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Maximum-likelihood methods have now been applied to most

areas of macromolecular crystallography, including data

reduction, molecular replacement, experimental phasing and

re®nement. However, students of macromolecular crystallo-

graphy are predominantly taught only traditional crystallo-

graphic methods and therefore have little understanding of

the methods underlying the modern software that they

routinely use in structure determination. This situation arises,

at least in part, because maximum likelihood is considered to

be too dif®cult to be taught to students who lack substantial

mathematical training within the limited time frame of

undergraduate/graduate courses. A method of introducing

maximum-likelihood concepts with the help of dice is

described here and it is then shown how these concepts can

form the core of understanding maximum-likelihood re®ne-

ment, molecular replacement and experimental phasing.

Within the framework described, the crystallographic

maximum-likelihood techniques are all reduced to the same

basic concepts and become easier and less time-consuming to

teach than traditional methods, which rely on disparate

concepts.
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1. Introduction

Maximum likelihood is a branch of statistical inference that

asserts that the best hypothesis (i.e. set of parameters, which

includes estimates of the errors) on the evidence of the data is

the one that explains what has in fact been observed with the

highest probability. In the context of macromolecular crys-

tallography, maximum likelihood has come to refer to the set

of new statistical methods that improved upon the least-

squares methods that preceded them. The least-squares

methods were not contrary to the principle of maximum

likelihood, since least squares is a special case of maximum

likelihood where the errors in the parameters are simple

Gaussians, rather than more complex functions. The slow

acceptance of maximum likelihood was therefore not because

maximum likelihood itself was considered inappropriate, but

because least squares works acceptably when the data and

model are good and because computers were not capable of

performing the more complex calculations required for more

sophisticated maximum-likelihood treatments in reasonable

times. Maximum likelihood is not the only method for

obtaining a set of parameters from experimental data. Indeed,

in other ®elds of application maximum likelihood may not be

the best method, as maximum-likelihood estimators can be

severely biased. However, maximum likelihood gives little

bias when applied in crystallography and it has been extremely

successful in supplying better probability models, particularly



when the data and/or model are poor, and has been instru-

mental in the solution of numerous macromolecular struc-

tures.

Dice have a long history in the explanation of problems in

likelihood, maximum entropy and Bayesian theory (e.g.

Jaynes, 1968, 1979; Frieden, 1985; Mohammed-Djafari, 2003).

In this tradition, I present here basic maximum-likelihood

concepts using thought experiments with dice. These concepts

are then used to explain maximum-likelihood re®nement,

molecular replacement and experimental phasing.

2. Experiments with dice

There are six important concepts that are needed in order to

understand the statistical approach of maximum likelihood in

crystallography: maximum likelihood, independence, log-

likelihood, Bayes' theorem, integrating out nuisance variables

and the central limit theorem. These concepts will be explored

with the help of dice with different numbers of sides (Fig. 1).

2.1. Dice and probability

A game of dice.

I put four unbiased dice in a box: one four-sided, one six-

sided, one eight-sided and one ten-sided.

I select a die at random.

How often will you guess correctly which die I selected?

It is obvious that there is a one in four chance of getting the

correct answer. If the experiment is performed a large number

of times you will guess the answer a quarter of the time, or if a

large number of people guess each time a quarter will guess

correctly.

2.2. Dice and maximum likelihood

A game of dice with data.

I put four unbiased dice in a box: one four-sided, one six-

sided, one eight-sided and one ten-sided.

I select a die at random.

I roll the die and tell you the result of the roll.

Which die was the most likely to be selected?

If I were to roll a 10, it is obvious that the die selected must

have been the ten-sided die. Why is it obvious? Because the

probability of rolling a 10 from the four-, six- or eight-sided die

is zero, but the probability of rolling a 10 from the ten-sided

die is non-zero. The probability is written as

P�10; 10� � 1
10 ;

where the semi-colon means `given' (for a glossary of terms

see Table 1) and I have denoted the type of die by its number

of sides in bold. The probability of the observed data (the

number rolled) given the model (the number of sides of the

die) is called the likelihood.

What would be the case if I rolled a 7? If the same analysis is

performed again, the likelihood of rolling a 7 from the four- or

six-sided die is 0, but the likelihood of rolling a 7 from the

eight-sided die is one in eight and the likelihood of rolling a 7

from the ten-sided die is one in ten. Therefore, it is most likely

that the eight-sided die would have been selected. What if I

roll a 1? It is most likely that the four-sided die would have

been selected. The most likely die is the one with the highest

likelihood of generating the data: this is the principle of

maximum likelihood.

How con®dent are you that the die is an eight-sided die if

the roll was a 7? Not very, because the difference between the

likelihood of rolling a 7 from the eight-sided and ten-sided die

is only small. The ratio between two likelihoods is a measure

of con®dence (known as the likelihood ratio). For example,

when I roll a 10, the likelihood ratio agrees that you are

supremely con®dent that I selected a ten-sided die, rather

than, say, the eight-sided die,

P�10; 10�
P�10; 8� �

1
10

0
� 1:

In the case where I roll a 7, the likelihood-ratio is close to 1

(the ratio for equal likelihoods),

P�7; 8�
P�7; 10� �

1
8
1

10

� 1:25:
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Figure 1
Photographs of (a) four-sided die, (b) six-sided die, (c) ten-sided die and
(d) eight-sided die

Table 1
Glossary of terms.PN

i�1 ai = a1 + . . . + aN Sum of all ai for i between
1 and NQN

i�1 ai = a1 � . . . � aN Product of all ai for i between
1 and N

{ai} = a1, . . . , aN Set of all aiR b

a f(x) dx De®nite integral of function f(x) between
values a and b

I0(x) Modi®ed Bessel function of order 0 with
argument x

P(A; B) Probability of A, given B
P(A, B; C) Probability of A and B, given C
P(A; B, C) Probability of A, given B and C
F Structure factor (vector)
F Structure-factor amplitude
�2 or � Variance of a Gaussian
x / y x is proportional to y
x) y x implies y



2.3. Dice, independence and log-likelihood

A game of dice with more data.

I put four unbiased dice in a box: one four-sided, one six-

sided, one eight-sided and one ten-sided.

I select a die at random.

I roll that die three times and tell you the results of the rolls.

Which die did I most likely select?

If I roll a 7 three times, you would expect that I selected an

eight-sided die, as the answer should be consistent with the

game above when only one roll (of a 7) was made. How is the

formal analysis performed? The chance of rolling a 7 three

times from the four- or six-sided die is 0, but what is the chance

of throwing a 7 three times from an eight-sided or ten-sided

die? The chance of throwing a 7, or any other number, the

second or third time is not in¯uenced by the value of the ®rst

roll. This is the principle of independence. When probabilities

are independent, they multiply. If the calculations are

performed, the eight-sided die is indeed more likely,

P�7; 7; 7; 8� � 1
8� 1

8� 1
8 � 1

512;

P�7; 7; 7; 10� � 1
10� 1

10� 1
10 � 1

1000:

After obtaining data from three rolls, your con®dence that you

have guessed the correct die has increased compared with

when you only knew the result of one roll, so the likelihood

ratio increases,

P�7; 7; 7; 8�
P�7; 7; 7; 10� �

1
512

1
1000

� 1:953:

What is the probability of rolling a 7 from an eight-sided die

one hundred thousand times? (Of course, if you really were to

roll 7 one hundred thousand times, you might have some

dif®culty believing that the die is unbiased. Please continue to

assume that it is.) Although the formula for the probability can

be written down,

P�7 . . . one hundred thousand times; 8� � 1

8100 000
;

and you could work out the answer and write it down on a

(very long) piece of paper,

P�7 . . . one hundred thousand times; 8�
� 0:�. . . 90308 zeroes . . .�10029997 . . . ;

the number is too small (has too many decimal places) to be

stored by a computer. The solution to this computational

problem is to calculate log-likelihood rather than the like-

lihood,

log�P�7 . . . one hundred thousand times; 8�� � ÿ90 309:

Calculation of the log-likelihood solves the small-number

computation problem, but is the switch from using the like-

lihood allowed? Fortunately it is, because logarithmic func-

tions are monotonic functions [i.e. if a < b then log(a) < log(b)].

This means that the parameter values obtained by optimizing

log-likelihood are the same as the parameter values obtained

by optimizing the likelihood. In fact, computer algorithms are

designed to minimize, so parameters are optimized by mini-

mizing the ÿlog-likelihood. There are also other more

theoretical justi®cations for using the log-likelihood, which

come from the statistical ®eld of information theory.

Is there a paradox in that the computer needs to store the

likelihood before taking its logarithm? Fortunately not,

because there is a shortcut to the log-likelihood when the total

likelihood is a product of likelihoods, (i.e. when the likelihoods

are independent),

log
QN
i�1

Pi

� �
�PN

i�1

log Pi� �:

In the case where I rolled 7 three times from an eight-sided

die, there are thus two ways of calculating the log-likelihood.

Using the product method,

log�P�7; 7; 7; 8�� � log
Q3
i�1

P�7; 8�i
� �

� log�18� 1
8� 1

8�
� log�0:001953�
� ÿ2:70927:

Using the sum method,

log�P�7; 7; 7; 8�� �P3

i�1

log�P�7; 8�i�

� log�18� � log�18� � log�18�
� ÿ0:90309ÿ 0:90309ÿ 0:90309

� ÿ2:70927:

However, the product method required the intermediate of

calculating a number close to zero (0.001953), while the sum

method did not require any numbers close to zero (the

smallest numbers were the independent probabilities them-

selves, 0.125).

When the log-likelihood is used instead of the likelihood,

the log-likelihood gain is calculated instead of the likelihood

ratio. The log-likelihood gain is the difference between log-

likelihoods [since log(a/b) = log(a) ÿ log(b)]. Whereas for the

likelihood ratio more favourable likelihoods are indicated by

values greater than 1, for the log-likelihood gain they are

indicated by any positive value. The log-likelihood gain for the

die being the eight-sided rather than the ten-sided after rolling

7 three times is

log�P�7; 7; 7; 8�� ÿ log�P�7; 7; 7; 10�� � �ÿ2:70927� ÿ �ÿ3�
� 0:29073:

What would happen if the result of previous rolls in¯uenced

the result of the subsequent rolls? In this case the data points

are not independent, but correlated. Note that correlation is

not the same as bias. A biased die would be one that, for

example, always rolled a 7, but a correlated die would be one

that, for example, always rolled one number higher than the

previous roll. Highly correlated data points make the deter-

mination of the likelihood dif®cult, if not impossible, and so

the assumption of independence is often applied even when it

is not justi®ed. In crystallography, re¯ections are assumed to
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be independent, even though to a certain extent they are not.

Correlations are introduced by the presence of solvent, which

means that the molecular transform is over-sampled, and by

non-crystallographic symmetry (if present). However, the

correlations are suf®ciently weak that the approximation of

assuming independence is very good. To calculate the total

log-likelihood for all the re¯ections in a data set (of the order

of one hundred thousand), the sum of the log-likelihoods for

each re¯ection is used.

2.4. Dice and Bayes' theorem

A game of dice with multiple copies of a die.

I put one eight-sided die and eight ten-sided dice in a box.

I select a die at random.

I roll the die and tell you the result of the roll.

Which die did I most likely select?

I roll a 4. In this case the probability of selecting the ten-

sided die in the ®rst place overwhelms the slightly higher

chance of rolling the 4 from the eight-sided die. The chance of

selecting the ten-sided die in the ®rst place is included in the

probability calculation with Bayes' theorem,

P�model; data� � P�model�
P�data� � P�data; model�:

In experimental situations P(data) is constant and when

comparing probabilities can be ignored, so Bayes' theorem

becomes

P�model; data� � P�model� � P�data; model�:
Bayes' theorem is also called the rule of inverse probability

since it shows how to turn P(data; model) (e.g. the probability

of rolling the 4 from the ten-sided die, which we can calculate)

into P(model; data) (e.g. the probability of the ten-sided die

given a roll of 4, which is what we want to know). P(model) is

the probability of the model without having any data (e.g. the

chance of selecting the ten-sided die in the ®rst place).

P(model; data) is called the posterior probability, P(data;

model) is called the likelihood (as before) and P(model) is

called the prior probability. If Bayes' theorem is used to

calculate the probability rather that just the likelihood, then

the method of optimizing the probability should properly be

called the maximum-posterior method, rather than the

maximum-likelihood method, but the term `maximum like-

lihood' is generally used for both. True maximum likelihood

can be thought of as a special case of maximum posterior when

the prior probability P(model) is constant for all the models.

This was the case for the examples in xx2.2 and 2.3 above.

Using Bayes' theorem, the probability that the die was ten-

sided given a roll of 4,

P�10; 4� � P�10� � P�4; 10�
� 8

9� 1
10

� 0:0�8;

is higher than the probability that the die was eight-sided

given a roll of 4,

P�8; 4� � P�8� � P�4; 8�
� 1

9� 1
8

� 0:013�8;

so a ten-sided die is more likely, as expected.

Bayes' theorem is very useful in crystallography because it

enables exploitation of the things that are known about

protein structure even before the X-ray data are collected. For

example, a carbon±oxygen double bond is known to be 1.23 AÊ

long. So, if the electron density for a structure showed no

density 1.23 AÊ from a particular peptide carbon, but a large

piece of density 2 AÊ away from it, prior knowledge of the

carbon±oxygen double-bond length means that it would be

extremely unlikely that the density 2 AÊ away was due to an O

atom bound to the carbonyl O atom. It would be more likely

that the density 2 AÊ away from the carbon was due to noise or

some other feature of the structure. However, if the O atom

had been moved into this density during rebuilding (and the

carbon±oxygen bond stretched), a re®nement program would

use Bayes' theorem to restrain the bond length to 1.23 AÊ and

produce the more likely structure. Bayes' theorem is also used

in density modi®cation, where information about solvent

content, non-crystallographic symmetry etc. is introduced

(Terwilliger, 2000; McCoy, 2002).

2.5. Dice and integrating out nuisance variables

A game of dice with unknown dice.

I put a six-sided and an eight-sided die in a red box and a

four-sided and ten-sided die in a blue box.

I select a die from each of the red and blue boxes at random

and put them in a yellow box.

I select a die at random from the yellow box, roll the die and

tell you the result.

Did the die most likely come from the red box or the blue

box originally?

I roll a 3. The problem here is to calculate the likelihoods

P(3; blue box) and P(3; red box) and ®nd the maximum

without knowing which die actually produced the roll of 3.

research papers

2172 McCoy � Liking likelihood Acta Cryst. (2004). D60, 2169±2183

Figure 2
(a) One-dimensional Gaussian {1/[(2�)1/2�]} exp [ÿ(x ÿ �)2/2�2] and (b)
radially symmetric two-dimensional Gaussian [1/(2��2)] exp [ÿ(x ÿ l|2)/
2�2]. The mean is � (one-dimensional)/l (two-dimensional). The
standard deviation is �, which is half-width at �61% of the peak height.
The variance is �2. The full-width half-maximum (FWHM) = 2.35�. The
area (one-dimensional)/volume (two-dimensional) under the curve is 1.



Consider P(3; blue box). The blue box could have contained

either the four-sided or the ten-sided die. To calculate P(3;

blue box), the likelihood of the 3 being rolled from the two

possibilities for the contents of the blue box (the four-sided

and the ten-sided die) are added,

P�3; blue box� � P�3; 4; blue box� � P�3; 10; blue box�
The basic probability identity P(A, B) = P(B; A) � P(A)

[which can also have any number of conditions added, so

P(A, B; C) = P(B; A, C)� P(A; C), for example] can be used

to write

P�3; blue box� � P�3; 4; blue box� � P�4; blue box�
� P�3; 10; blue box� � P�10; blue box�:

Substituting in values for these probabilities,

P�3; blue box� � �14� 1
2�� 1

10� 1
2� � 0:175:

Likewise, P(3; red box) is the likelihood of the 3 being rolled

and the die being six-sided plus the likelihood of the 3 being

rolled and the die being eight-sided,

P�3; red box� � P�3; 6; red box� � P�3; 8; red box�
� P�3; 6; red box� � P�6; red box�
� P�3; 8; red box� � P�8; red box�

� �16� 1
2� � �18� 1

2�
� 0:1458�3

So, it is slightly more likely that the die came from the blue

box if I roll a 3.

The likelihood for the red and blue boxes has been calcu-

lated even though which die actually produced the roll of 3

was not known. Summing the probabilities for all the possi-

bilities for the die solves the problem of not knowing which die

actually produced the roll. In general, if the unknown variable

(call it x) of the model can take n values between a and b, then

P�data; model� �Pn
i�1

P�data; xi; model�;

where a < xi � b.

The probability distribution for the dice is for discrete

variables, because it is only de®ned for certain values (the dice

must have an integer number of sides). In crystallography, the

probability distributions are for continuous variables, meaning

that they are de®ned for all values (an in®nite number) over

an interval (for example, an atom can be anywhere and an

occupancy can be anywhere between 0 and 1). When the

probability distribution is continuous, the sum in the equation

for the discrete probability distribution becomes an integral,

because an integral can be thought of as a sum of an in®nite

number of in®nitesimally small numbers. If the unknown

variable x can take values between a and b, then

P�data; model� � Rb
a

P�data; x; model� dx:

The unknown variable x is called a nuisance variable. The

removal of a nuisance variable from a probability distribution

by integration is called integrate out (or marginalization of)

the nuisance variable. Although termed `nuisance', these

variables can be very useful in probability distributions. It may

be easier to describe a probability function using an extra

variable (such as the phase of the observed structure factor)

and then to integrating it out at the end of the analysis than to

attempt to develop a probability function without ever refer-

ring to the extra variable.

2.6. Dice and the central limit theorem

A game of dice taking the average of many rolls of the dice.

I have a six-sided die.

I roll the die 40 times and add up the values of the rolls, then

divide the sum by 40.

I do this 10 000 times, plotting the ®nal average value from

each game on a histogram.

What form does the histogram take?

The histogram is Gaussian (bell-shaped curve, see Fig. 2),

with a maximum at 3.5 (see Fig. 3). Now I play the game again

with a biased six-sided die: the die is biased so that it will roll

its values with a probability linearly proportional to the value,

i.e. a 2 is twice as likely as a 1, a 3 is three times as likely as a 1

etc. Again, the histogram looks like a Gaussian. The only

difference is that the mean of the distribution is shifted to

about 4.3 and the variance of the distribution is smaller (see

Fig. 2 for an explanation of the mean and variance of a

Gaussian). Now I play the game again with a six-sided die that

is biased so that it will roll its values with a probability

proportional to the square of the value i.e. a 2 is four times

more likely than a 1, a 3 is nine times more likely than a 1 etc.

Again, the histogram looks like a Gaussian (with an even

higher mean and smaller variance). For most types of bias of

the die, the histogram generated by the game of dice is

Gaussian, even when the bias of the die (from which the

average is computed) is decidedly non-Gaussian. This prop-

erty is called the central limit theorem. The central limit

theorem is possibly the most important theorem in probability.

In crystallography, the central limit theorem allows us to

describe the errors in the structure factors (in reciprocal

space) that arise from errors in the atomic model (in real

space). It says that even though the errors in an individual

atom's contribution to the total structure factor may be very

complicated, in the end the error for the total structure factor

(the sum of the atomic structure-factor contributions) is a

simple two-dimensional Gaussian in reciprocal space.

2.7. Dice summary

Maximum likelihood: the best model is the one that maxi-

mizes the probability of observing the experimental data.

Independence: probabilities multiply when the experi-

mental data points are independent, i.e. all observations are

independent of one another.

Log-likelihood: the log-likelihood is used instead of the

likelihood as it has its maximum at the same parameter values
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as the likelihood but it is safer to

calculate on a computer because the

numerical range is smaller.

Bayes' theorem: P(model; data) =

P(model) � P(data; model), where

P(data; model) is called the likelihood

and P(model) is called the prior

probability.

Integrating out variables: nuisance

variables in a joint probability distri-

bution can be eliminated by integra-

tion.

Central limit theorem: the distribu-

tion of the average tends to be Gaus-

sian, even when the distribution from

which the average is computed is

decidedly non-Gaussian.

3. Maximum likelihood in
macromolecular crystallography

There are many ways of applying

maximum likelihood to crystal-

lography. Ideally, all the information

from chemistry and the diffraction

experiment should be included to

create the `mother of all likelihood

functions'. Although the chemical and

diffraction information that should

contribute to this likelihood function is

known, there are too many correlations

between the contributions to allow a

practical precise formula to be written

down. This is rather unfortunate,

because there is enough information in

the chemistry and the diffraction

experiment to solve the phase problem

ab initio (cf. direct methods; Bricogne,

1993). Instead, simpli®cations and approximations are made

to allow maximum likelihood to be applied to speci®c areas of

crystallography such as re®nement, molecular replacement

and experimental phasing.

4. Refinement

The Bayesian view of crystallographic re®nement is that the

prior probability comes from chemistry (a great deal is known

about what molecules look like even before the experiment)

and the likelihood comes from the X-ray diffraction experi-

ment (Pannu & Read, 1996; Bricogne & Irwin, 1996;

Murshudov et al., 1997). The probability function for re®ne-

ment (here called P-re®nement) is thus, by Bayes' theorem

(see x2.4), the product of the prior probability (here called

P-chemistry) and the likelihood (here called P-Xray),

P�model; data� � P�model� � P�data; model�
) P-refinement � P-chemistry� P-Xray:

The chemical probabilities for all the different chemical

interactions in the structure are taken to be independent (see

x2.3), so that P-chemistry is the product of these individual

chemical interaction probabilities P-chemistryi. This is not a

very good approximation, as the bond lengths and angles are

correlated with each other; the problems that this approx-

imation causes are discussed in x4.4. If the number of inter-

actions is I,

P-chemistry � QI
i�1

P-chemistryi:

It is also assumed that re¯ections are independent, so that

P-Xray is the product of the re¯ection likelihoods (P-Xrayr).
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Figure 3
Central limit theorem. On the left are the probability distributions showing the bias of the six-sided
die (shown with dots) and on the right the histogram of 10 000 trials of the average of 40 rolls of the
die. If the probability distribution is continuous rather than discrete (shown on the right with a line
connecting the dots), the distribution of the average is also continuous (shown with Gaussian
function over the histogram). (a) Unbiased die: the distribution of the average is a Gaussian with
� = 3.5 and � = 0.27. (b) Linearly biased die: the distribution of the average is a Gaussian with � = 4.3
and � = 0.24. (c) Quadratically biased die: the distribution of the average is a Gaussian with � = 4.8
and � = 0.19.



This is a good approximation (see x2.3). If the number of

re¯ections is R,

P-Xray � QR
r�1

P-Xrayr:

Since there are hundreds of thousands of interactions and

hundreds of thousands of re¯ections, the log-likelihood is

calculated rather than the likelihood (see x2.3). To optimize

the model parameters (atomic positions, occupancies and B

factors), the ÿlog-likelihood is minimized,

ÿ log P-refinement � ÿPI

i�1

log P-chemistryi ÿ
PR
r�1

log P-Xrayr:

4.1. Prior probability

Macromolecules obey the same chemical rules as small

organic molecules and so ideal bond lengths and angles for

macromolecules can be derived from the results of small-

molecule crystallography (Engh & Huber, 1991). The bond

lengths and angles in the crystal are restrained to these ideal

values using a probability distribution. For example, the prior

probability for having a bond of length b is given by a Gaus-

sian about the ideal length bideal for the bond type (see Fig. 2

for the equation for a Gaussian),

P-chemistrybond �
1

�2��1=2�b

exp ÿ �bÿ bideal�2
2�2

b

� �
:

Here, �b re¯ects the distribution of a particular bond type

about its mean; e.g. a CÐC bond has an ideal length of 1.54 AÊ
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Figure 5
Errors for an atomic structure factor. (a) An atom has variation in
position (indicated by purple arrow) and in scattering (indicated in green
concentric circles). (b) The variation in the atom's position and scattering
are Gaussian. (c) The atom at its mean position with its mean scattering
has a structure factor Fatom (shown with a black vector). Variation in the
atom's position corresponds to variation in the phase of Fatom (shown with
a purple arrow) and variation in the scattering corresponds to variation in
the length of Fatom (shown with a green arrow). (d) The distributions of
the structure factors owing to variation in the atom's position and
scattering combine to give a boomerang-shaped structure-factor
distribution (indicated with black contours). Since the distribution of
structure factors is symmetric about Fatom, the average structure factor is
shorter than Fatom (by a fraction d, where 0 < d < 1) but in the same
direction as Fatom (dFatom).

Figure 4
Total structure factor for all scattering in unit cell. (a) The unit cell
contains six symmetry-related molecules. (b) The total structure factor
(Fc) for a re¯ection is built up by adding the structure-factor
contributions from the atoms in a molecule (Fatom) to give the structure
factor for the molecules (Fm) and then adding all the symmetry-related
structure-factor contributions for all the molecules in the unit cell.

Figure 6
Errors in the total structure factor. (a) The unit cell contains six
symmetry-related molecules. The atoms have errors in their positions and
scattering, indicated by the arrows and concentric circles, respectively. (b)
By the central limit, the probability distribution for the sum of the
structure-factor contributions from all the atoms is a two-dimensional
Gaussian in reciprocal space, centred at DFc, where 0 < D < 1, shown with
grey shading. The structure-factor contributions from atoms and
molecules as in Fig. 4 are shown in pink.



and a �b of about 0.02 AÊ . There are similar equations for the

other types of chemical interaction restraints.

4.2. Refinement likelihood

The likelihood for a re¯ection (P-X-rayr) is the probability

of the data (i.e. the observed structure-factor amplitude Fo)

given the current model. The model is in real space and the

X-ray observed data are in reciprocal space, so in order to

calculate the likelihood, the model (in real space) must be

used to calculate structure factors (in reciprocal space). The

structure factor for the whole unit cell (Fc) is calculated as

follows: ®rst the structure factor for the model in the asym-

metric unit (Fm) is calculated from the sum of the structure

factors of the atoms in that model (Fatom). Then, Fm and all its

symmetry relatives are added to obtain the total structure

factor Fc (see Fig. 4; the importance of the symmetry relatives

will become apparent in the explanation of the rotation-

function likelihood below). However, the data for a given

re¯ection is the observed structure-factor amplitude Fo, so in

order to compare like with like the model must be the

calculated structure-factor amplitude Fc,

P-Xrayr � P�data; model� � P�Fo; Fc�:

Without considering errors, if Fc matches Fo the probability is

1 and if it does not match the probability is 0 (the model is

either `correct' or `incorrect'). However, if errors in the model

and the data are considered, then Fc and Fo are allowed to

differ somewhat and the likelihood function should give a

non-zero probability when Fc and Fo are close (the closer the

better). It is easier to model the errors in terms of the phased

structure factors Fc and Fo with the phase between them

de®ned as �, rather than in terms of the structure-factor

amplitudes alone. The introduced variable, the phase �, is a

nuisance variable (a case where a nuisance variable is very

useful) and must be integrated out of the probability distri-

bution at the end of the analysis (see x2.5). The integration

limits are 0±2�, i.e. all angles,

P-Xrayr �
R2�
0

P�Fo; �; Fc� d�:

The errors in the model arise from Gaussian errors in the

atomic positions and atomic scattering. Gaussian errors in the

atomic positions and scattering give rise to Gaussian errors in

the phases and amplitudes of the corresponding atomic

structure-factor contributions, respectively (see Fig. 5). When

these atomic structure-factor contributions and their errors

are summed to give the total structure factor and its error for a

given re¯ection, by the central limit theorem (see x2.6) the

resulting distribution is a two-dimensional Gaussian (see

Fig. 2) in reciprocal space centred on DFc (where D is between

0 and 1) with variance termed �2
� (see Fig. 6),

P�Fo; Fc� �
1

��2
�

exp ÿ jFo ÿDFcj2
�2

�

� �
:

Using this probability and the integral above, it can be shown

(Appendix A) that the likelihood function is a Rice distribu-

tion (Sim, 1959; Read, 1990),

P-Xrayr �
2Fo

�2
�

exp ÿF2
o �D2F2

c

�2
�

� �
I0

2FoDFc

�2
�

� �
;

where I0 is the modi®ed Bessel function of order 0. The Rice

distribution is the key distribution for maximum likelihood in

crystallography and it will appear over and over again in the

equations below. It applies to acentric re¯ections (those for

which the phase is not restricted) and, for simplicity, the

discussions below will only concern acentric structure factors

(and assume the expected intensity factor, generally denoted

", to be 1). For a full explanation of the derivation of the Rice

function, see Appendix A. Centric structure factors (those

where the phase is restricted to 0 or 180�) are treated similarly

to give a different likelihood function (see Appendix B).

There are also experimental errors (�F) in the measure-

ments. Experimental error is accounted for by widening the

probability distribution, a method that is termed in¯ating the

variance (Green, 1979; Murshudov et al., 1997; de La Fortelle

& Bricogne, 1997). The likelihood function used for re®ne-

ment is therefore given by

P-Xrayr �
2Fo

�2
� � �2

F

exp ÿF2
O �D2F2

C

�2
� � �2

F

� �
I0

2FODFC

�2
� � �2

F

� �
: �1�

4.3. Sigma A

D and �� are anticorrelated: if the model is very bad and

therefore if �2
� is large then D will be small and vice versa. If E

values (normalized structure factors) are used rather than F

values, D and �� can be replaced with a single parameter �A

(Srinivasan & Ramachandran, 1965), with DFc = �AEc and

�2
� = 1 ÿ �2

A,

P-Xrayr � P�Eo; Ec�

� 2Eo

1ÿ �2
A � �2

E

exp ÿ E2
o � �2

AE2
c

1ÿ �2
A � �2

E

� �
I0

2Eo�AEc

1ÿ �2
A � �2

E

� �
;

where �E is the normalized structure-factor experimental

error. The probability distributions are very sensitive to the

estimates of �A, and �A is re®ned along with the atomic

parameters in structure re®nement. Unfortunately, if the same

data are used to re®ne �A and the atomic parameters, the data

are severely over®tted and �A is overestimated. This problem

is partially avoided by estimating �A from the data that are

used to compute Rfree (which are excluded from the re®ne-

ment).

4.4. Weighting

In principle, if all errors are estimated properly there is no

need to apply a weighting between the prior probability

(P-chemistry) and likelihood (P-Xray) to calculate P-re®ne-

ment using Bayes' theorem, but in practice it is necessary to

overweight the likelihood (P-Xray) for re®nement to

converge. This is partly because the probabilities used are only
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approximate (particularly for the chemistry terms, where the

correlations between bond lengths and angles are not taken

into account) and partly because the re®nement algorithm

does not account for the fact that improvements in the model

will sharpen the experimental likelihood function (because the

model and the �A values are re®ned against different subsets

of the data). As the resolution becomes higher and the model

becomes better, the amount of over-weighting required is

reduced.

4.5. Experimental phases

Experimental phasing information can be incorporated into

the re®nement likelihood function as a prior probability when

integrating out the phase (Pannu et al., 1998). The prior

probability can be modelled using Hendrickson±Lattman

coef®cients (Hendrickson & Lattman, 1970).

4.6. Probabilities and energies

Some re®nement programs minimize energy rather than the

ÿlog-likelihood. In fact, the two targets of re®nement are

equivalent. If the experiment is considered as a physical

system with energy, Boltzmann's law gives the probability P of

observing a state in the physical system with energy E,

P / exp�ÿE=kT�;
where k is Boltzmann's constant and T is the temperature.

Taking the logarithm of Boltzman's law, the energy is

proportional to the logarithm of the probability,

E / ÿkT ln P:

Boltzman's law in logarithm form leads to harmonic bond

restraints,

P-chemistrybond / exp ÿ �bÿ bideal�2
2�2

b

� �
) E-chemistrybond / ÿkT

�bÿ bideal�
2�2

b

2
:

Boltzman's law in this logarithm form also allows Bayes'

theorem (in terms of probabilities) to be expressed in terms of

energies

P-refinement � P-chemistry� P-Xray

) E-refinement � E-chemistry � E-Xray:

5. Molecular replacement

Maximum-likelihood molecular replacement (Bricogne, 1992;

Read, 2001, 2003b) can be divided into a rotation function

(RF) followed by a translation function (TF) in the same way

that traditional molecular-replacement methods are. Each

type of search is a `brute-force' search procedure. The like-

lihood for the models is generated on a grid of angles (RF) or

positions (TF) and the angle (RF) or position (TF) of the

model that has the highest likelihood is selected as the `solu-

tion' to the molecular-replacement problem. Currently, prior

information (such as packing constraints and non-crystallo-

graphic symmetry) is not included in maximum-likelihood

molecular replacement and so Bayes' theorem (see x2.4) is not

used. Re¯ections are assumed to be independent, so that the

likelihood for the rotation function (here called P-RF) and the

likelihood for the translation function (here called P-TF) is

the product of the re¯ection likelihoods (see x2.3). If the

number of re¯ections is R,

P-RF � QR
r�1

P-RFr

and

P-TF � QR
r�1

P-TFr:

In practice, the ÿlog-likelihood is used as the target for the

molecular-replacement searches,

ÿ log P-RF � ÿPR
r�1

log P-RFr

and

ÿ log P-TF � ÿPR
r�1

log P-TFr:

5.1. Translation-function likelihood

The data are the observed structure-factor amplitudes (Fo)

and the model is the molecular-replacement structure oriented

and positioned at the search point. This is exactly the same

situation as for re®nement: the approximate locations of all

the atoms are known and a structure-factor amplitude Fc can

be calculated from the scattering in the unit cell. The trans-

lation function target is therefore the same Rice function as

the target for maximum-likelihood structure re®nement. The

only difference is that the errors will be much larger for the

translation function than for re®nement (D will be smaller and

�� larger). The same function is also suitable for a brute-force

six-dimensional (orientation and position) search,

P-TFr � P-Xrayr

� 2Fo

�2
� � �2

F

exp ÿF2
o �D2F2

c

�2
� � �2

F

� �
I0

2FoDFc

�2
� � �2

F

� �
:

5.2. Rotation-function likelihood

At each rotation-function search orientation, the model

consists of the molecular-replacement model with de®ned

orientation but unde®ned position. Unde®ned positions in

real space correspond to unde®ned phases of the structure-

factor contributions in reciprocal space. Thus, Fc cannot be

calculated from the sum of the phased structure-factor

contributions as it was for the case of re®nement and the

translation function. However, because the relative positions

of the atoms in the model are known, the atomic structure-

factor contributions (Fatom) for the model can be added up
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with relative phases to calculate Fm, i.e. the amplitude but not

the phase of the model structure-factor contribution. This can

also be performed for all the symmetry relatives of the model

in order to obtain the set of amplitudes of the model structure-

factor contributions, {Fm}sym. The symmetry relatives have

different amplitudes because as the model rotates its strength

of scattering in any given direction changes. Since these model

structure-factor contributions are unphased, they cannot be

added together to obtain the structure factor for the scattering

from the whole unit cell, Fc. The model in reciprocal space for

the rotation function is therefore not Fc, but the set of

amplitudes of the model structure-factor contributions,

{Fm}sym,

P-RFr � P�data; model� � P�Fo; fFmgsym�:
It is easiest to generate a function for this probability by

introducing a (useful) nuisance phase variable, the phase �
between the observed structure factor Fo and one of the Fm. It

is best to select the symmetry relative of Fm with the largest

amplitude, Fbig (the reason is given shortly). The symmetry

operator that gives rise to the largest Fm will be different for

each re¯ection, so Fbig corresponds to a different symmetry

operator for each re¯ection. The set of symmetry relatives of

Fm is thus split into the set not including Fbig, {Fm}sym 6�big,

which are left unphased, and Fbig, which is given the phase �
relative to Fo. The introduced nuisance phase � must be

integrated out of the probability distribution at the end of the

analysis (see x2.6),

P-RFr �
R2�
0

P�Fo; �; fFmgsym 6�big;Fbig� d�:

The probability distribution for {Fm}sym 6�big comes from a

`random walk' (Fig. 7) in reciprocal space. Fixing the phase of

the largest of the symmetry relatives of Fm results in the

narrowest probability distribution for the `random walk' and

this is why the largest Fm was chosen to have the phase �
relative to Fo. Errors in the model must also be accounted for

in the probability distribution, just as they were for re®ne-

ment. Using the same reasoning that applied for developing

the re®nement target (see Fig. 6), errors in the model mean

that all symmetry relatives of Fm (including Fbig) are down-

weighted by a D-factor (0 � D � 1). The probability distri-

bution is thus a two-dimensional Gaussian centred on DFbig

with variance �S dependent on {DFm}sym 6�big (see Fig. 8),

P�Fo; fFmgsym 6�big; Fbig� �
1

��S

exp ÿ jFo ÿDFbigj2
�S

 !
:

Using this probability and the integral above, it can be shown

(Appendix A) that the likelihood function is another Rice

distribution,

P-RFr �
2Fo

�S

exp ÿF2
o �D2F2

big

�S

� �
I0

2FoDFbig

�S

� �
:
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Figure 7
Random walk. (a) Starting at the origin, a walker takes N (in this case,
®ve) steps, each step in a random direction. Each step is the same length
and independent of the previous one. Because of the many random
choices, the ®nal position of the walker varies each time. Four ®nal
positions are shown (marked �). Some ®nal positions are more likely
than others. (b) The probability that the walker will be at a given ®nal
position after N steps is proportional to a two-dimensional Gaussian,
shown with grey shading.

Figure 8
Rotation-function likelihood. (a) The unit cell contains six symmetry-
related molecules. For a given orientation of the search, the orientation
but not the position of the six molecules is de®ned. Therefore, the
amplitudes but not the phases of the six corresponding structure-factor
contributions are de®ned. The atoms in the molecules have errors in their
positions and scattering, indicated by the arrows and concentric circles,
respectively. The molecule in the orientation giving the largest scattering
is shown in magenta. (b) The largest model structure-factor contribution,
Fbig, is given a phase � relative to the observed structure factor Fo, with
the other model structure-factor contributions making a `random walk'
around the end of this one phased structure-factor contribution. (c) The
resulting probability distribution for Fo is a two-dimensional Gaussian
centred on DFbig, shown with grey shading.



Experimental errors (�F) are incorporated by in¯ating the

variance of the distribution, as was the case for the re®nement

likelihood function,

P-RFr �
2Fo

�S � �2
F

exp ÿF2
o �D2F2

big

�S � �2
F

� �
I0

2FODFbig

�S � �2
F

� �
: �2�

Notice the similarities between this equation and the equation

for P-Xrayr [and P-TFr; (1)]. The only differences are that Fbig

replaces Fc and �S replaces �2
�. The latter difference shows an

unfortunate inconsistency in the notation for variances that

has arisen in crystallography. Sometimes the variance is shown

as the square of the standard deviation, with the standard

deviation written with a lower case Greek sigma (e.g. �2
�), and

sometimes the variance is shown as a single parameter, written

with an upper case Greek sigma (e.g. �S). The differences in

the equations can be traced back to differences in the position

of the centre and difference in the width of the two-

dimensional Gaussian in reciprocal space that gave rise to the

Rice distribution.

5.3. Partial structure

Maximum-likelihood molecular replacement allows incor-

poration of any information about the structure already

determined, e.g. known orientation and position of partial

structure, known orientation of partial structure only and any

combination thereof. Any partial structure information makes

the probability distribution more exacting (reduces the

variance) and improves the signal of the search.

5.4. Fast searches

Maximum-likelihood brute-force rotation and translation

searches are very slow to compute. However, there are

approximations to the full search targets that can be calculated

with fast Fourier transforms and are therefore much faster.

The fast rotation search is calculated with a series of two-

dimensional fast Fourier transforms, while the fast translation

search is calculated with one three-dimensional fast Fourier

transform. These likelihood-enhanced fast rotation and

translation searches can be generated by a Taylor series

expansion of the full likelihood targets (Storoni et al., 2004).

6. Experimental phasing

There are many forms of experimental phasing, including MIR

(multiple-wavelength isomorphous replacement), MIRAS

(multiple-wavelength isomorphous replacement with anom-

alous scattering), MAD (multiple-wavelength anomalous

dispersion) and SAD (single-wavelength anomalous disper-

sion). They all have different types of data and types of models

and so require different types of likelihood functions

(Bricogne, 1991; Read, 1991, 1994; de La Fortelle & Bricogne,

1997). Prior information is not included in maximum-

likelihood experimental phasing and so Bayes' theorem is not

used (see x2.4). Re¯ections are assumed to be independent, so

that the total likelihood is the product of re¯ection likelihoods

(see x2.3). If the number of re¯ections is R, then for example in

the case of MIR the likelihood (here called P-MIR) is given by

P-MIR � QR
r�1

P-MIRr:

In practice, the ÿlog-likelihood is used,

ÿ log P-MIR � ÿPR
r�1

log P-MIRr:

Similarly, the MIRAS, MAD and SAD likelihoods are the

products of their respective re¯ection likelihoods. The

heavy-atom sites must have been found using a Patterson,

direct-methods or dual-space method before invoking

maximum-likelihood phasing. The heavy-atom sites (in real

space) are then used to calculate the model for maximum

likelihood, the heavy-atom structure factors FH (in reciprocal

space).

6.1. MIR likelihood

In MIR, the data are the observed native and derivative

structure-factor amplitudes. Unfortunately, there are signi®-

cant correlations in the data because all data sets share the

scattering from the native protein component, i.e. if a re¯ec-

tion is strong/weak in the native then it is likely to be strong/

weak in all the derivative data sets as well. To simplify the

analysis a (useful) nuisance variable is introduced, the `true'

structure factor FT, which is the component of scattering

shared by the native and derivatives (Read, 2003a) and can be

thought of as the scattering from a `true' crystal. With the

introduction of FT in maximum-likelihood MIR there is

nothing `special' about the native data set. The native is

treated in exactly the same way as the derivatives: the native is

simply a derivative without heavy atoms. In the nomenclature

used here, the observed native and derivative structure factors

are all denoted Fo. Elsewhere, Fo is often written as FP,

denoting that it contains native protein only, or FPH, denoting

that it contains native protein and heavy atoms. The data, the

set of all `native' and derivative observed structure-factor

amplitudes, is denoted {Foj}, and the model, the set of all
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Figure 9
Derivative structure factors. The calculated derivative structure factor
(Fc) in blue is the sum of DFT and Hc (in green). The probability
distribution for Fo is shown with grey shading.



calculated heavy-atom structure factors, is denoted {FHj}, with

the derivative number denoted by the subscript j. The intro-

duced (useful) nuisance variable FT must be integrated out of

the probability distribution at the end of the analysis (see

x2.6). Since FT is a vector, integrating out the parameter

requires integrating over the whole complex plane (a double

integral, with real and imaginary components integrated from

+1 to ÿ1). The MIR likelihood function for a re¯ection is

therefore given by

P-MIRr � P�data; model� � P�fFojg; fFHjg�

� R�1
ÿ1

R�1
ÿ1

P�fFojg;FT; fFHjg� dFT: �3�

The reason for introducing the nuisance variable FT is that by

explicitly including the correlated component of the scattering

between all the data, the `leftover' parts of the scattering can

be considered to be independent. Therefore, the probabilities

for each derivative Foj given its FHj and FT are (approximately)

independent and can be multiplied to give the joint condi-

tional probability (see x2.3),

P�fFojg; fFHjg;FT� �
QN
j�1

P�Foj; FHj;FT�: �4�

However, this is an expression for the probability of {Foj} given

{FHj} and FT, not for the probability of {Foj} and FT given {FHj},

which is what is required for integrating out FT (3). The

relationship between the two probabilities is given by

P(B, A; C) = P(A; C)� P(B; C, A). Taking FT �A, {Foj} � B

and {FHj} � C,

P�fFojg; FT; fFHjg� � P�FT; fFHjg� � P�fFojg; fFHjg;FT�:
If the `true crystal' lacks atoms at the heavy-atom positions of

the derivative, then P(FT; {FHj}) is the same as P(FT), i.e. {FHj}

is irrelevant. P(FT) is then the probability of FT when all that is

known is the number and type of atoms in the `true crystal' e.g.

the number of C, N, O and S atoms if the `true crystal' contains

protein only (Wilson, 1949). The probability distribution given

by this information is relatively ¯at and can be ignored (Read,

1991). [However, if FT does have atoms coincident with the

heavy-atom positions, it should be included (Read, 2003a).]

P�fFojg;FT; fFHjg� � P�fFojg; fFHjg;FT�: �5�
Combining (4) and (5),

P�fFojg; FT; fFHjg� �
QN
j�1

P�Foj; FHj;FT�: �6�

Substituting (6) into the integral (3),

P-MIRr �
R�1
ÿ1

R�1
ÿ1

QN
j�1

P�Foj; FHj;FT� dFT: �7�

P(Foj; FHj,FT) is the probability of the observed structure-

factor amplitude Foj given FH and FT for derivative j; to

calculate this probability, FHj and FT must be used to calculate

the structure-factor amplitude Fcj that can be compared with

Foj. The calculated structure factor (phased) Fcj is the sum of

the heavy-atom and protein structure factors (phased) for the

derivative. If the heavy-atom model is perfect (and thus FHj is

perfect) and the protein component of the derivative is

identical (isomorphous) to FT, then the calculated structure

factor Fcj is simply given by the sum of FHj and FT. However,

FHj will not be perfect because the heavy atoms will not have

perfect positions and occupancies and some of the sites may

be missing from the model and FT will not be perfectly

isomorphous with the native component of the derivative.

Using the same reasoning that applied for developing the

re®nement target, FT and FHj are thus down-weighted by D

factors (0�D� 1). Re®ning the D factor for FHj has the same

effect as re®ning the occupancies and B factors of the heavy

atoms and so can be absorbed by these parameters during

re®nement. Including errors, the calculated structure factor Fcj

is given by

Fcj � DjFT � FHj:

The calculated structure-factor amplitude Fcj (in terms of FT

and FHj) can now be compared with the observed structure-

factor amplitude Foj,

P�Foj; FHj;FT� � P�Foj; Fcj�;
where Fcj = |DjFT + FHj|.

As was the case for deriving the equation for re®nement

likelihood and the rotation-function likelihood, the trick to

deriving a maximum-likelihood MIR function is to introduce

the phase difference � between the observed and calculated

structure factors while developing the likelihood function and

then to integrate out this (useful) nuisance phase at the end of

the analysis (Bricogne, 1991; Read, 1991),

P�Foj; Fcj� �
R2�
0

P�Foj; �; Fcj� d�:

The probability of Foj is a two-dimensional Gaussian in

reciprocal space centred on Fcj with variance �2
�j (Fig. 9),

P�Foj; Fcj� �
1

��2
�j

exp ÿ jFoj ÿ Fcjj2
�2

�j

 !
:

Using this probability and the integral above, it can be shown

(Appendix A) that the likelihood function is yet another Rice

distribution,

P�Foj; Fcj� �
2Foj

�2
�j

exp ÿF2
oj � F2

cj

�2
�j

 !
I0

2FojFcj

�2
�j

 !
:

Experimental errors are incorporated by in¯ating the variance

of the distribution

P�Foj; Fcj� �
2Foj

�2
�j � �2

Fj

exp ÿ F2
oj � F2

cj

�2
�j � �2

Fj

 !
I0

2FojFcj

�2
�j � �2

Fj

 !
: �8�

This is the likelihood function for a single re¯ection and a

single derivative. Notice the similarities between this equation

and the equations for P-Xrayr [and P-TFr; (1)] and P-RFr (2).

The likelihood function is virtually identical to that for

P-Xrayr except that Fc is not calculated directly from the

model but from the sum of DFT and FH. To combine all the
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derivatives, the product over all the derivatives is taken before

integrating out the nuisance parameter FT. Substituting (8)

into (7),

P-MIRr �R�1
ÿ1

R�1
ÿ1

QN
j�1

2Foj

�2
�j � �2

Fj

exp ÿ F2
oj � F2

cj

�2
�j � �2

Fj

 !
I0

2FojFcj

�2
�j � �2

Fj

 !
dFT;

where Fcj = |DjFT + FHj|.

Unfortunately, the integrating out of FT cannot be

performed analytically; it must be performed numerically

(values calculated and summed). Double numerical integra-

tions are generally slow to compute and so they have to be

performed cleverly.

The MIR likelihood function assumes that errors in the

models of heavy atoms are uncorrelated to one another. It also

assumes that the non-isomorphism differences between the

derivatives are uncorrelated to one another. This is not always

the case, particularly when the heavy-atom compounds are

chemically related.

6.2. MIRAS likelihood

The likelihood function for MIRAS is the probability of all

the F�o and Fÿo given all the calculated heavy-atom structure

factors F�H and FÿH (rather than just the mean Fo and mean FH

as for MIR). However, this probability function is dif®cult to

generate by maximum likelihood because F�o and Fÿo are

highly correlated (if F�o is large/small then Fÿo will also be

large/small). This problem is partially avoided if the mean Fo

and anomalous difference �F are used instead of F�o and Fÿo ,

as these are less correlated with one another (if the mean F is

large, the anomalous difference �F need not be large; North,

1965; Matthews, 1966; de La Fortelle & Bricogne, 1997). The

probabilities for the normal and anomalous scattering

components are then considered to be independent. The

probability of the normal scattering component is the same as

that derived for MIR. The probability for the anomalous

difference is approximated by a least-squares term (rather

than being given by a true likelihood term).

6.3. MAD likelihood

Currently, MAD phasing is treated as a case of MIRAS (de

La Fortelle & Bricogne, 1997), where the derivatives corre-

spond to the wavelengths. This is unsatisfactory because the

assumption that the errors in the models of heavy atoms

between derivatives (i.e. wavelengths) are uncorrelated with

one another is necessarily violated in MAD. To be treated

properly, the likelihood function would have to be computed

by performing an integration for each unknown phase. For

example, in two-wavelength MAD, four integrations would be

required, one each for ���1, �ÿ�1, ���2 and �ÿ�2. Only one such

integral can be performed analytically (to give a Rice distri-

bution) and all the others must be performed numerically.

Numerical instability and limitations in computing power

currently preclude this approach, although Bricogne (2000)

has proposed an alternative solution to the problem of

performing multiple integrations.

6.4. SAD likelihood

In the special case of SAD, there is a likelihood function

that explicitly accounts for the correlations between F�o and

Fÿo (Pannu & Read, 2004). The function includes the familiar

Rice distribution, which primarily accounts for the anomalous

difference, but also another term that accounts for the heavy

atoms being part of the model of the normal scatterers

(McCoy et al., 2004). Only a single numerical (phase) inte-

gration is required. The SAD likelihood for a re¯ection

(P-SADr) is given by

P-SADr �
Fÿo
��ÿ

R2�
0

exp ÿ jF
ÿ
o ÿ FÿHj2

�ÿ

� �
<�F�o ;F�c ;�

�� d�ÿ;

where F�c = |F�H + D�(Fÿo ÿ FÿH)| and

<�F�o ;F�c ;�
�� � 2F�o

��
exp ÿF�2

o � F�2
c

��

� �
I0

2F�o F�c
��

� �
:

7. Discussion

The Rice distribution is ubiquitous where maximum like-

lihood is applied in crystallography because it is the result of

integrating out the phase of a two-dimensional Gaussian: the

phase must be integrated out because only structure-factor

amplitudes are measured and two-dimensional Gaussians are

ubiquitous because of the central limit theorem or `random

walks' of structure-factor components. In fact, the two-

dimensional Gaussians arising from `random walks' are also

fundamentally a result of the central limit theorem. Under-

standing how and why the Rice distribution arises are

concepts that link maximum likelihood to all aspects of

macromolecular crystallography.

I hope that this material will give students the con®dence to

look deeper into the maximum-likelihood literature and

discover some of the subtleties lost in the simple explanations.

For those who are inspired to know more, the crystallography

course notes at http://www-structmed.cimr.cam.ac.uk (by

Randy J. Read, Airlie J. McCoy, Andrew G. W. Leslie and

Philip R. Evans) are recommended as an appropriate second

step.

APPENDIX A
Probability distribution for acentric reflections

The probability distribution for Fo given Fc is a two-

dimensional Gaussian with variance �2
� centred on Fc

(Fig. 10),

P�Fo; Fc� �
1

��2
�

exp ÿ jFo ÿ Fcj2
�2

�

� �
:

The cosine rule with the phase � between Fo and Fc gives
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jFo ÿ Fcj � �F2
o � F2

c ÿ 2FoFc cos ��1=2:

The likelihood function is given by integrating out the phase �
from the probability P(Fo, �; Fc) (Fig. 10a),

P�Fo; Fc� �
R2�
0

P�Fo; �; Fc� d�:

The relationship between P(Fo, �; Fc) and P(Fo; Fc) is given by

P�Fo; �; Fc� � Fo � P�Fo; Fc�;
where the factor Fo is introduced by changing the descriptions

of the Fs from Cartesian coordinates (i.e. expressed in terms of

real and imaginary components) to polar coordinates (i.e.

expressed in terms of radial and angular components; this

factor is called the Jacobian). Therefore,

P�Fo; Fc� �
Fo

��2
�

exp ÿF2
o � F2

c

�2
�

� �R2�
0

exp
2FoFc

�2
�

cos �

� �
d�:

This integral has an analytical solution of the form

R2�
0

exp�z cos�� d� � 2�I0�z�;

where I0 is the modi®ed Bessel function of order 0. Therefore,

P�Fo; Fc� �
2Fo

�2
�

exp ÿF2
o � F2

c

�2
�

� �
I0

2FoFc

�2
�

� �
:

This is known as the Rice distribution (Fig. 10b). In the special

case where Fc is zero,

P�Fo; Fc � 0� � 2Fo

�2
�

exp
F2

o

�2
�

� �
:

This is known as the Wilson distribution.

APPENDIX B
Probability distribution for centric reflections

The probability distribution for Fo given Fc is a one-

dimensional Gaussian with variance �2
� centred on Fc. Fo is

either in phase or out of phase with Fc (Fig. 11). Summing over

the two possibilities for the unknown phase,

P�Fo; Fc� �
1

�2��2
��1=2

exp ÿ �Fo ÿ Fc�2
2�2

�

� �
� 1

�2��2
��1=2

exp ÿ �Fo � Fc�2
2�2

�

� �
:

Expanding the quadratics and using

2 cosh x � exp x� exp�ÿx�
gives

P�Fo; Fc� �
2

��2
�

� �1=2

exp ÿF2
o � F2

c

2�2
�

� �
cosh

FoFc

�2
�

� �
:

This is known as the Woolfson distribution (Woolfson, 1956).

In the special case where Fc is zero,

P�Fo; Fc � 0� � 2

��2
�

� �1=2

exp ÿ F2
o

2�2
�

� �
:
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