotropic B factor; TLS,
group TLS B factors used to generate approximate anisotropic B factors;
torsion, only allow variation of angles of rotation about single bonds; free,
generalized parameters, which can be used to model ambiguity in twining,
chirality or static conformation. Function: EE, empirical energy; LS, least
squares; ML, maximum likelihood using amplitude data; ML':, maximum
likelihood using experimentally measured phases; ML?, maximum likelihood
using envelopes of known composition but unknown structure. Method: SA,
simulated annealing; CG, Powell variant conjugate gradient; PCG, precondi-
tioned conjugate gradient; Sparse, sparse-matrix approximation to the normal
matrix; FM, full matrix calculated for normal matrix.

Program Parameters Function Method

BUSTER/TNT xyzb ML, ML', ML? PCG
CNS xyzb, torsion EE, LS, ML, ML' SA, CG
REFMAC xyzb, TLS, aniso LS, ML, ML' Sparse, FM
SHELXL xyzb, aniso, free LS Sparse, FM
TNT xyzb LS PCG
X-PLOR xyzb, torsion EE, LS, ML, ML' SA, CG


