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The new CCP4 Coordinate Library is a development aiming to

provide a common layer of coordinate-related functionality to

the existing applications in the CCP4 suite, as well as a variety

of tools that can simplify the design of new applications where

they relate to atomic coordinates. The Library comprises a

wide spectrum of useful functions, ranging from parsing

coordinate formats and elementary editing operations on the

coordinate hierarchy of biomolecules, to high-level function-

ality such as calculation of secondary structure, interatomic

bonds, atomic contacts, symmetry transformations, structure

superposition and many others. Most of the functions are

available in a C++ object interface; however, a Fortran

interface is provided for compatibility with older CCP4

applications. The paper describes the general principles of the

Library design and the most important functionality. The

Library, together with documentation, is available under the

LGPL license from the CCP4 suite version 5.0 and higher.
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1. Introduction

A considerable part of program development in protein

crystallography deals with coordinate data, commonly repre-

sented by PDB (Berman et al., 2000) or mmCIF (Bourne et al.,

1997) coordinate files. A typical application of this type

includes a PDB/mmCIF parser, an internal structure for

keeping all or part of the coordinate data, more or less

sophisticated selection, search and edit tools, and routines for

writing an output coordinate file. Naturally, different authors

employ different approaches to the implementation of these

basic elements, which results in a noticeable functional

redundancy across the CCP4 suite. Because of this, even a

minor change in the file format requires a reconsideration of a

significant part of the suite. In order to ease the maintenance,

the RWBrook library (written in Fortran) was added to the

suite. RWBrook represents essentially a PDB reader/writer

with limited coordinate transformation tools and employs a

sequential access to coordinate data, which is in line with the

design of most of the older CCP4 applications.

Although it served its purpose quite well, RWBrook has a

limited value for the development of modern applications. It

does not provide a versatile data structure, which could be

used by any application, and as a result it cannot provide a

variety of tools for manipulating the data.

The new CCP4 Coordinate Library project was initiated in

2000 with the goal of collecting a maximum of coordinate-

related functionality, common for the majority of existing and

prospective applications, in one package. This should drasti-

cally reduce the cost of application design, eliminate the



functional redundancy in the coordinate-related sections of

new developments, and ease the maintenance.

In the present paper, we describe the basic concepts of the

new Coordinate Library and outline the functionality it deli-

vers. We stress the benefits, such as reading/writing various

coordinate formats, that a developer can automatically enjoy

by basing the coordinate-related part of applications on the

new Library. A detailed technical description and numerous

examples, as well as demonstration applications, are supplied

with the Library.

2. General concepts

The Library represents a hierarchy of C++ classes, accom-

modating all data found in the coordinate (PDB or mmCIF)

files. A schematic of this hierarchy is shown in Fig. 1. The

hierarchy is controlled by a class manager, which provides

most of the Library’s functionality, exposed in the form of the

class’s public functions as well as a separate layer of Fortran

interface replicating RWBrook.

The data, which are read from external files or set up by the

application, are shelved by the class manager into respective

classes, which roughly correspond to individual PDB records.

For example, data from each ATOM PDB record are put into a

separate instance of the atom class. However, the atom class

also includes data from PDB records HETATM, ANISOU,

SIGATOM and SIGUIJ, which are naturally associated with the

atom object. Atoms, forming a residue of an amino-acid chain,

are linked to the corresponding residue object, each of which

is linked to its chain object. Chain objects are linked to models,

a table of which is maintained by the class manager. In this

hierarchy, models are identified with NMR models as defined

by the PDB format. However, models are made the topmost

elements of the coordinate hierarchy, which does not guar-

antee their chemical identity. This guarantee was sacrificed,

firstly because not all PDB files strictly follow the rules, and

secondly because placing the models on top adds additional

flexibility to the data structure. For example, models may be

used for keeping additional molecules, or as a (temporary)

storage for generated symmetry mates etc.

Each object of the coordinate hierarchy (atom, residue,

chain, model) keeps only its own data. For example, secondary

structure is a property of the whole molecule, and therefore it

is stored in model objects. Data with no relation to a particular

coordinate object are stored in additional classes linked

directly to the class manager. Examples include the annotation

(PDB records HEADER, REMARK, AUTHOR etc.), symmetry and

crystallographic information (CRYST, SCALE, MTRIX etc.), and

others.

The coordinate hierarchy is not pre-dimensioned and

unfolds dynamically when reading a coordinate file or in the

course of editing operations initiated by the application. It is

important to stress that all data are kept in RAM, which allows

for a random and fast access to all the information. From the

application’s point of view, the coordinate hierarchy repre-

sents a run-time database, accompanied by numerous tools for

efficient retrieval, searching and editing of the data. We

describe the major functionality, associated with the hierarchy,

in the next section.

3. Functionality

3.1. Parsing coordinate files

The Library provides built-in parsers for reading the PDB

and mmCIF coordinate files. Correspondingly, the data from

the coordinate hierarchy may be exported in either PDB or

mmCIF format. In general, an mmCIF coordinate file contains

bits of data that are not found in the PDB format. These data

are lost if an mmCIF file is rewritten in PDB format. The

hierarchy, in its turn, may contain data that are not found in

mmCIF specifications (such as user-defined data, see below).

Therefore the hierarchy is equipped with a facility of reading/

writing machine-independent binary files, which can keep a

snapshot of all data fields. Binary files preserve compatibility

with higher versions of the Library. All the Library’s parsers

automatically recognize the format of input files, although

reading of a particular format may be enforced. All library I/O

functions allow for automatic reading/writing of compressed

files, with the encoding format determined by file extension

(such as .gz, .Z).
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Figure 1
Schematic of the coordinate hierarchy realised by the Library classes.
Each rectangle denotes one or more C++ classes that keep their internal
data and reference tables and provide all the functionality of the
corresponding objects. See text for more details.



The Library does not require a file to contain all the

information that a particular format may deliver. Missing data

are reported by the Library’s query functions, and analysis of

the completeness of the data for a particular purpose is left up

to the application. Missing chemical element names, often

found in older PDB files, are automatically calculated from

atom names. It is important to notice that the Library provides

all the reading/writing functionality so that an application does

not need to know the format of the input file. If necessary, the

type of input file may be obtained from the Library after the

file has been read.

The mmCIF reader/writer, included in the Library, may be

used for reading/writing an arbitrary mmCIF file. The reader

creates a hierarchy of C++ classes, shown in Fig. 2, which may

be queried for the presence of data blocks, categories/loops

and data fields. The data are retrieved by data block name,

category/loop name, and the name and (in case of a loop)

index of the data field. The mmCIF hierarchy may be created

by the application and output into a valid mmCIF file.

In addition to the above, the Library includes a generic

reader/writer of XML files. The XML reader/writer is based

on the same principles as that of the mmCIF, although the

XML data structure is much simpler and represents the

encapsulation of same-type classes corresponding to the

nested XML elements. The Library includes a translator for

automatic conversion of mmCIF data hierarchies into those

of XML.

3.2. Surfing the coordinate hierarchy

The Library provides two methods for accessing the data

stored in the coordinate hierarchy: (a) directly, using special-

ized functions of the class manager, and (b) through a retrieval

of the object (such as atom) that contains the data, with

subsequent access of the data as properties of that object.

Method (a) is preferable for data not directly related to the

coordinates (such as annotation, remarks, cell parameters,

secondary-structure description etc.), while surfing the coor-

dinates is done more conveniently using method (b).

As a basic principle, each coordinate object provides a set of

functions for accessing all objects up and down the hierarchy.

For example, each residue has functions for getting pointers to

all its atoms, as well as pointers to the chain and model that

contain the residue, and a pointer to the class manager. While

moving up the hierarchy is a straightforward procedure, access

to the encapsulated objects requires an addressing. The

Library provides the following methods of addressing:

(i) using the PDB specifications as shown in Table 1;

(ii) using the objects’s serial numbers (e.g. 5th atom in 3rd

residue of 2nd chain in 1st model);

(iii) by a coordinate ID (CID).

The Library provides access functions for arbitrary combi-

nation of the first two methods (e.g. to get a pointer on the 1st

atom in the residue 2B of the 3rd chain in model 1). Coordi-

nate ID has the following syntax, inspired by that of the UNIX

file system,

=mdl=chn=seqðresÞ:ic=atm½elm� : al

where all terms are explained in Table 1. The Library access

functions may take a full or partial CID, according to a

convention of defaults and the value of ‘current CID’. CID

may include a wildcard (‘*’), in which case it addresses a set

of objects. This feature is used in the Library’s selection

functions.

3.3. Selecting coordinate objects

Quite often, applications operate only on a subset of atoms

or other objects. Thus, many tasks require only coordinates of

the backbone C� atoms. The Library offers a rich variety of

tools for the selection of coordinate objects. Once selected, the

objects can be retrieved as an array of pointers for further

manipulations.

Each subset of selected objects is identified by a selection

handle, which must be obtained from the class manager before

the selection. Any number of selection handles may be issued,

any number of selection operations on the same object type

(e.g. atoms) may be performed using one handle, and each
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Figure 2
Schematic of the mmCIF data hierarchy created by the Library’s mmCIF
reader. Classes data_ and loop_ correspond to the same-named mmCIF
objects, structure_ is a class for representing a non-loop mmCIF
category, A, B, C etc. denote data fields.

Table 1
Identification of coordinate objects.

All identification elements correspond to PDB specifications (Berman et al.,
2000). CID denotes the corresponding parts of coordinate ID, equation (1).

Object CID Identification

Model mdl Model number 1; 2 . . .
Chain chn Chain ID A;B; . . . ;Z
Residue seq(res).ic Sequence number (se), insertion code (ic) and

(optionally) residue name (res)
Atom atm[el] : al Atom name (atm), chemical element name (el) and

alternative location indicator (al)



object may participate in any number of selections simulta-

neously.

The objects to be selected may be specified by:

(i) a range of PDB specifications (shown in Table 1);

(ii) a wildcarded CID;

(iii) geometrical restrictions (sphere, cylinder, slab or

closeness to previously selected objects);

(iv) a range of user-defined data (see below).

Selection sets may be combined using logical OR, AND, XOR

and inversion. The selection may be propagated up and down

the coordinate hierarchy (e.g. to select all atoms of selected

chains or select all residues having at least one selected atom).

3.4. Editing coordinate hierarchy

Each coordinate object provides functions for reading and

modification of its data fields such as atom coordinates. Any

object may be removed from the hierarchy or added to it. The

object is removed by deleting the corresponding instance of

the C++ class (e.g. that of atom). That may be done either

through the specialized functions of the class manager, which

address the to-be-deleted object in the same way as the access

functions (cf. x3.2), or directly using the class’s pointer.

Each coordinate object provides Add and Insert functions

for addition and insertion of the objects it encapsulates. These

functions allow an application to build a coordinate hierarchy

instead of reading a coordinate file. The hierarchy may be built

either from top to bottom (allocate the class manager, add one

or more models to it, add chains to each model, residues to

each chain, and atoms to each residue), or from bottom to top

(allocate atoms, add them to residues, residues to chains etc.),

or in any combination of these methods.

Each coordinate object, as well as the whole hierarchy, may

be copied into another object of the same type. Any part of

one coordinate hierarchy may be moved or copied into

another hierarchy. A combination of edit tools, provided by

the Library, allows for arbitrary manipulations on the coor-

dinate data.

3.5. Coordinate transformations

All or any separate part of the coordinate hierarchy may be

transformed using a 4� 4 rotation–translation matrix. These

basic transformation functions are supplemented with

routines for calculating the rotation matrix using either the

Euler (in CCP4-accepted convention) or polar systems of

rotation. Using the inverse routines allows one to obtain the

rotation angles from rotation matrices.

The Library provides an exhaustive set of functions for

symmetry transformations. The symmetry operations are

loaded automatically from the CCP4 symmetry library, once

the symmetry space group name has been read from a coor-

dinate file or supplied by the application. Alternatively,

symmetry operations may be set up by the application directly

through the class manager. Either definition of symmetry

operations automatically results in the generation of the

corresponding rotation–translation matrices, which may be

obtained from the class manager or applied directly to the

coordinate hierarchy. Thus, a symmetry mate or the whole unit

cell may be generated in a single call to the class manager.

Once the class manager obtains a symmetry group name

and cell parameters, it automatically calculates the fractional-

orthogonal transformation matrices (six orthogonalization

codes are available). The actual fractional-orthogonal trans-

formations are performed by a separate set of functions. The

Library supports non-crystallographic symmetry (NCS)

transformations using NCS matrices found in coordinate files

or supplied by the application.

3.6. Calculation of contacts

Many applications include calculation of contacts, or finding

pairs of atoms that are separated by a certain distance range.

The Library provides several functions that allow one to look

for contacts between pre-selected sets of atoms. The functions

allow for pairwise or multiple contacts (that is, between two or

more sets of atoms). Besides the distance range, the functions

also control the minimal sequence separation, or the minimal

number of residues along the amino-acid sequence between

the contacting atoms, with broken chains or gaps of missing

residues taken into account. The contact functions employ a

bricking algorithm, which is much faster than searching all

versus all. The brick size is variable, and the number of sear-

ched bricks is calculated automatically using the contact

distance and brick size. The bricking structure is optimized

such that it does not need to be recalculated at repeat sear-

ches, and it is available to the application for arbitrary use. For

example, the same bricking structure is used for fast selection

of objects in the vicinity of those already selected (cf. x3.3).

The contacts are returned in a special data structure and may

be sorted by distance or sequence.

3.7. User-defined data and objects

In many cases, it is convenient to use the coordinate hier-

archy also for storage of application-specific data that are not

found in either PDB or mmCIF coordinate files. For example,

the CCP4 Molecular Graphics Viewer (Potterton et al., 2002)

has colour assignments for each atom, residue and chain.

While in most instances the type of additional data is known

a priori, there may be situations where it becomes known only

at run time.

A routine way for accommodating known types of data is

through deriving new classes of coordinate objects from those

provided by the Library. The newly derived classes must be

registered with the Library in order to replace all default

factory functions for allocation, disposal, copying, reading/

writing etc. of the substituted classes. The registration is done

by invoking a special macro, which generates a set of factory

functions for the new classes, and a single call (for each new

class) to the class manager that actually installs the new

factory.

Additional data of a type that is unknown at the time of

compilation, may be accommodated in the coordinate hier-

archy at run time, using the facility of user-defined data

(UDD). UDD may be of either real, integer or string type and
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must be identified by a unique name. Once the type, name and

accommodating object (e.g. a residue) of the data become

known, they must be registered with the Library using a

special function of the class manager. The function returns a

unique UDD handle, which is a key for further manipulations

with the data. Using this handle, the data may be stored in the

registered Library’s class, retrieved, modified or deleted.

There is no limit in principle on the number and size of

different UDD data an application can store in the coordinate

hierarchy.

The additional data cannot be output into either PDB or

mmCIF coordinate files as it would require extension of PDB

keywords or mmCIF dictionaries, which is not encouraged.

Therefore, the only way to keep the additional data on a disk

is through the Library’s binary files, which were mentioned in

x3.1. The files are machine-independent and may be used for

porting data across different platforms. UDD are stored

automatically, while the user-derived classes should follow a

few simple steps for their data to be stored in the file. A good

example of using the extendability of the Library classes and

user-defined data is given by MMUT classes developed for the

CCP4 Molecular Graphics Project (Potterton et al., 2002).

3.8. Monomer database

The Library comes with a database of monomers found in

PDB files as residues. The database represents a subset of the

publicly available EBI-MSD ligand database (cf. Boutselakis

et al., 2003). The primary purpose of the monomer database is

to provide reference data for refinement and molecular

replacement applications. Currently it contains 4902 structures

and provides the following data for each entry:

(i) three-letter identification code, normally coinciding with

residue name in PDB files;

(ii) annotation including full name and synonyms of the

structure, its chemical formula, charge and source of coordi-

nate data;

(iii) list of atoms, chemical bonds, angles and torsions

between the bonds;

(iv) list of atoms forming a chemical bond with the main

chain;

(v) for each atom: atom name, chemical element name,

CCP4 energy type, chirality, Cartesian coordinates and their

standard deviations;

(vi) for each bond: reference to bonded atoms, bond order,

length and length’s standard deviation;

(vii) for each angle/torsion: reference to three/four atoms

forming the element, angle and its standard deviation.

The monomer database allows for direct access to all its

entries by the three-letter identification code, or residue name.

The database can also perform similarity searches, looking for

entries that are structurally close to the query. The query may

be represented by a residue class of the coordinate hierarchy,

or, alternatively, by a chemical graph. The technique of simi-

larity search is based on an original graph-matching algorithm

(Krissinel & Henrick, 2004a), the efficiency of which is suffi-

cient for performing a complete similarity search for a 200–300

residue protein chain in less than a second. The Library

provides a function for complementing a residue with data

from the monomer database, such as addition of H atoms with

coordinates calculated to correspond to the conformation of

the side chain.

A schematic of the monomer database is given in Fig. 3. All

structures are kept in a single file, occupying approximately

46 Mb of disk space. A separate file (12 Mb) contains graphs

of the structures, precompiled for the fast similarity search.

Both files are indexed in a relatively small (0.5 Mb) file, which

is loaded into RAM at the monomer database’s initiation

stage. The monomer database has its own class manager,

which provides all of the database functionality. All database

files are platform-independent.

3.9. SWIG interface

The Library is written in C++ and is intended for use

primarily in C++ applications. It also contains APIs to C and

Fortran. A special SWIG interface has been created for using

the Library from scripting languages. This was achieved with

the help of an open source program SWIG (http://www.swig.

org), which generates bindings for a library written in C or

C++ to many scripting languages, using the declarations in the

library’s header files. The program generates wrapper code

that the scripting language needs in order to access the C++

objects and methods or C functions. It is also possible to tailor

the produced wrapper code to suit one’s particular needs. A

suitable input file for SWIG has been developed to generate

bindings for the Coordinate Library to the scripting language

Python. It is possible with the generated wrapper code to write

programs based on this library straightforwardly in Python.

3.10. Other functions

Other useful functions not mentioned before include:

(i) generation of chemical bonds – the bonds are generated

using a built-in table of atomic radii and covalent bond

lengths, and stored in the coordinate hierarchy as references

between the atoms;
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Figure 3
Schematic of the monomer database supplied with the Coordinate
Library. See details in the text.



(ii) fast superposition of structures with known mapping

between their atoms – the employed method is based on

singular value decomposition of the correlation matrix (Lesk,

1986) with correction for rotoinversion, as described in detail

by Krissinel & Henrick (2004b);

(iii) alignment of protein sequences using a dynamical

programming algorithm (Smith & Waterman, 1981);

(iv) calculation of secondary structure (Kabsch & Sander,

1983);

(v) implementation of certain elements of graph theory,

linear algebra, and multidimensional optimization with global

search (Dennis & Schnabel, 1983).

Overall, the Library interface includes more than 1000

functions. At the same time, the number of different classes

that an average application would use is relatively low and

varies from five to 20. The object design of the Library allows

for further expansion and the introduction of more function-

ality. The Library has been ported to all common UNIX

platforms, as well as to Windows NT/98/2000/XP.

4. Conclusion

The new CCP4 Coordinate Library is an attempt to generalize

the coordinate-related functionality, experience of which is

accumulated in the CCP4 suite. The Library offers a novel

approach to the design of coordinate-related applications in

protein crystallography, which should considerably reduce the

size of new developments, simplify the coding and the

resulting programs, and ease the maintenance.

The Library has been used as a basis in a few major

developments, particularly the CCP4 Molecular Graphics

Project (Potterton et al., 2002), molecular building for mole-

cular graphics (Emsley & Cowtan, 2004) and the new EBI-

MSD service for protein structure comparison and recognition

SSM (Krissinel & Henrick, 2004b). The Library is widely

employed in various tools serving the EBI-MSD protein

database and the EBI-MSD deposition site (Boutselakis et al.,

2003). There is experience of using the Library in research-

related applications (Nobeli et al., 2003).

From CCP4 release 5.0, all coordinate-related Fortran

applications are linked with the Library instead of to RWBrook.

A couple of new C++ applications (NCONT, an analogue of

older CCP4’s CONTACT, and PDBCur, a curation tool for PDB

files), which merely represent wrappers over the Library’s

functions, are included in the CCP4 suite. In the longer term, it

is planned to phase out the older Fortran utilities, with their

functionality being provided by new streamlined C++ appli-

cations based on the Library. It is clear from the experience of

the above projects that the Library project has reached its

goals.

Most of the Library functions are available only through

C++ interface and therefore an object-oriented approach to

program design should be adopted in order to make the most

from the Library. This implies a considerable change in the

field, which so far has been Fortran-dominated. We would like

to note in this respect that, firstly, the computational efficiency

of C/C++ is not lower than that of Fortran, and secondly, using

an object-oriented style of programming is widely accepted as

preferable nowadays. It delivers a greater flexibility in struc-

turing the code and data, which allows for easier coding of

more complicated tasks. Lack of such flexibility is a weak point

of many applications in today’s CCP4 suite.
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Computational Project No. 4 in Protein Crystallography

(Collaborative Computational Project, Number 4, 1994).
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