

STRUCTURAL SCIENCE CRYSTAL ENGINEERING MATERIALS

Received 19 December 2019
Accepted 26 January 2020

Edited by J. Lipkowski, Polish Academy of Sciences, Poland
\ddagger These authors contributed equally to this work

Keywords: silicide; lanthanide; ordering phenomena; structure prediction; DFT.

Structure variations within $R \mathrm{Si}_{2}$ and $\boldsymbol{R}_{2} \mathrm{TSi}_{3}$ silicides. Part I. Structure overview

M. Nentwich, ${ }^{\mathbf{a} *} \ddagger$ M. Zschornak, ${ }^{\mathbf{a}} \ddagger$ M. Sonntag, ${ }^{\text {a }}$ R. Gumeniuk, ${ }^{\text {a }}$ S. Gemming, ${ }^{\text {b,c }}$ T. Leisegang ${ }^{\text {a,d }}$ and D. C. Meyer ${ }^{\text {a }}$

${ }^{\mathbf{a}}$ Institute for Experimental Physics, Technical University Bergakademie Freiberg, 09596 Freiberg, Germany, ${ }^{\mathbf{b}}$ Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany, ${ }^{\text {c Institute }}$ of Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany, and ${ }^{\text {d Samara Center for Theoretical Materials }}$ Science, Samara National Research University, 443086 Samara, Russia. *Correspondence e-mail:
Melanie.Nentwich@physik.tu-freiberg.de
Here, structural parameters of various structure reports on $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds [where R is an alkaline earth metal, a rare earth metal (i.e. an element of the Sc group or a lathanide), or an actinide and T is a transition metal] are summarized. The parameters comprising composition, lattice parameters a and c, ratio c / a, formula unit per unit cell and structure type are tabulated. The relationships between the underlying structure types are presented within a group-subgroup scheme (Bärnighausen diagram). Additionally, unexpectedly missing compounds within the $R_{2} T \mathrm{Si}_{3}$ compounds were examined with density functional theory and compounds that are promising candidates for synthesis are listed. Furthermore, a correlation was detected between the orthorhombic AlB_{2}-like lattices of, for example, $\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$ and the divalence of R and the monovalence of T. Finally, a potential tetragonal structure with ordered Si / T sites is proposed.

1. Introduction

The rare earth disilicides $R \mathrm{Si}_{2}$ have been the subject of numerous studies in the past few decades mainly due to their exciting magnetic properties, such as magnetic ordering phenomena (Wang et al., 2019; Pan et al., 2013; Kotsanidis et al., 1990; Li et al., 1998a, 2002a, 2013; Bazela et al., 2003; Inosov et al., 2009), especially ferromagnetic ordering (Majumdar et al., 1998, 1999b; Li et al., 1999, 2002a,b, 2003, 2013; Frontzek et al., 2004), their spin-glass-like behavior (Li et al., 1998a, 1999, 2002b, 2003; Kimura et al., 1999; Szytuła et al., 1999, 2000; Paulose et al., 2003; Lu et al., 2013) and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions (Li et al., 2002b; Inosov et al., 2009; Tang et al., 2010a,b; Lu et al., 2013), which have been studied since the early 1980s. In the middle of the 20th century, ternary compounds of composition $\mathrm{U}_{2} \mathrm{TSi}_{3}$ (with a transition metal T substituting one in four Si atoms) were a central research subject due to the emerging use of U containing compounds in the military and the energy sector. Some of the formed structures are considered as prototypes for further $R_{2} T \mathrm{Si}_{3}$ compounds.
As it has been widely discussed in the literature (Hoffmann \& Pöttgen, 2001; Pan et al., 2013; Peter \& Kanatzidis, 2012), the $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds crystallize with the hexagonal AlB_{2} and the tetragonal ThSi_{2} type and derivative structure types (Hoffmann \& Pöttgen, 2001). Some of the disilicides are polymorphic (Perri et al., 1959b; Brown \& Norreys, 1961; Mayer et al., 1967), meaning that they crystallize in two or more different phases (International Union for Crystal-
lography, 2017). This reflects in the now obsolete structuretype names $\alpha-\mathrm{USi}_{2}$ and $\alpha-\mathrm{ThSi}_{2}$ for tetragonal ThSi_{2} as well as $\beta-\mathrm{USi}_{2}$ and $\beta-\mathrm{ThSi}_{2}$ for hexagonal AlB_{2} (Evers et al., 1980; Yashima et al., 1982a,b,c; Yashima \& Satoh, 1982; Lejay et al., 1983; Evers et al., 1983; Weigel et al., 1984; Sato et al., 1984; Zhong et al., 1985; Chevalier et al., 1986; Dhar et al., 1987).

The relationship between the large variety of the derivatives from AlB_{2} and ThSi_{2} aristotypes can be nicely explained within the group-subgroup scheme, also known as Bärnighausen formalism (Bärnighausen, 1980). The AlB_{2} structure is one of the simplest inorganic structure types. It has hexagonal space group $\mathrm{P} 6 / \mathrm{mmm}$ (No. 191) and its unit cell incorporates only the two Wyckoff sites $1 a$ and $2 d$ (Hofmann \& Jäniche, 1935) occupied by one R atom on the Al site and two Si atoms on the B site, forming a two-dimensional Si network, similar to graphite. The unit cell of the ThSi_{2} structure also has only two occupied Wyckoff positions ($4 a$ and $8 e$), but the Si sublattice forms a more complex 3D network (Brauer \& Mittius, 1942).

Nowadays, 46 structure types derived from AlB_{2} (Hoffmann \& Pöttgen, 2001) and four from ThSi_{2} are known. They include binary and ternary intermetallic compounds with compositions $R X_{2}, R T_{2}, R T X$ or $R_{2} T X_{3}$, where X is an element of the third or fourth group.

In this work, we systematize the occurrence of $R \mathrm{Si}_{2}$ and $R_{2} \mathrm{TSi}_{3}$ compounds, where $R=$ alkaline earth metal, lanthanide, actinide or member of the Sc group and T is a transition metal. We present 12 different structure types of these compounds derived from the AlB_{2} type. Six of these structure types have not been considered by Hoffmann \& Pöttgen (2001). Additionally, we present three further structure types based on the tetragonal ThSi_{2} type. One of these types is purely hypothetical and considers the possibility of ordered $\mathrm{Si} /$ T positions in ThSi_{2}-like structures. Furthermore, we order all structure reports for $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds according to their R and T elements within an $R-T$ grid. After analyzing all element combinations, we choose nine promising compounds not found in the literature and perform DFT calculations to evaluate the probability of a successful synthesis. We discuss peculiarities of the distribution of structure types among the $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds, based on a mapping of symmetries on the $R-T$ grid with corresponding symbols.

2. Methods

To gain a comprehensive overview of $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds, we performed an extensive literature search by scanning the ICSD, SciFinder and Reaxys databases for all possible element combinations for T within the Cr to Zn groups and R within the Sc group, the alkaline earth metal, the lanthanides and the actinides. Only experiments at ambient conditions were considered. Additionally, we did not consider data sets if they were too incomplete, i.e. missing lattice parameters or an insufficient description of the symmetry. Additionally, we did not take incommensurately modulated structures into account, because these modulations mainly arise for nonstoichiometric disilicides within this family of compounds and because the descriptions do not conform with
those of conventional symmetry. Please refer to Leisegang (2010), Kubata et al. (2005) and Dshemuchadse (2008) for further information. However, commensurable modulations are interpreted as superstructures.

Table 1 contains the tabulated data of the composition of the compounds as well as their structure parameters, i.e. lattice parameters a and c, ratios c / a, formula units per unit cell, and structure type. These data were used without further refinement. The compounds, discussed within this article, are more than solid solutions as most of them exhibit ordered structures and, therefore, have distinct structure types compared to similar stoichiometries. Within this article, only the formula units and the deviation of the compounds within the range of R and T elements is of interest. Part II (Nentwich et al., 2020) will discuss and compare other parameters.

We used calculations based on density functional theory (DFT) to predict the stability of not yet reported $R \mathrm{Si}_{2}$ and $R_{2} \mathrm{TSi}_{3}$ compounds. The formation energy $\Delta E^{\text {tot }}$ is the difference of the total energy $E^{\text {tot }}$ of the compound and $E^{\text {tot }}$ of its elements, normalized to six atoms $\left(R_{2} \mathrm{Si}_{4}\right.$ or $\left.R_{2} T \mathrm{Si}_{3}\right)$. Appendix B presents the space groups of the unary R crystals. The more negative the formation energy, the more thermodynamically favorable is the formation of that compound. We considered a formation energy of up to -25 meV per atom as potentially stable at room temperature. However, this assumption does not take into account potential energy barriers which might kinetically hinder the formation of the ground state. The projector-augmented wave (PAW) method (Kresse \& Joubert, 1999) in spin-polarized Perdew-Burke-Ernzerhof parametrization (Perdew et al., 1996) was employed as implemented in the VASP code (Kresse \& Furthmüller, 1996). Total energies have been converged better than $10^{-7} \mathrm{eV}$ with a maximum kinetic energy of 320 eV for the planewave basis set and Γ-centered k-point meshes with spacings less than $0.02 \times$ $2 \pi \AA^{-1}$. All structures have been fully relaxed, with respect to atomic positions as well as cell geometry within the space group, to forces less than $10^{-3} \mathrm{~V} \AA^{-1}$. A Hubbard U correlation correction was not used because the Si framework with s and p-orbitals governs the stability of the structure and because it would complicate the comparability of the formation energies within the $R_{2} T \mathrm{Si}_{3}$ series.

3. Results and discussion

In this article, we treat the $R_{2} T \mathrm{Si}_{3}$ compounds as a distinct phase with a fixed composition and not as a solid solution. As ternary phase diagrams are scarce for these compounds, we checked all available data, in particular the thermodynamic assessment of Bodak \& Gladyshevskii (1985), for compositional degrees of freedom in the corresponding phase diagram region and possibly prevailing solid solutions. Nevertheless, the vast majority of compounds were reported to form superstructures which, in general, allow only slight variations in stoichiometry. We discuss those structures as distinct phases due to the changes in symmetry at these particular compositions in the phase diagrams. Many ternary phase diagrams are often determined at elevated temperatures, which is beyond

Table 1
Alphabetically sorted list of $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds and their crystal data.
R is an element of the alkaline earth metals, the scandium group, or the lanthanide or actinide series. T is a transition metal, Al or Si ; thus a disilicide. The supercell can be identified by the formula units per unit cell. Lines written in blue indicate data sets not used for Fig. 9.

R	T	$a(\AA)$	$b(\AA)$	$c(\AA)$	c/a	Formula units	Structure type	Thermal treatment	Reference	ICSD number
Am	Si	4.0190		13.6880	3.4058	4	ThSi ${ }_{2}$	-	Weigel et al. (1977)	
		4.0150		13.7330	3.4204	4	ThSi_{2}	-	Weigel et al. (1984)	43816
Ba	Ag	8.6130	14.9270	19.6390	2.2802	16	$\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$	$550^{\circ} \mathrm{C}, 1.5$ days	Cardoso Gil et al. (1999)	410520
Ca	Ag	8.3150	8.6460	14.3910	1.7307	8	$\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$	$550{ }^{\circ} \mathrm{C}, 1.5$ days	Cardoso Gil et al. (1999)	410522
	Ni	3.9880		4.3460	1.0898	1	AlB_{2}	-	Bodak \& Gladyshevskii (1968)	20300
	Si	4.2830		13.5200	3.1567	4	ThSi_{2}	-	Evers et al. (1977a)	1453
		4.2830		13.5200	3.1567	4	ThSi ${ }_{2}$	-	Evers et al. (1978b)	
		4.2832		13.5420	3.1617	4	ThSi ${ }_{2}$	-	McWhan et al. (1967)	87392
		4.2830		13.5300	3.1590	4	ThSi_{2}	-	Nakano \& Yamanaka (1994)	
Ce	Au	4.2220		14.3750	3.4048	4		$750^{\circ} \mathrm{C}, 14$ days	Gordon et al. (1997)	
		8.2840		8.7010	1.0503	8	h	$750^{\circ} \mathrm{C}, 14$ days	Gordon et al. (1997)	
		8.3060		8.6870	1.0459	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$	Floating zone	Majumdar et al. (2000)	
	Co	4.0440		4.1940	1.0371	1	AlB_{2}	-	Bodak \& Gladyshevskii (1985)	52846
		8.1040		4.1970	0.5179	4	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$	$750^{\circ} \mathrm{C}, 14$ days	Gordon et al. (1997)	83895
		8.1100		4.2200	0.5203	4	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$	$750^{\circ} \mathrm{C}, 7$ days	Majumdar et al. (1999a)	
		8.1130		4.2190	0.5200	4	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$	Floating zone	Majumdar et al. (2000)	
		8.0890		8.4020	1.0387	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$	$800^{\circ} \mathrm{C}, 5$ days	Patil et al. (2008)	
	Cu	4.0600		4.2800	1.0542	1	AlB_{2}	-	Bodak \& Gladyshevskii (1985)	
		4.0770		4.3140	1.0581	1	AlB_{2}	-	Gladyshevskii \& Bodak (1965)	20303
		4.0590		4.2940	1.0579	1	AlB_{2}	-	Hwang et al. (1996)	
		4.0580		4.2960	1.0586	1	AlB_{2}	$850^{\circ} \mathrm{C}, 7$ days	Lu et al. (2013)	
		8.0920		4.2060	0.5198	4	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$	$850^{\circ} \mathrm{C}, 7$ days	Lu et al. (2013)	
		4.1360		4.2370	1.0244	1	AlB_{2}	-	Raman (1967)	
		4.0650		4.3020	1.0583	1	AlB_{2}	-	Raman (1967)	
		4.0640		4.3040	1.0591	1	AlB_{2}	$800^{\circ} \mathrm{C}, 7$ days	Yubuta et al. (2009)	
		8.1280		8.6080	1.0591	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$	$800^{\circ} \mathrm{C}, 7$ days	Yubuta et al. (2009)	
	Fe	4.0680		4.1400	1.0177	1	AlB_{2}		Gladyshevskii \& Bodak (1965)	20304
		4.0620		4.2120	1.0369	1	h	$750^{\circ} \mathrm{C}, 14$ days	Gordon et al. (1997)	
	Ir	8.2120		4.2374	0.5160	4	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$	-	Szlawska \& Kaczorowski (2011)	
	Ni	4.0390		4.2870	1.0614	1	AlB_{2}	-	Bodak \& Gladyshevskii (1985)	621652
		4.0480		4.2910	1.0600	1	AlB_{2}	-	Dhar et al. (1994)	658279
		4.0430		4.3020	1.0641	1	AlB_{2}	-	Gladyshevskii \& Bodak (1965)	20302
		4.0406		4.2801	1.0593	1	h	$750^{\circ} \mathrm{C}, 14$ days	Gordon et al. (1997)	
		4.0610		4.1490	1.0217	1	AlB_{2}	-	Raman (1967)	
		4.0710		4.2020	1.0322	1	AlB_{2}	-	Raman (1967)	
		4.0485		4.2887	1.0593	1	AlB_{2}	$800^{\circ} \mathrm{C}, 7$ days	Rojas et al. 2010)	
		4.0450		4.2830	1.0588	1	AlB_{2}	-	Szlawska \& Kaczorowski (2012)	187100
	Pd	8.2631		17.1320	2.0733	16	h	$750^{\circ} \mathrm{C}, 14$ days	Gordon et al. (1997)	
		8.2330		8.5650	1.0403	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$	$750^{\circ} \mathrm{C}, 7$ days	Mallik \& Sampathkumaran (1996)	
		4.1215		4.2723	1.0366	1	AlB_{2}	$750^{\circ} \mathrm{C}, 5$ days	Szytuła et al. (1999)	
	Pt	8.2500		4.3320	0.5251	4	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$	$750^{\circ} \mathrm{C}, 14$ days	Majumdar et al. (2001)	
	Rh	8.2100		8.4100	1.0244	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	$800^{\circ} \mathrm{C}, 4$ days	Chevalier et al. (1984)	621958
		8.2310		8.4391	1.0253	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	-	Kase et al. (2009)	
		8.3270		8.5160	1.0227	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)$	$730^{\circ} \mathrm{C}, 4$ days	Leciejewicz et al. (1995)	
		8.2370		8.4450	1.0253	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$	$800^{\circ} \mathrm{C}, 5$ days	Patil et al. (2008)	
		8.2300		8.4400	1.0255	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$	$800^{\circ} \mathrm{C}, 5$ days	Sengupta et al. (2003)	
		8.2240		4.2261	0.5139	4	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$	-	Szlawska et al. (2009)	164827
		8.2620		8.4390	1.0214	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)$	$800^{\circ} \mathrm{C}, 54$ days	Szytuła et al. (1993)	106425
	Si	4.1900		13.9300	3.3246	4	ThSi_{2}	-	Benesovsky et al. (1966)	
		4.2700		13.8800	3.2506	4	ThSi_{2}	-	Binder (1960)	
		4.1415		13.7816	3.3277	4	ThSi_{2}	-	Brauer \& Haag (1950)	622204
		4.1560		13.8400	3.3301	4	ThSi_{2}	-	Brauer \& Haag (1952)	25664
		4.1760		13.8480	3.3161	4	ThSi 2 -like	$1100^{\circ} \mathrm{C}, 14$ days	Dhar et al. (1987)	
		4.1910		13.8890	3.3140	4	ThSi ${ }_{2}$-defect	$1100^{\circ} \mathrm{C}, 14$ days	Dhar et al. (1987)	
		4.1940		13.9300	3.3214	4	ThSi_{2}	-	Dijkman et al. (1982)	622206
		4.1900		13.9300	3.3246	4	ThSi ${ }_{2}$-defect or $\mathrm{Nd} \square_{x} \mathrm{Si}_{2-x}$	$800^{\circ} \mathrm{C}, 1$ day	Houssay et al. (1989)	
		4.1900		13.8800	3.3126	4	ThSi_{2}	-	Lahiouel et al. (1986)	622197
		4.2700		13.8800	3.2506	4	ThSi_{2}	-	Lawrence et al. (1984)	622190
		4.1900		13.9400	3.3270	4	ThSi_{2}	$450{ }^{\circ} \mathrm{C}, 0.5$ days	Mayer et al. (1967)	622153
		4.1800		13.8900	3.3230	4	ThSi_{2}	-	Mayer \& Eshdat (1968)	
		4.1700		13.8200	3.3141	4	ThSi ${ }_{2}$-defect	$950{ }^{\circ} \mathrm{C}, 7$ days	Murashita et al. (1991)	
		4.1900		13.9200	3.3222	4	ThSi_{2}	$950^{\circ} \mathrm{C}, 7$ days	Murashita et al. (1991)	
		4.2700		13.8800	3.2506	4	t	-	Perri et al. (1959b)	
		4.1900		13.9200	3.3222	4	ThSi_{2}	-	Pierre et al. (1988)	
		4.1500		13.8700	3.3422	4	ThSi_{2}	$1000^{\circ} \mathrm{C}, 4$ days	Raman \& Steinfink (1967)	
		4.1920		13.9030	3.3166	4	ThSi ${ }_{2}$	-	Ruggiero \& Olcese (1964)	622138
		4.1780		13.8500	3.3150	4	ThSi ${ }_{2}$-defect	$1000^{\circ} \mathrm{C}, 3$ days	Shaheen \& Schilling (1987)	

Table 1 (continued)

R	T	$a(\AA)$	b (${ }^{\text {A }}$)	$c(\AA)$	cla	Formula units	Structure type	Thermal treatment	Reference	ICSD number
		4.1880	4.1180	13.8800	3.3142	4	$\mathrm{Nd} \square{ }_{x} \mathrm{Si}_{2-x}$	$1000^{\circ} \mathrm{C}, 3$ days	Shaheen \& Schilling (1987)	622192
		4.1910		13.9490	3.3283	4	ThSi ${ }_{2}$	$1000^{\circ} \mathrm{C}, 3$ days	Shaheen \& Schilling (1987)	622192
		4.1890		13.8920	3.3163	4	ThSi_{2}	-	Weitzer et al. (1991)	622175
		4.1840		13.8560	3.3117	4	ThSi_{2}	-	Yashima et al. (1982c)	
		4.1600		13.9000	3.3413	4	ThSi_{2}	-	Zachariasen (1949)	31642
Cm	Si	3.9630		13.7200	3.4620	4	ThSi_{2}	-	Weigel \& Marquart (1983)	
Dy	Ni	3.9700		4.0130	1.0108	1	AlB_{2}	-	Mayer \& Felner (1973b)	53369
	Pd	8.1110		8.0550	0.9931	8	h	-	Kotsanidis et al. (1990)	
		4.0620		4.0310	0.9924	1	AlB_{2}	$750^{\circ} \mathrm{C}, 10$ days	Li et al. (2003)	
		4.0620		4.0310	0.9924	1	AlB_{2}	$750^{\circ} \mathrm{C}, 10$ days	Nimori \& Li (2006)	
		4.0612		4.0334	0.9932	1	AlB_{2}	$750^{\circ} \mathrm{C}, 5$ days	Szytuła et al. (1999)	
	Pt	8.1000		8.2000	1.0123	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)$	$900^{\circ} \mathrm{C}, 23$ days	Li et al. (2013)	
	Rh	8.0970		7.8230	0.9662	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	$800^{\circ} \mathrm{C}, 4$ days	Chevalier et al. (1984)	630163
	Si	4.0400	3.9500	13.3300	3.2995	4	GdSi_{2}	-	Binder (1960)	
		3.8300		4.1100	1.0731	1	AlB_{2}	-	Gladyshevskii (1963)	20248
		3.8310		4.1210	1.0757	1	AlB_{2}	$700^{\circ} \mathrm{C}, 3$ days	Iandelli et al. (1979)	630294
		3.8285	6.6312	4.1230	1.0769	2	$\mathrm{Er}_{3} \square \mathrm{Si}_{5}$	$1000^{\circ} \mathrm{C}, 10$ days	Ji et al. (2004)	
		6.6338		4.1200	0.6211	3	$\mathrm{Yb}_{3} \square \mathrm{Si}_{5}$	-	Knapp \& Picraux (1985)	
		3.8310	6.6355	4.1210	1.0757	2	$\mathrm{Er}_{3} \square \mathrm{Si}_{5}$	${ }^{-150}{ }^{\circ} \mathrm{C}, 0.5 \mathrm{das}$	Koleshko et al. (1986)	53382
		3.8300		4.1200	1.0757	1	AlB_{2}	$450^{\circ} \mathrm{C}, 0.5$ days	Mayer et al. (1967)	103369
		4.0450	3.9350	13.3190	3.2927	4	GdSi_{2}	-	Mayer \& Eshdat (1968)	630287
		4.0300	3.9300	13.3200	3.3052	4	GdSi_{2}	-	Mayer \& Eshdat (1968)	
		4.0300	3.9310	13.3200	3.3052	4	GdSi_{2}	-	Mayer \& Felner (1973b)	
		3.9739		13.6760	3.4415	4	ThSi_{2}	-	Nesper et al. (1979)	630314
		4.0400	3.9500	13.3400	3.3020	4	GdSi_{2}	-	Perri et al. (1959b)	630297
		4.0300		13.3800	3.3201	4	ThSi_{2}	-	Perri et al. (1959b)	150663
		4.0400	3.9500	13.3300	3.2995	4	GdSi_{2}	-	Perri et al. (1959a)	630297
		4.0380	3.9370	13.3100	3.2962	4	GdSi_{2}	-	Pierre et al. (1988)	
Er	Cu	3.9670		13.7300	3.4611	4	ThSi_{2}	-	Raman (1967)	${ }_{5}^{627257}$
	Ni	3.9600		3.9860	1.0066	1	AlB_{2}	- ${ }^{\text {loating zone }}$	Mayer \& Felner (1973b)	53404
	Pd	4.0640		3.9910	0.9820	1	h	Floating zone	Frontzek (2009)	
		8.0920		7.9250	0.9794	8	h	-	Kotsanidis et al. (1990)	
		4.0427		3.9794	0.9843	1	AlB_{2}	$750^{\circ} \mathrm{C}, 5$ days	Szytuła et al. (1999)	
	Rh	8.0780		8.7480	1.0829	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	$800^{\circ} \mathrm{C}, 4$ days	Bazela et al. (2003)	97376
		8.0780		7.7480	0.9591	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)$	$800^{\circ} \mathrm{C}, 4$ days	Bazela et al. (2003)	97375
		8.0360		7.7120	0.9597	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)$	$800^{\circ} \mathrm{C}, 4$ days	Chevalier et al. (1984)	53413
		8.1130		7.7556	0.9559	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	$800^{\circ} \mathrm{C}, 14$ days	Gladyshevskii et al. (1992)	300248
	Si	3.7930	6.5697	4.0820	1.0762	2	$\mathrm{Er}_{3} \square \mathrm{Si}_{5}$	-	Auffret et al. (1990)	
		3.7990		4.0890	1.0763	1	AlB_{2}	${ }^{-}$	Gladyshevskii (1963)	20250
		3.7980		4.0880	1.0764	1	AlB_{2}	$700^{\circ} \mathrm{C}, 3$ days	Iandelli et al. (1979)	631146
		3.7990	6.5801	4.0895	1.0765	2	$\mathrm{Er}_{3} \square \mathrm{Si}_{5}$	$1000^{\circ} \mathrm{C}, 10$ days	Ji et al. (2004)	
		6.5818		4.0900	0.6214	3	$\mathrm{Yb}_{3} \square \mathrm{Si}_{5}$	-	Knapp \& Picraux (1985)	
		3.7990	6.5801	4.0900	1.0766	2	$\mathrm{Er}_{3} \square \mathrm{Si}_{5}$	-	Koleshko et al. (1986)	631159
		3.7800		4.0900	1.0820	1	AlB_{2}	-	Mayer et al. (1962)	631151
		3.7800		4.0800	1.0794	1	AlB_{2}	$450^{\circ} \mathrm{C}, 0.5$ days	Mayer et al. (1967)	631140
		3.7850		4.0800	1.0779	1	AlB_{2}	$700^{\circ} \mathrm{C}, 2$ days	Mayer \& Felner (1972)	631144
		3.8000		4.0900	1.0763	1	AlB_{2}	-	Mayer \& Felner (1973b)	631153
		3.9370		13.6160	3.4585	4	ThSi_{2}	-	Nesper et al. (1979)	631164
		3.7920		4.0830	1.0767	1	AlB_{2}	-	Pierre et al. (1988)	631150
		3.8000		4.0900	1.0763	1	AlB_{2}	-	Sekizawa \& Yasukouchi (1966)	631155
		6.5783		8.1760	1.2429	6	$\mathrm{Tb}_{3} \square \mathrm{Si}_{5}$	$700^{\circ} \mathrm{C}, 0$ days	Tsai et al. (2005)	
Eu	Ag	8.4200	14.8580	17.8640	2.1216	16	$\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$	$900^{\circ} \mathrm{C}, 3$ days	Cardoso Gil et al. (1999)	410521
		4.1500		4.5150	1.0880	1	AlB_{2}		Mayer \& Felner (1973a)	58453
		8.3060	9.0369	14.3770	1.7309	8	$\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$	$800^{\circ} \mathrm{C}, 5$ days	Sarkar et al. (2013)	250524
	Co	4.0460		4.5000	1.1122	1	AlB_{2}	-	Mayer \& Felner (1973a)	102379
	Cu	4.0762		4.4895	1.1014	1	AlB_{2}-like	Floating zone	Cao et al. (2010,2011)	
		8.1890		8.9760	1.0961	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$	$800^{\circ} \mathrm{C}$,	Majumdar et al. (1998)	
		4.0950		4.4880	1.0960	1	AlB_{2}	-	Majumdar et al. (1999b)	
		4.0800		4.4660	1.0946	1	AlB_{2}	-	Mayer \& Felner (1973a)	53255
	Ni	4.0340		4.4960	1.1145	1	AlB_{2}	-	Mayer \& Felner (1973a)	53436
	Pd	8.3188		4.3588	0.5240	4	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$	$750^{\circ} \mathrm{C}, 7$ days	Rodewald et al. (2003)	391246
	Si	4.2900		13.3300	3.1072	4	ThSi_{2}	-	Binder (1960)	631674
		4.3040		13.6500	3.1715	4	ThSi_{2}	-	Evers et al. (1977a)	1454
		4.3030		13.6600	3.1745	4	ThSi_{2}	-	Evers et al. (1983)	
		4.0520		4.4820	1.1061	1	AlB_{2}	-	Nesper et al. (1979)	103436
		4.2970		13.7040	3.1892	4	ThSi_{2}	-	Nesper et al. (1979)	631683
		4.2900		13.6600	3.1841	4	t	-	Perri et al. (1959b)	
Gd	Pd	4.0790		4.0980	1.0047	1	h	Floating zone	Frontzek (2009)	
		8.1580		8.1180	0.9951	8	h	$750^{\circ} \mathrm{C}, 5$ days	Kotsanidis et al. (1990)	
	Pt	8.1390		8.3030	1.0201	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$	$750^{\circ} \mathrm{C}, 14$ days	Majumdar et al. (2001)	
	Rh	8.1120		7.9760	0.9832	8	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	$800^{\circ} \mathrm{C}, 4$ days	Chevalier et al. (1984)	636281

Table 1 (continued)

Table 1 (continued)

Table 1 (continued)

Table 1 (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline R \& T \& $a(\mathrm{~A})$ \& b (\AA) \& $c\left(\right.$ (${ }^{\text {) }}$ \& cla \& Formula units \& Structure type \& Thermal treatment \& Reference \& ICSD number

\hline \& \multirow{5}{*}{Cu} \& 3.9880 \& \& 3.8830 \& 0.9737 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \&

\hline \& \& 3.9765 \& \& 3.8980 \& 0.9803 \& 1 \& AlB_{2} \& - \& Szlawska et al. (2011) \&

\hline \& \& 3.9710 \& \& 13.9260 \& 3.5069 \& 4 \& ThSi_{2} \& $800^{\circ} \mathrm{C}, 10$ days \& Kaczorowski \& Noël (1993) \& 603112

\hline \& \& 4.0090 \& \& 3.9570 \& 0.9870 \& 1 \& AlB_{2} \& $600^{\circ} \mathrm{C}, 49$ days \& Pechev et al. (2000) \& 92357

\hline \& \& 3.9710 \& \& 13.9260 \& 3.5069 \& 4 \& ThSi_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \& 602804

\hline \& \multirow[t]{5}{*}{Fe} \& 4.0030 \& \& 3.8570 \& 0.9635 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \&

\hline \& \& 4.0040 \& \& 3.8640 \& 0.9650 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 10$ days \& Kaczorowski \& Noël (1993) \& 603109

\hline \& \& 4.0100 \& \& 3.8400 \& 0.9576 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 7$ days \& Lourdes Pinto (1966) \& 53551

\hline \& \& 4.0040 \& \& 3.8640 \& 0.9650 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \&

\hline \& \& 8.0030 \& \& 3.8540 \& 0.4816 \& 4 \& $\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$ \& $800^{\circ} \mathrm{C}, 10$ days \& Yamamura et al. (2006) \&

\hline \& \multirow[t]{4}{*}{Ir} \& 4.0650 \& \& 3.9140 \& 0.9629 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \&

\hline \& \& 4.0720 \& \& 3.8950 \& 0.9565 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \& 57398

\hline \& \& 4.0830 \& \& 3.9320 \& 0.9630 \& 1 \& AlB_{2}-like \& $800^{\circ} \mathrm{C}, 7$ days \& Yubuta et al. (2006) \&

\hline \& \& 4.0900 \& \& 3.8540 \& 0.9423 \& 1 \& AlB_{2}-like \& $800^{\circ} \mathrm{C}, 7$ days \& Yubuta et al. (2006) \&

\hline \& Mn \& 8.0450 \& \& 3.8082 \& 0.4734 \& 4 \& $\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$ \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \&

\hline \& \multirow[t]{4}{*}{Ni} \& 3.9790 \& \& 3.9460 \& 0.9917 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \&

\hline \& \& 3.9790 \& \& 3.9490 \& 0.9925 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 10$ days \& Kaczorowski \& Noël (1993) \& 54300

\hline \& \& 3.9790 \& \& 3.9490 \& 0.9925 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \&

\hline \& \& 3.9720 \& \& 3.9461 \& 0.9935 \& 1 \& AlB_{2} \& - \& Schröder et al. (1995) \&

\hline \& \multirow[t]{3}{*}{Os} \& 8.1600 \& \& 3.8440 \& 0.4711 \& 4 \& $\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$ \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \&

\hline \& \& 4.0666 \& \& 3.8517 \& 0.9472 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \& 57453, 54310

\hline \& \& 8.1600 \& \& 3.8440 \& 0.4711 \& 4 \& $\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$ \& $800^{\circ} \mathrm{C}, 60$ days \& Pöttgen et al. (1994) \&

\hline \& \multirow[t]{3}{*}{Pd} \& 4.0800 \& 7.0670 \& 3.9390 \& 0.9654 \& 2 \& $\mathrm{U}_{2} \mathrm{RhSi}_{3}$ \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \& 57172

\hline \& \& 4.0830 \& \& 3.9320 \& 0.9630 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 3$ days \& Li et al. (1998b) \&

\hline \& \& 4.0850 \& \& 3.9350 \& 0.9633 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \& 57467

\hline \& \multirow[t]{7}{*}{Pt} \& 4.0730 \& \& 3.9650 \& 0.9735 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \&

\hline \& \& 4.0840 \& \& 3.9730 \& 0.9728 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 10$ days \& Kaczorowski \& Noël (1993) \&

\hline \& \& 4.0810 \& \& 3.9700 \& 0.9728 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 10$ days \& Li et al. (1997) \&

\hline \& \& 4.0670 \& \& 3.9640 \& 0.9747 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \& 602802

\hline \& \& 4.0840 \& \& 3.9730 \& 0.9728 \& 1 \& AlB_{2} \& $850^{\circ} \mathrm{C}, 5$ days \& Sato et al. (1991) \& 54345

\hline \& \& 4.0840 \& \& 3.9730 \& 0.9728 \& 1 \& AlB_{2} \& - \& Sato et al. (1992) \&

\hline \& \& 4.0730 \& \& 3.9600 \& 0.9723 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 10$ days \& Yamamura et al. (2006) \&

\hline \& \multirow[t]{4}{*}{Rh} \& 4.0620 \& 7.0360 \& 3.9290 \& 0.9673 \& 2 \& $\mathrm{U}_{2} \mathrm{RhSi}_{3}$ \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \& 57171

\hline \& \& 4.0740 \& \& 3.8810 \& 0.9526 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 3$ days \& Li et al. (1999) \&

\hline \& \& 4.0760 \& \& 3.8830 \& 0.9526 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \& 57485

\hline \& \& 8.1011 \& \& 3.9477 \& 0.4873 \& 4 \& $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ \& - \& Szlawska et al. (2016) \&

\hline \& \multirow[t]{4}{*}{Ru} \& 8.1480 \& \& 3.8550 \& 0.4731 \& 4 \& $\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$ \& $800^{\circ} \mathrm{C}, 60$ days \& Chevalier et al. (1996) \&

\hline \& \& 4.0750 \& \& 3.8380 \& 0.9418 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 8$ days \& Pöttgen \& Kaczorowski (1993) \& 108727

\hline \& \& 8.1450 \& \& 3.8496 \& 0.4726 \& 4 \& $\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$ \& $800^{\circ} \mathrm{C}, 60$ days \& Pöttgen et al. (1994) \& 78530

\hline \& \& 8.1480 \& \& 3.8550 \& 0.4731 \& 4 \& $\mathrm{Ce}_{2} \mathrm{CoSi}_{3} / \mathrm{U}_{2} \mathrm{RuSi}_{3}$ \& $800^{\circ} \mathrm{C}, 60$ days \& Pöttgen et al. (1994) \&

\hline \& \multirow[t]{11}{*}{Si} \& 3.8600 \& \& 4.0700 \& 1.0544 \& 1 \& AlB_{2} \& - \& Benesovsky et al. (1966) \&

\hline \& \& 3.9500 \& \& 13.6800 \& 3.4633 \& 4 \& ThSi_{2} \& - \& Benesovsky et al. (1966) \&

\hline \& \& 3.8520 \& \& 4.0280 \& 1.0457 \& 1 \& AlB_{2} \& - \& Brown \& Norreys (1959) \& 652472, 52469

\hline \& \& 3.8430 \& 6.6563 \& 4.0690 \& 1.0588 \& 2 \& $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ \& - \& Brown \& Norreys (1959) \&

\hline \& \& 3.8520 \& \& 4.0280 \& 1.0457 \& 1 \& AlB_{2} \& $650^{\circ} \mathrm{C}$ \& Brown \& Norreys (1961) \&

\hline \& \& 3.8430 \& 6.6563 \& 4.0690 \& 1.0588 \& 2 \& $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ \& $650^{\circ} \mathrm{C}$ \& Brown \& Norreys (1961) \&

\hline \& \& 3.8390 \& \& 4.0720 \& 1.0607 \& 1 \& AlB_{2} \& - \& Dwight (1982) \& 106053

\hline \& \& 3.8390 \& \& 4.7200 \& 1.2295 \& 1 \& AlB_{2} \& - \& Dwight (1982) \& 652476

\hline \& \& 3.9220 \& \& 14.1540 \& 3.6089 \& 4 \& ThSi_{2} \& - \& Sasa \& Uda (1976) \& 203

\hline \& \& 3.8600 \& \& 4.0700 \& 1.0544 \& 1 \& AlB_{2} \& - \& Zachariasen (1949) \& 31646

\hline \& \& 3.9800 \& \& 13.7400 \& 3.4523 \& 4 \& ThSi_{2} \& ${ }^{-} 50{ }^{\circ} \mathrm{C}, 5 \mathrm{~s}$ \& Zachariasen (1949) \& 31643

\hline Y \& \multirow[t]{20}{*}{Pd
Pt
Rh

Si} \& 8.1380 \& \& 8.0410 \& 0.9881 \& 8 \& h \& $750{ }^{\circ} \mathrm{C}, 5$ days \& Kotsanidis et al. (1990) \&

\hline \& \& 8.0910 \& \& 8.0920 \& 1.0001 \& 8 \& $\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$ \& $750^{\circ} \mathrm{C}, 7$ days \& Mallik \& Sampathkumaran (1996) \&

\hline \& \& 8.0990 \& \& 8.1940 \& 1.0117 \& 8 \& $\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$ \& $750^{\circ} \mathrm{C}, 14$ days \& Majumdar et al. (2001) \&

\hline \& \& 8.0860 \& \& 7.8290 \& 0.9682 \& 8 \& $\mathrm{Er}_{2} \mathrm{RhSi}_{3}$ \& $800^{\circ} \mathrm{C}, 4$ days \& Chevalier et al. (1984) \& 650353

\hline \& \& 8.1300 \& \& 7.8800 \& 0.9692 \& 8 \& $\mathrm{Er}_{2} \mathrm{RhSi}_{3}(190 / 194)$ \& $800^{\circ} \mathrm{C}, 5$ days \& Sengupta et al. (2003) \&

\hline \& \& 3.8400 \& 6.6511 \& 4.1400 \& 1.0781 \& 2 \& $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ \& - \& Baptist et al. (1988) \&

\hline \& \& 6.6511 \& \& 4.1400 \& 0.6225 \& 3 \& $\mathrm{Yb}_{3} \square \mathrm{Si}_{5}$ \& - \& Baptist et al. (1990) \&

\hline \& \& 4.0400 \& 3.9500 \& 13.3300 \& 3.2995 \& 4 \& GdSi_{2} \& - \& Binder (1960) \&

\hline \& \& 3.8420 \& 6.6545 \& 4.1400 \& 1.0776 \& 2 \& $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ \& - ${ }^{-1000}{ }^{\circ} \mathrm{C}, 10$ das \& Gladyshevskii \& Émes-Misenko (1963) \&

\hline \& \& 3.8415 \& 6.6537 \& 4.1425 \& 1.0784 \& 2 \& $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ \& $1000^{\circ} \mathrm{C}, 10$ days \& Ji et al. (2004) \&

\hline \& \& 6.6511 \& \& 4.1400 \& 0.6225 \& 3 \& $\mathrm{Yb}_{3} \square \mathrm{Si}_{5}$ \& - \& Knapp \& Picraux (1985) \&

\hline \& \& 3.8420 \& 6.6545 \& 4.1430 \& 1.0776 \& 2 \& $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ \& - \& Koleshko et al. (1986) \& 652588

\hline \& \& 3.8383 \& \& 4.1310 \& 1.0763 \& 1 \& AlB_{2} \& - \& Kotur \& Mokra (1994) \& 658906

\hline \& \& 4.0500 \& 3.9500 \& 13.2200 \& 3.2642 \& 4 \& GdSi_{2} \& - \& Lazorenko et al. (1974) \& 652570

\hline \& \& 3.8500 \& \& 4.1400 \& 1.0753 \& 1 \& AlB_{2} \& - \& Mayer et al. (1962) \& 652584

\hline \& \& 4.0500 \& 3.9500 \& 13.4000 \& 3.3086 \& 4 \& o \& - \& Mayer et al. (1962) \&

\hline \& \& 3.8300 \& \& 4.1400 \& 1.0809 \& 1 \& AlB_{2} \& $450^{\circ} \mathrm{C}, 0.5$ days \& Mayer et al. (1967) \& ${ }_{5} 525666$

\hline \& \& 3.8430 \& \& 4.1430 \& 1.0781 \& 1 \& AlB_{2} \& $800^{\circ} \mathrm{C}, 2$ days \& Mayer \& Felner (1972) \& 52478

\hline \& \& 4.0400 \& 3.9500 \& 13.2300 \& 3.2748 \& 4 \& GdSi_{2} \& - \& Perri et al. (1959b) \& 652582

\hline \& \& 4.0400 \& \& 13.4200 \& 3.3218 \& 4 \& ThSi_{2} \& - \& Perri et al. (1959b) \& 150662

\hline
\end{tabular}

Table 1 (continued)

| | | | | | | Formula
 units | Structure
 type | Thermal
 treatment | Reference |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

the scope of this work. The phase diagrams given by Bodak \& Gladyshevskii (1985) are not at room temperature.

3.1. Structural relationships

The many structure types within compounds $R \mathrm{Si}_{2}$ and $R_{2} \mathrm{TSi}_{3}$ compounds are related to each other according to their space groups and occupied Wyckoff positions. Starting from the highest symmetric structure, different perturbations induce symmetry reductions. Bärnighausen diagrams are the perfect tool to visualize these group-subgroup relationships in a simple and descriptive way. Fig. 1 presents the full Bärnighausen diagram for the $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds analyzed in this work. This diagram is partially based on a diagram by Hoffmann \& Pöttgen (2001), but is greatly extended.

The presented Bärnighausen diagram would allow for further group-subgroup transitions; thus the authors cannot exclude the existence of further structure types within the $R \mathrm{Si}_{2}$ and $R_{2} \mathrm{TSi}_{3}$ compounds and thus also additional branches in the diagram. However, the space groups we present here already have a high number of free parameters. The extension of the diagram by further symmetry reduction accompanied with further degrees of freedom without losing the rough lattice and symmetry is challenging.

Our diagram provides information about the type of transition (klassengleiche with perpetuation of lattice symmetry, translationengleiche with perpetuation of translational symmetry and isomorphous with perpetuation of both), the change of the lattice (direction and distance), the characteristics of the structure (space group, structure type and Wyckoff positions) as well as the absolute occurrence of the structure types in the literature. Additionally, Fig. 2 visualizes the atom arrangements of the different structures and presents their relationships in a hierarchical structure similar to the Bärnighausen diagram. In contrast, it focuses on the structural models and only shows these branches that include new structure types compared to Hoffmann \& Pöttgen (2001). Appendix A includes tables with Wyckoff positions of all structure types taken into account within this article (Tables 2, $3,4,5,6,7,8,9,10,11,12,13,14,15,16$ and 17).
3.1.1. Compounds deduced from the AlB_{2} structure type. First, we will present the relationships of $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds derived from the AlB_{2} structure. The lattice parameters are in the range of $a_{\mathrm{h}} \approx 3.8-4.2 \AA$ and $c_{\mathrm{h}} \approx 3.9-$ $4.5 \AA$, which is much higher than for the parent structure AlB_{2} itself $\left(a_{\mathrm{AlB}_{2}}=3.00 \AA, c_{\mathrm{AlB}_{2}}=3.24 \AA\right)$.

Hoffmann \& Pöttgen (2001) gave an overview of the hexagonal and orthorhombic transitions of AlB_{2}-related compounds. Only three of Hoffmann's Bärnighausen branches are applicable for the stoichiometries addressed here $\left(R \mathrm{Si}_{2}\right.$ and $R_{2} T \mathrm{Si}_{3}$). We identify further structure types not discussed by Hoffmann \& Pöttgen (2001), analyze the relationships of all structure types in the following paragraphs and show the new structure types in the Bärnighausen diagram (Fig. 2). Our Bärnighausen diagram (Fig. 2) thus exhibits four main branches which result from interactions with a T element or an Si vacancy \square.

The first branch of the Bärnighausen diagram describes the symmetrical relationships between the hexagonal derivatives of the AlB_{2} type. Fig. 2 shows that $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ (Gordon et al., 1997) has the same structural motif as the aristotype. The difference is the ordering of the T atoms resulting in isolated [Si_{6}] rings, see top right of Fig. 2. Only a certain part of this pattern is visible in the unit cell of $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ and in other structure types of the $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds, indicated by red bonds. Besides [Si_{6}] rings, $\left[T_{2} \mathrm{Si}_{4}\right]$ hexagons also occur, with the T atoms opposing each other in the ring. This ordering change indicates the doubling of the unit-cell parameter a in the $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type and an isomorphous symmetry reduction. If the Si atoms are shifted along the c direction, the layers are no longer perfectly planar, but puckered. This arrangement can be described with the same space group as $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$, but with half-occupied Wyckoff site $12 o$, instead of fully occupied $6 m$, known as the structure type $\mathrm{U}_{2} \mathrm{RuSi}_{3}$ (Pöttgen et al., 1994). Fig. 2 shows both structure types within one subfigure with the different Si positions indicated by a series of atoms.

Compared to their ideal crystallographic positions, the $\mathrm{Er}_{2} \mathrm{RhSi}_{3}\left(\mathrm{P}_{3} / m m c\right)$ type (Gladyshevskii et al., 1992) exhibits shifts of the T atoms along the c direction accompanied by distortions of the R atoms centering the $\left[T_{2} \mathrm{Si}_{4}\right]$ rings. This puckering results in a doubling of the c parameter and thus a

Figure 1

 superstructure is presented in the right-hand part of the diagram.
further klassengleiche reduction of the symmetry of the $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ or $\mathrm{U}_{2} \mathrm{RuSi}_{3}$ type. The reported noncentrosymmetric structure for $\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)$ (Chevalier et al., 1984) assumes additional distortions of the $\left[\mathrm{Si}_{6}\right]$ rings and their centering R atoms by decoupled x and y coordinates resulting in a translationengleiche symmetry reduction of centrosymmetric $\mathrm{Er}_{2} \mathrm{RhSi}_{3}\left(P 6_{3} / m m c\right)$.

The second branch only includes the $\mathrm{Ho}_{2} \mathrm{PdSi}_{3}$ structure type (Tang et al., 2011) with monoclinic space group $I 112 / b$
(Nentwich et al., 2016). This structure contains eight Si / T layers with stacking sequence $A B C D B A D C$. Each layer exhibits the same Si / T occupation pattern as the $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type. The $\left[T_{2} \mathrm{Si}_{4}\right]$ rings of adjacent layers are shifted and rotated by multiples of 60° around the c axis with respect to each other. The 12 -fold coordinated R elements are located on two different Wyckoff positions, either coordinated by two [$T_{2} \mathrm{Si}_{4}$] rings or by one [$T_{2} \mathrm{Si}_{4}$] ring and one [Si_{6}] ring. The $\mathrm{Ho}_{2} \mathrm{PdSi}_{3}$ type contains 32 subcells and is thus one of the

Figure 2
Models of the different observed structure types within $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds (unit cell outlined in black). The AlB_{2}-like structures are depicted such that the view onto the two-dimensional R network is almost identical. The common structure pattern of the ordered AlB_{2}-like structures (gray frame at right top) is highlighted with a light-gray frame and red Si / T bonds. The structure types $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ and $\mathrm{U}_{2} \mathrm{RuSi}_{3}$ are almost identical. In contrast to the $\mathrm{U}_{2} \mathrm{RuSi}_{3}$ type, the Si atoms of the $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type are on the highly symmetric $z=\frac{1}{2}$ position. This is highlighted by the blurred Si location along the c direction. The tetragonal structures (gray frame at center top) compose a 3D Si/T subnetwork with incomplete hexagons at the faces (highlighted in orange). The structures are connected according to their symmetry relations (dashed lines, if the transition is not minimal; labels comprise the lattice transformation).
largest structures within the AlB_{2} Bärnighausen diagram. The atoms are assumed to be on the ideal crystallographic position, without any distortions, although the space group would allow this. The transition from AlB_{2} type to $\mathrm{Ho}_{2} \mathrm{PdSi}_{3}$ involves several symmetry reduction steps, detailed in Fig. 1.

The third branch comprises the orthorhombic derivatives of the AlB_{2} type. The starting point for further reductions is an orthohexagonal setting with space group Cmmm and Wyckoff sequence $2 a, 4 k$. This setting is still a missing link (Hoffmann \& Pöttgen, 2001), meaning that no report about a compound with this structure has been found. This space group has independent lattice parameters a and b - in contrast to all previous structure types - causing a translationengleiche symmetry reduction and making it an important starting point for five further structure types.

One of them is $\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$ (von Schnering et al., 1996), which has perfectly ordered Si / T layers with the same occupational pattern as the $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type. As in the $\mathrm{Ho}_{2} \mathrm{PdSi}_{3}$ structure type, the Si / T atoms are perfectly ordered and form an $A B C D$ stacking sequence, which is consistent with the two differently coordinated R sites as mentioned before. Accompanied with the anisotropic available space of the R site surrounded by one [$T_{2} \mathrm{Si}_{4}$] and one [Si_{6}] ring, its z component is not on the ideal crystallographic position resulting in a puckering of the R and Si / T layers. Identical R elements are connected along the former hexagonal a direction. These structural changes are accompanied with three consecutive klassengleiche symmetry reductions doubling the a and b parameters and quadrupling the c parameter.

A second structure type is $\mathrm{U}_{2} \mathrm{RhSi}_{3}$ (Pöttgen \& Kaczorowski, 1993) with space group Pmmm (No. 47). Its Si/T atoms are partially ordered and only shifted along the b direction. These shifts induce a break in translational symmetry and a klassengleiche reduction. The $\mathrm{Ho}_{2} \mathrm{PdSi}_{3}, \mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$ and $\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$ structure types (Gordon et al., 1997) have perfectly ordered Si / T layers and the same local arrangements around the R atoms. The R elements of the same Wyckoff site are connected along the orthorhombic a direction. These structural changes indicate the doubling of lattice parameters and a klassengleiche transition from structure type $\mathrm{U}_{2} \mathrm{RhSi}_{3}$. Hoffmann \& Pöttgen (2001) have already reported a second structure type with the same space group as $\mathrm{U}_{2} \mathrm{RhSi}_{3}$, but with a different Wyckoff sequence, namely $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$. This type represents the disordered nonstoichiometric disilicides. In addition to the disordered ones, we also found reports about ordered versions. The otherwise very detailed review by Hoffmann \& Pöttgen (2001) did not discuss these variants, which form due to vacancy ordering. According to the real stoichiometry of $R \mathrm{Si}_{1.67}$, one Si atom is regularly missing in the Si hexagons (Roge et al., 1995). This arrangement can be realized by a hexagonal and a orthohexagonal setting (Auffret et al., 1990). The hexagonal setting will be discussed in the fourth branch. The orthohexagonal arrangement requires a triplication of the a parameter. We will refer to this setting as $\mathrm{Ho}_{3} \square \mathrm{Si}_{5}$ type. We prepared a list of its atomic parameters in space group $P 1$ (No. 1) and inserted it to the software FINDSYM (Stokes \& Hatch, 2005), which determined the
highest possible space group as Pmm2 (No. 25). We changed the setting to $P 2 \mathrm{~mm}$ (No. 25) for a better comparability to its supergroup Pmmm (No. 47). Thus, the triplication causes a translationengleiche and a klassengleiche symmetry reduction, which is accompanied with potential shifts of all atoms within the a, b plane.

The fourth branch comprises the ordered $R_{3} \square \mathrm{Si}_{5}$ structures, which are not related to the disordered $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ type within the Bärnighausen diagram.
d'Avitaya et al. (1989) described a $\sqrt{3} \times \sqrt{3}$ low-energy electron diffraction (LEED) pattern of $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ thin films. Iandelli et al. (1979) determined the space group of this arrangement for $\mathrm{Yb}_{3} \square \mathrm{Si}_{5}$ as $P \overline{6} 2 m$ (No. 189), only allowing the x parameter of R and Si to deviate from its ideal crystallographic position. To consider the underlying symmetries of this arrangement, the cell needs to be enlarged and rotated with respect to the AlB_{2} unit cell using an isomorphous symmetry reduction. The location of the vacancy on an independent Wyckoff site is accompanied by a further translationengleiche symmetry reduction and an origin shift from space group $P 6 / \mathrm{mmm}$ to $P \overline{6} 2 \mathrm{~m}$.

Another model proposed by Stauffer et al. (1992) is based on the aforementioned arrangement, but every second Si / T layer is rotated by 120° around c. We determined the space group of this vacancy ordering as $P \overline{6} 2 c$, assuming that only the occupational pattern of the Si lattice would adapt, without changing the atomic positions. This results in a doubling of the c parameter, accompanied by a klassengleiche transition. The first reports concerning this arrangements used the compound $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$. However, this type name is already used for the disordered nonstoichiometric disilicides. Thus, we will refer to this structure type as $\mathrm{Tb}_{3} \square \mathrm{Si}_{5}$ in accordance with the report by Luo et al. (1997).

We did not consider cells based on the $\mathrm{Ho}_{3} \square \mathrm{Si}_{5}$ type with doubled c parameter, as it is only reported for the $\sqrt{3} \times \sqrt{3}$ type cells.

Further remarks. Gordon et al. (1997) reported a further superstructure for $\mathrm{Ce}_{2} \mathrm{PdSi}_{3}$ with doubled lattice parameter a and quadrupled c, but did not focus on the specific space group. Therefore, we could not implement this report for the construction of the Bärnighausen diagram. During the literature research we additionally found structures of the $\mathrm{EuGe}_{2^{-}}$ type with space group $P \overline{3} 1 m$ (No. 164). This structure type is very similar to the AlB_{2} type, but with a puckered Si sublattice, inducing a translationengleiche transition. Reports about this structure type refer to binary alkaline earth disilicides at nonambient conditions (Evers et al., 1977b; Bordet et al., 2000; Brutti et al., 2006) or with mixed R sites (Eisenmann et al., 1970; Evers et al., 1979) as well as theoretical considerations about the puckering only (Gemming \& Seifert, 2003; Gemming et al., 2006; Enyashin \& Gemming, 2007; FloresLivas et al., 2011). As these reports do not meet the requirements of experiments at ambient conditions, we did not consider this group of compounds within this work.

All aforementioned structure types will be termed $\mathrm{AlB}_{2^{-}}$ like in the following sections. By studying the atomic coordinates of the addressed space groups, we observed that the R
elements form a rigid frame for the structure, as they are mostly the heaviest and largest elements in the structure and, thus, the most immobile. This also means that the Si / T atoms are more mobile and thus puckering of these layers is rather common.
3.1.2. Compounds deduced from ThSi_{2} structure type. Compounds of the ThSi_{2} type (Brauer \& Mittius, 1942) crystallized in space group $I 4_{1} /$ amd (No. 141), see gray box of Fig. 2 (with tetragonal lattice parameters $a_{\mathrm{t}} \approx a_{\mathrm{h}}, c_{\mathrm{t}} \approx 13.4-14.4 \AA$). The Si / T atoms form a complex 3D network, in contrast to the 2D honeycombs in AlB_{2}. So far, the only reported variation of the ThSi_{2} type is the GdSi_{2} structure (Perri et al., 1959b; Binder, 1960) with independent lattice parameters a and b. This degree of freedom causes a translationengleiche symmetry reduction to space group Imma (No. 74).

If the ThSi_{2} or GdSi_{2} type structures exhibit Si vacancies, these do not order regularly and only cause partially occupied Wyckoff positions. The proportion of vacancies is generally $10 \%\left(R \mathrm{Si}_{1.8}\right)$, thus almost one Si ion per tetragonal or orthorhombic unit cell is vacant. The resulting structures remain in the original space group and are called ThSi_{2}-defect and $\mathrm{Nd} \square_{x} \mathrm{Si}_{2-x}$, respectively.

In contrast to the distortive modulation of ThSi_{2}, we did not find evidence for a tetragonal superstructure induced by ordering. This absence may be partially due to the small number of reports concerning tetragonal $R_{2} T \mathrm{Si}_{3}$ compounds [18 structure reports in ten articles (Gordon et al., 1997; Albering et al., 1994; Kaczorowski \& Noël, 1993; Lejay et al., 1983; Chevalier et al., 1986; Li et al., 2008; Mayer \& Felner, 1973b; Pöttgen \& Kaczorowski, 1993; Raman \& Steinfink, 1967; Raman, 1967)]. In order to shed light on a potential ordering, we constructed a tetragonal superstructure based on geometrical, chemical and electronic considerations. First, every Si atom has exactly one T element in its coordination. Second, every T element is coordinated by exactly three Si atoms. Third, every zigzag chain fulfills the $1: 3$ ratio of $T: \mathrm{Si}$ (zigzag chains explained in Section 3.2). And fourth, shortrange periodicity is mandatory; thus, no doubling of the unit cell along the c direction is expected. By choosing an arbitrary atom within the tetragonal Si / T network as the first T element, only two positions unfold positioning the next T element. Two atomic arrangements resulted following the aforementioned conditions. We transferred these patterns onto the simple

Figure 3
Differences in the arrangement of Si / T (blue) zigzag chains in hexagonal (left) and tetragonal (right) $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds. The consecutively added zigzag chains (red bonds) in hexagonal compounds always lie within the same plane, whereas in tetragonal compounds these layers are rotated by 90° along the bonds shown in orange. The 12 -fold coordination of the R elements is highlighted for one atom ,as an example, with bonds shown in black.
space group $P 1$ (No. 1) and imported them into the tool FINDSYM (Stokes \& Hatch, 2005) to determine the space group. Both variants proved to be identical and to exhibit the space group $C 222_{1}$ (No. 20). We will refer to this new structure type with eight instead of four formula units as POTS (proposed ordered, tetragonal structure). The gray box in Fig. 2 visualizes the Si / T-ordering. As this structure has not been reported so far for $R_{2} T \mathrm{Si}_{3}$ compounds, we decided to perform DFT calculations to estimate its stability, see Section 3.3.

These three structure types introduced in this section (§3.1.2) will be addressed as ThSi_{2}-like in the following.

3.2. Structure description

The hexagonal and the tetragonal subgroups of $R \mathrm{Si}_{2}$ and $R_{2} \mathrm{TSi}_{3}$ compounds do not seem to be symmetrically related at first glance. The AlB_{2}-like compounds exhibit graphite-like 2D networks of planar Si / T hexagons, whereas the Si / T atoms of ThSi_{2}-like compounds form 3D networks. Still, the structures show similarities due to the trigonal coordination of the Si atoms. Fig. 3 illustrates the Si / T atoms in trigonal prisms, the 12 -fold coordinated R atoms (connectors in black) and the $\mathrm{Si} /$ T zigzag chains (bonds in red/orange) in both structures.

Not only are the hexagonal honeycombs similar to graphite but also the tetragonal 3D network. The typical net exists simultaneously in planes perpendicular to the tetragonal a_{t} and b_{t} directions which are interconnected by bonds along the c_{t} direction. More precisely, two consecutive Si / T zigzag chains are rotated by 90° along the c_{t} direction, thereby spanning the $(100)_{\mathrm{t}}$ and $(010)_{\mathrm{t}}$ faces of the unit cell and causing incomplete hexagons (see the orange bonds in the ThSi_{2} structure type in Fig. 2). This additional symmetry degree of freedom causes a slight deformation of the trigonal Si / T arrangement in the tetragonal network. The $\mathrm{Si}-T$ bonds along the c_{t} direction (in orange, interchain) elongate in comparison to the intrachain bonds (in red), see Fig. 3. Further, the angle within the zigzag chains increases, whereas the other two angles decrease

Figure 4
Overview of the literature reports of $R \mathrm{Si}_{2}$ and $R_{2} \mathrm{TSi}_{3}$ crystals. The number of reports is visualized with numbers and colors (few to very frequent: red - yellow - green - blue - purple). Additionally, to predict the stability for selected unreported structures, this study performed DFT calculations for the highlighted compounds (black circles).
(between bonds shown in red and orange). Therefore, the chains with stronger bonds are slightly flattened compared to the ideal structure with perfect trigonal coordination. These structural differences between hexagonal and tetragonal structure types cause different crystal symmetries that permit a common origin in the Bärnighausen diagram for the $R \mathrm{Si}_{2}$ and $R_{2} \mathrm{TSi}_{3}$ compounds.

Figure 5
Overview of the $R \mathrm{Si}_{2}$ compounds that were analyzed systematically by the same first author. Some of the results were published in more than one article: Brauer (Brauer \& Mittius, 1942; Brauer \& Haag, 1950; Brauer \& Haag, 1952), Evers (Evers et al., 1977a,b, 1978a,b, 1983; Evers, 1979, 1980), Mayer:1 (Mayer et al., 1962, 1967; Mayer \& Eshdat, 1968), Perri (Perri et al., 1959a,b), Pierre (Pierre et al., 1988, 1990).

Figure 6
Overview of the $R_{2} T S i s i z_{3}$ compounds that were analyzed systematically by the same first author according to their T element (see color code). Some of the results were published in more than one article: Mayer:2 (Mayer \& Tassa, 1969; Mayer \& Felner, 1972, 1973a,b), Szlawska (Szlawska et al., 2007, 2009, 2011, 2016; Szlawska \& Kaczorowski, 2011, 2012), Li (Li et al., 1997, 1998,a,b, 1999, 2001, 2002a, 2003, 2008, 2013), Frontzek (Frontzek et al., 2004, 2006; Frontzek, 2009), Mallik (Mallik \& Sampathkumaran, 1996; Mallik et al., 1998a,b,c), Xu (Xu et al., 2010, 2011a,b), Li (Li et al., 1998b, 2001, 2002a, 2003, 2013).
3.3. Elemental combinations and stability analysis of missing links with DFT calculations

During the literature search, we collected numerous structure reports of various $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds. Fig. 4 gives an overview of the reported compounds according to their appearance within the $R-T$ grid. In this $R-T$ diagram, we marked the number of reports with different colors, see Fig. 4. This diagram does not include the elements of the Zn group as those compounds were only analyzed at elevated temperatures (Demchenko et al., 2002; Malik et al., 2013; Nasir et al., 2010; Romaka et al., 2012; Salamakha et al., 1998), which are out of the scope of this article. Additionally, we did not find any reports which include $R_{2} \mathrm{CrSi}_{3}$ compounds. We assume that certain electron configurations are necessary for the formation of $R_{2} \mathrm{TSi}_{3}$ compounds. Furthermore, some elements rarely appear within the $R_{2} \mathrm{Si}$ and $R_{2} \mathrm{TSi}_{3}$ compounds, such as Sm and Yb , which are highly volatile (Cao, 2014, private communication), Tc, which has a very low radio-active halflife and is very scarce (Holleman \& Wiberg, 2007), or Pm, which is radioactive (Cao, 2014, private communication; Frontzek, 2014, private communication). The interest in using La and Lu was lower as most of the research aimed for the magnetic properties that do not exist for these two elements (Frontzek, 2014, private communication). The cost of the elements seems to play a subordinate role, e.g. the more expensive Rh (89000 USD per kg) compounds were analyzed more frequently than the ones containing $\operatorname{Ir}(36000$ USD per kg) (Haynes, 2012).

These distributions are emphasized in Figs. 5, 6 and 7, which show systematic approaches in the literature. Fig. 5 gives an

Figure 7
Overview of the $R_{2} \mathrm{TSi}_{3}$ compounds that were analyzed systematically by the same first author according to their R element (see color code). Some of the results were published in more than one article: Mayer:2 (Mayer \& Tassa, 1969; Mayer \& Felner, 1972, 1973a,b), Szlawska (Szlawska et al., 2007, 2009, 2011, 2016; Szlawska \& Kaczorowski, 2011, 2012), Li (Li et al., 1997, 1998a,b, 1999, 2001, 2002a, 2003, 2008, 2013), Frontzek (Frontzek et al., 2004, 2006; Frontzek, 2009), Pottgen (Pöttgen \& Kaczorowski, 1993; Pöttgen et al., 1994), Majumdar (Majumdar et al., 1998, 1999a,b, 2000, 2001).
overview of $R \mathrm{Si}_{2}$ series with the corresponding authors and R elements. This summary shows the high interest in the lanthanide compounds compared to R elements of the alkaline earth metals and the actinides. Fig. 6 shows a similar illustration of T series within the $R_{2} T \mathrm{Si}_{3}$ compounds. Sorted by T element and author, the corresponding R elements are highlighted. Within the 3d elements the largest variety was analyzed, mostly in combination with La and Ce . In contrast, the heavy lanthanides were more favored when 4d elements were used, which have been intensively studied. Finally, Fig. 7 shows the R series, sorted by R element and author, with highlighted T elements. Again, the focus on the 3d elements as well as La and Ce is clear. The most complete investigations were carried out for U and Th , which emphasizes their importance for reactor technology.

By studying the $R-T$ diagram of Fig. 4 one main question arises: What are the stability relationships of those $R_{2}{T S_{3}}^{3}$ compounds that are missing? To clarify this question, we sorted the compounds according their R element and discuss the Co, Rh and Pt series in the following sections.

We assumed ordered structures as DFT cannot evaluate mixed positions, except in the framework of virtual crystal approximations (VCA) using potential mixing. We adapted the structure type of the adjacent compounds within the $R-T$ grid or used the highly symmetric $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ structure type with space group P6/mmm (No. 191) as the basis for the unknown compounds. Table 17 summarizes the formation energies and lattice parameters all considered compounds. We will compare the formation energy of an unreported compound with those of similar reported compounds to evaluate its relative stability.

The DFT results of all models indicate metallic structures, although the DFT band gap problem may suppress the appearance of small band gaps. Thus, all structures have an intrinsic buffer of electronic states at the Fermi level to account for stability considerations of the T coordination within the ionic Si / T subnetwork according to molecular orbital theory, see Nentwich et al. (2020).

The first compound of interest is $\mathrm{Nd}_{2} \mathrm{CoSi}_{3}$. The series of Nd compounds is fairly complete, compare Fig. 4, for example,

Figure 8
Formation energies of some $R_{2} T \mathrm{Si}_{3}$ compounds in different structure types.
with reported $\mathrm{Nd}_{2} \mathrm{RhSi}_{3}$ (Chevalier et al., 1983, 1984; Szytuła et al., 1993; Mitsufuji et al., 1996; Gribanov et al., 2010; Zajdel et al., 2015), which is the 4 d analog compound to $\mathrm{Nd}_{2} \mathrm{CoSi}_{3}$. Additionally, we found comments on this compound in two publications, but without any information concerning property, structure and phase purity (Chevalier et al., 1984; Szytuła et al., 1993). The formation energies and existing structure types of $\mathrm{La}_{2} \mathrm{CoSi}_{3}$ and $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ serve as references. Furthermore, the likewise hypothetical compound $\mathrm{Pr}_{2} \mathrm{CoSi}_{3}$ was also calculated. The blue markers in Fig. 8 show the respective formation energies ranging from -4.61 eV to -4.37 eV . The lowest energy results for $R=\mathrm{Ce}$ and the highest for $R=\mathrm{Nd}$. As the formation energy of $\mathrm{Pr}_{2} \mathrm{CoSi}_{3}$ lies in between the reported compounds, we expect it to be stable. The energy difference between $\mathrm{Nd}_{2} \mathrm{CoSi}_{3}$ and $\mathrm{La}_{2} \mathrm{CoSi}_{3}$ (the reported compound with highest energy) is 25 meV per atom. This corresponds to the tolerance limit; thus, we conclude that $\mathrm{Nd}_{2} \mathrm{CoSi}_{3}$ could also be stable. This conclusion is supported by the reports of Mayer \& Tassa (1969) and Felner \& Schieber (1973) on $\mathrm{Pr}_{2} \mathrm{Co}_{0.8} \mathrm{Si}_{3.2}$ and $\mathrm{Nd}_{2} \mathrm{Co}_{0.8} \mathrm{Si}_{3.2}$. They also synthesized samples with higher T content, which lead to 'the disappearance of the AlB_{2} type phase, and the X-ray patterns obtained could not be interpreted' (Mayer \& Tassa, 1969). Nevertheless, we think that the synthesis of $\mathrm{Pr}_{2} \mathrm{CoSi}_{3}$ and $\mathrm{Nd}_{2} \mathrm{CoSi}_{3}$ and the interpretation of the corresponding X-ray patterns would be successful nowadays due to improved hardware and measurement techniques. Additionally, an enhanced thermal treatment would certainly improve the crystal quality regarding the Si / T ordering. Thus, we advise reinvestigating the $R_{2} T \mathrm{Si}_{3}$ compounds discussed by Mayer \& Tassa (1969), with $R=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}$ and T $=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$.

Another interesting compound is $\mathrm{Eu}_{2} \mathrm{RhSi}_{3}$. The Rh series is well represented in the $R-T$ diagram and its 3 d analog $\mathrm{Eu}_{2} \mathrm{CoSi}$ exists. However, the R element Eu supposedly only forms a compound with Co, but not with Rh (Mayer \& Tassa, 1969; Mayer \& Felner, 1973a). We also modeled $R_{2} \mathrm{RhSi}_{3}$ compounds with R elements Gd, Tb, Dy and Ho again and used the formation energies of existing structures as references. For the Rh series, the formation energies range from -6.68 eV to -4.34 eV , with the not yet reported $\mathrm{Eu}_{2} \mathrm{RhSi}_{3}$ having the highest formation energy. Both tested symmetries the higher symmetric $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ and the lower symmetric $\mathrm{Er}_{2} \mathrm{RhSi}_{3}$ - gave almost the same results, for formation energies $(-4.34 \mathrm{eV})$ and interatomic distances $\left[d_{a}(R, R) \approx 4.13 \AA\right.$, $\left.d_{c}(R, R) \approx 4.27 \AA\right]$. The formation energy of $\mathrm{Eu}_{2} \mathrm{RhSi}_{3}$ differs from the second highest formation energy of $\mathrm{Ho}_{2} \mathrm{RhSi}_{3}$ by 160 meV per atom which exceeds the limit of 25 meV per atom, see green markers in Fig. 8. Therefore, the $\mathrm{Eu}_{2} \mathrm{RhSi}_{3}$ compound in $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ or $\mathrm{Er}_{2} \mathrm{RhSi}_{3}$ structure type is significantly less stable.

The third compound of interest is $\mathrm{Eu}_{2} \mathrm{PtSi}_{3}$. In the $R_{2} \mathrm{PtSi}_{3}$ series only a few element combinations have not yet been experimentally confirmed. Nevertheless, we identified missing compounds for R between Nd and Gd . Due to the radioactivity and low abundance of Pm and the volatility of Sm , we chose the Eu compound for further investigation. In analogy to the Rh series, we additionally chose $R=\mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}$ as
references for formation energy and structure. In addition we modeled the not-yet-reported compound $\mathrm{Ho}_{2} \mathrm{PtSi}_{3}$. We decided to calculate the compounds in the reported $\mathrm{Er}_{2} \mathrm{RhSi}_{3}$ ($P \overline{6} 2 c$) symmetry and additionally in the higher symmetric type $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ as well as in the lowest possible symmetry $P 1$ (No. 1) to evaluate the influence of the degrees of freedom onto the formation energies. The energies for the $R_{2} \mathrm{PtSi}_{3}$ compounds range from -6.18 eV to -5.11 eV , see orange markers in Fig. 8. Except for Eu, the energies of different compounds and also different structure types are very similar. As expected, the energies of the lower symmetric $\mathrm{Er}_{2} \mathrm{RhSi}_{3}$ structure types are always lower than those of the highly symmetric type $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$, due to the additional degrees of freedom in atomic positions. The spread is between 0 meV for Gd and 28 meV for Ho per atom and about additional 1 meV going down to $P 1$ (No. 1). The energies of the low-symmetric versions of the $R_{2} \mathrm{PtSi}_{3}$ compounds are even lower than that of existing $\mathrm{Gd}_{2} \mathrm{PtSi}_{3}$. The formation energy of the (still) hypothetical $\mathrm{Ho}_{2} \mathrm{PtSi}_{3}$ in $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type structure is 33 meV per atom higher than that of $\mathrm{Gd}_{2} \mathrm{PtSi}_{3}$, thus this high-symmetry type is certainly not stable. However, the lower symmetry types will very probably be stable. The formation energy of $\mathrm{Eu}_{2} \mathrm{PtSi}_{3}$ is 14 meV per atom higher than for $\mathrm{Gd}_{2} \mathrm{PtSi}_{3}$; therefore, the compound is in the two considered symmetries most probably accessible as the thermodynamically stable phase. On the one hand, these data show that in some cases $\left(\mathrm{Eu}_{2} \mathrm{RhSi}_{3}, \mathrm{Eu}_{2} \mathrm{PtSi}_{3}\right.$ and $\left.\mathrm{Gd}_{2} \mathrm{PtSi}_{3}\right)$ the formation energy hardly changes for different structure types. On the other hand, the formation energy of different structure types may change so strongly that our relative limit of 25 meV per atom is by far exceeded and only the lower symmetric variations may be stable. This is the case for $\mathrm{Tb}_{2} \mathrm{PtSi}_{3}, \mathrm{Dy}_{2} \mathrm{PtSi}_{3}$ and $\mathrm{Ho}_{2} \mathrm{PtSi}_{3}$.

After analyzing those three R series, we discovered further characteristics in the $R-T$ diagram worth studying for different reasons. Compound $\mathrm{La}_{2} \mathrm{PdSi}_{3}$ attracted our attention because Chaika et al. (2001) and Behr et al. (2008) have already successfully synthesized this compound, but did not determine the lattice parameters or structural information during their investigations. We performed DFT calculations for $\mathrm{La}_{2} \mathrm{PdSi}_{3}$ using the $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ structure type as well. The formation energy is lower than for the chemically similar compound $\mathrm{La}_{2} \mathrm{CoSi}_{3}$ which was reported in the ordered structure type $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$. Thus, we conclude that the $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type may be a stable configuration for $\mathrm{La}_{2} \mathrm{PdSi}_{3}$, next to the disordered AlB_{2} type. The relaxed parameters $a=8.34 \AA$ and $c=4.38 \AA$ are very close to the lengths expected from the adjacent compounds $\mathrm{La}_{2} \mathrm{RhSi}_{3}$ and $\mathrm{Ce}_{2} \mathrm{PdSi}_{3}(a \approx 8.25 \AA, c \approx 4.3 \AA)$. We recommend checking $\mathrm{La}_{2} \mathrm{PdSi}_{3}$ for indicators of an ordered Si / T site, e.g. satellite reflections.

Furthermore, we wondered which structure would arise for stoichiometric BaSi_{2}. Most reported space groups of BaSi_{2} are orthorhombic (Imai \& Watanabe, 2010; Evers, 1980; Janzon et al., 1970; Kitano et al., 2001; Migas et al., 2007; Schäfer et al., 1963; Evers et al., 1977b, 1978a) and do not fit into our Bärnighausen diagram and are, therefore, not listed in Table 1 nor depicted in Figs. 4 and 9. The only exception is a hexagonal
phase determined by Gladyshevskii (1959). In fact, the original sample had Li impurities and exhibits the structure type $\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$, discovered by von Schnering et al. (1996). This finding explains the discrepancy with the tetragonal phases of the related alkaline earth compounds CaSi_{2} and SrSi_{2}, e.g. Evers et al. (1977a,b). We tested both an hexagonal and a tetragonal variant for BaSi_{2} to evaluate which symmetry is more stable. Additionally, we modeled SrSi_{2} in both the hypothetical AlB_{2} and the already reported ThSi_{2} structure type to compare the formation energies. As expected, the formation energy of tetragonal SrSi_{2} is lower than the one of hexagonal SrSi_{2}. The energies for both BaSi_{2} models are almost identical (-2.06 eV) and, thus, expected to be equally stable. Nevertheless, these data alone are not sufficient to convey the stability of BaSi_{2} to SrSi_{2} as the elements Ba and Sr are too different. Furthermore, given the degrees of freedom, the tetragonal model of BaSi_{2} relaxed into an orthorhombic lattice with differences in lattice parameters a and b in the order of 0.4%. It should be noted that the a parameters of hexagonal and tetragonal symmetry differ for both BaSi_{2} and SrSi_{2} compounds (see Table 18), although they are alike for dimorphic compounds of the family, e.g. GdSi_{2}.

Subsequently, we use the chemical similarity of Ba and Sr to evaluate which orthorhombic structure type is more favorable for compound $\mathrm{Sr}_{2} \mathrm{AgSi}_{3}$, as it is the only alkaline earth compound that has not yet been synthesized. Both, the $\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$ type of $(\mathrm{Ba}, \mathrm{Eu})_{2} \mathrm{AgSi}_{3}$ and the $\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$ type are reasonable. We excluded other structure types as other chemically similar compounds only crystallize in those two structures. Here, chemically similar means a noble metal T and R preferring the +II oxidation state (e.g. alkaline earth metals, Eu and Yb). For $T=\mathrm{Ag}, \mathrm{Sr}_{2} \mathrm{AgSi}_{3}$ is the only alkaline earth compound that has not yet been synthesized.

As a reference, we used $\mathrm{Ba}_{2} \mathrm{AgSi}_{3}$, also in both structure types. For $\mathrm{Ba}_{2} \mathrm{AgSi}_{3}$, the respective formation energies exhibited a clear preference for the reported $\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$ type

Figure 9
$R-T$ diagram of the $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds. The color of the markers symbolizes the range of ordering n, see Section 3.4. If the structure is disordered $\left(\mathrm{AlB}_{2}, \mathrm{ThSi}_{2}, \mathrm{GdSi}_{2}\right)$, then $n=0$ and the symbol is gray. If the structure is ordered, the range of ordering accords to the number of stacks along c in the unit cell. Up to three markers on one grid position are possible, representing different publications.
structure. However, the formation energies for both $\mathrm{Sr}_{2} \mathrm{AgSi}_{3}$ models are almost identical with a value of -2.83 eV , therefore we conclude that both structure types are equally stable. The formation energy of $\mathrm{Sr}_{2} \mathrm{AgSi}_{3}$ is slightly lower than that of $\mathrm{Ba}_{2} \mathrm{AgSi}_{3}$, which supports a stable structure.

Finally, we consider the potential tetragonal $R_{2} T \mathrm{Si}_{3}$ superstructure as determined in Section 3.1. We did not find reports on this ordered tetragonal structure and expect that it is energetically unfavored. Only a few articles on suitable compounds exist, mainly containing Th compounds (Albering et al., 1994; Lejay et al., 1983; Chevalier et al., 1986; Li et al., 2008; Raman, 1967; Kaczorowski \& Noël, 1993; Pöttgen \& Kaczorowski, 1993) as well as $\mathrm{U}_{2} \mathrm{CuSi}_{3}$ (Albering et al., 1994; Lejay et al., 1983; Chevalier et al., 1986), $\mathrm{La}_{2} \mathrm{AlSi}_{3}$ (Raman \& Steinfink, 1967), $\mathrm{Ce}_{2} \mathrm{AuSi}_{3}$ (Gordon et al., 1997), $\mathrm{Er}_{2} \mathrm{CuSi}_{3}$ and $\mathrm{Nd}_{2} \mathrm{AgSi}_{3}$. We chose $\mathrm{Nd}_{2} \mathrm{AgSi}_{3}$ for better comparability, as several compounds with either Nd or Ag have already been examined in the previous discussions. To compare our hypothetical tetragonal superstructure with an existing structure, we chose the hexagonal $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type, since the most obvious tetragonal ThSi_{2} type exhibits mixed positions. We further took the disilicide NdSi_{2} into account in both ThSi_{2} and AlB_{2} type structures.

Please note that the lattice parameters of the POTS type (calculated) are related to those of the ThSi_{2} type (experimental) by rotation and elongation by a factor of $\approx \sqrt{2}$. Thus, the interatomic distances of both tetragonal structure types of $\mathrm{Nd}_{2} \mathrm{AgSi}_{3}$ are approximately the same $a_{\mathrm{ThSi} 2}=4.12 \AA \approx 4.21 \AA$ $=a_{\text {POTS }} / \sqrt{2}$. For $\mathrm{Nd}_{2} \mathrm{CuSi}_{3}$, we compared three different symmetries, the high symmetry $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$, experimentally confirmed $\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)$ and low symmetry $P 1$ (No. 1). The lattice parameters of all three models are $a=8.06 \AA$ and $c \approx$ $4.24 \AA$, which is in good agreement with the experimental values $\left[\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)\right.$-type].

The formation energies of $\mathrm{Nd}_{2} \mathrm{AgSi}_{3}$ stoichiometry are -3.69 eV for the $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type and -3.72 eV for the tetragonal superstructure. With an absolute formation energy which is lower by 0.30 eV per atom, the tetragonal type is clearly favored. In general, the superstructural order for tetragonal symmetries may be suppressed for further reasons. On the one hand, the $3 \mathrm{D} \mathrm{Si} / T$ network itself may present kinetic barriers. On the other hand, the entropy of mixing may hinder structural ordering more severe for the degeneracies of the 3D Si/T network than for the planar stacking of hexagonal symmetries.

3.4. Structure distribution

Fig. 9 gives an overview of the scatter of structure types within the $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds. This figure adapts the $R-T$ grid of Fig. 4 with symbols announcing symmetry and range of order. To quantify the ordering within the different structure types, we defined the range of order as zero if the $\mathrm{Si} /$ T atoms do not order and otherwise as the number of Si / T layers along c in the unit cell. The range of order is highlighted by the color of the marker. The symmetry is marked by shape:
hexagon for hexagonal AlB_{2}-like, open star for orthorhombic AlB_{2}-like, diamond for tetragonal ThSi_{2}, elongated diamond for orthorhombic GdSi_{2}. For technical reasons, this diagram shows at most three reports of the same compound (left, right, bottom). Our algorithm chooses the datasets with the highest as well as the lowest a parameter and additional dataset with a different structure type, to depict the most significant variations. Fig. 9 visualizes the range of order in dependence on the atomic number of the R and T cations; it depicts the following trends:

First, most of the compounds in the grid exhibit an hexagonal AlB_{2}-like lattice. The other lattice types are mainly determined by the included R and T element. For example, the orthorhombic GdSi_{2} structure type arises exclusively for lanthanide disilicides. The tetragonal lattice is dominant for R $=\mathrm{Th}$ compounds as well as for the disilicides with light rare earth elements. Additional compounds with tetragonal lattice are $\mathrm{Ce}_{2} \mathrm{AuSi}_{3}, \mathrm{Nd}_{2} \mathrm{AgSi}_{3}$ and $\mathrm{Er}_{2} \mathrm{CuSi}_{3}$, all possessing a noble metal T element. Thus, the Fermi level of the T element affects the structural stability, see Nentwich et al. (2020).

Furthermore, the completely ordered orthorhombic structure types $\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$ and $\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$ are only reported for $R_{2} \mathrm{Ti}_{3}$ compounds with the monovalent ions $T=\mathrm{Ag}, \mathrm{Au}$ and the divalent ions $R=\mathrm{Ca}, \mathrm{Ba}, \mathrm{Eu}, \mathrm{Yb}$ (Cardoso Gil et al., 1999; Sarkar et al., 2013). The partially ordered structure type $\mathrm{U}_{2} \mathrm{RhSi}_{3}$ additionally arises for $\mathrm{U}_{2} \mathrm{PdSi}_{3}$ (Chevalier et al., 1996). Here, we do not consider the compound $\mathrm{Ba}_{2} \mathrm{LiSi}_{3}$ itself, since Li does not accord with our limitations to the T elements. Thus, the ordered orthorhombic AlB_{2}-like structure types are more probable if the T element is a monovalent atom and if the R element prefers the + II oxidation state - as for the alkaline earth metals.

Second, tetragonal LaSi_{2} does not follow the hexagonal symmetry of the disilicides with third group elements Sc and Y. This phenomenon illustrates the affiliation of Sc and Y to the heavy and of La to the light rare earth elements (RÖMPP Online, 2011).

Third, with increasing atomic number of R within the lanthanide disilicides, three structure types succeed each other. The tetragonal ThSi_{2} type is the dominant one for light rare earth elements $(\mathrm{Ce}-\mathrm{Eu})$, followed by the orthorhombic GdSi_{2} type in the intermediate range and the hexagonal AlB_{2} type for the heavy rare earth elements (according to the classification by Sitzmann; RÖMPP Online, 2011). This development is present in all samples independent of their thermal treatment, see Nentwich et al. (2020). This meets an observation of Mayer et al. (1967): upon heating the samples to $1600^{\circ} \mathrm{C}$, they discovered two phase transformations, one from AlB_{2} type to GdSi_{2} type and another one from GdSi_{2} type to ThSi_{2} type. These transformations are reversible. A decreasing atomic number within the lanthanide group is accompanied with a significantly increasing radius and therefore with a higher space requirement. Increased thermal lattice vibrations at higher temperatures also cause higher space requirements. Thus, annealing has the same effect as decreasing the atomic number of R.

4. Conclusions

We present an extensive literature study of the $R \mathrm{Si}_{2}$ and $R_{2} \mathrm{TSi}_{3}$ compounds crystallizing in $\mathrm{AlB}_{2^{-}}$and ThSi_{2}-like structures complemented by DFT calculations. The local similarities between these structures, e.g. threefold planar coordination of the Si / T atoms, twelvefold coordination of the R elements, are highlighted and discussed. Additionally, we systematized the structure data and arranged them in a Bärnighausen diagram showing the relationships between structure types. We were able to determine the space groups of the ordered nonstoichiometric disilicides as piezoelectric $P \overline{6} 2 m$ (No. 189), $P \overline{6} 2 c$ (No. 190) and $P 2 m m$ (No. 25).

According to Bodak \& Gladyshevskii (1985), compounds $\mathrm{La}_{2} \mathrm{FeSi}_{3}, \mathrm{La}_{2} \mathrm{CoSi}_{3}, \mathrm{La}_{2} \mathrm{NiSi}_{3}, \mathrm{Ce}_{2} \mathrm{CuSi}_{3}$ and $\mathrm{Ce}_{2} \mathrm{NiSi}_{3}$ form a solid solution of structure type AlB_{2} (disordered Si / T sites). Nevertheless, as evident from the discussion, we conclude that superstructures are expected to be the thermodynamic equilibrium structures, although they may be hard to synthesize, as they require obtaining the exact chemical composition on the one hand and for a careful thermal treatment on the other hand.

Comparison of the symmetry distribution within the $R-T$ grid showed a special characteristic of the structure types $\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$ and $\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$. These structure types only arise if R has the formal + II oxidation state and T is either Au or Ag. Additionally, these structures are reported to have ionic character, whereas all other compounds are reported to be metallic. The given $R-T$ diagram also shows a transition from tetragonal ThSi_{2} to orthorhombic GdSi_{2} to hexagonal AlB_{2} type within the lanthanide disilicides with increasing atomic number of R. The structure types behave similarly with increasing temperature when respective crystals are heated.

Figs. 5 to 7 emphasize the number of systematic investigations of the $R \mathrm{Si}_{2}$ and $R_{2} T \mathrm{Si}_{3}$ compounds. On the one hand, these systematic investigations reduce systematic errors. On the other hand, the author's expectations may also have an impact on the evaluation (such as the structure type).

Concluding the DFT analysis, hypothetical compounds $\mathrm{Ho}_{2} \mathrm{PtSi}_{3}, \mathrm{Pr}_{2} \mathrm{CoSi}_{3}, \mathrm{Eu}_{2} \mathrm{PtSi}_{3}$ and $\mathrm{Nd}_{2} \mathrm{CoSi}_{3}$ are suggested to be stable, whereas $\mathrm{Eu}_{2} \mathrm{RhSi}_{3}$ will be unstable. Due to the positive results for $\mathrm{Pr}_{2} \mathrm{CoSi}_{3}$ and $\mathrm{Nd}_{2} \mathrm{CoSi}_{3}$, we recommend reinvestigating the $R_{2} T S i_{3}$ compounds reported by Mayer \& Tassa (1969), with $R=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}$ and $T=\mathrm{Fe}, \mathrm{Co}$, Ni (originally with $R_{2} T_{0.8} \mathrm{Si}_{3.2}$ stoichiometry). To complete the crystal structure information of $\mathrm{La}_{2} \mathrm{PdSi}_{3}$, we predict the lattice parameters $a=8.34 \AA$ and $c=4.38 \AA$ in a $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ type structure. With respect to the question whether $\mathrm{Sr}_{2} \mathrm{AgSi}_{3}$ prefers the $\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$ or the $\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$ structure type, both models result in almost identical formation energies of -2.83 eV and are equally stable from a theoretical point of view. Likewise, BaSi_{2} may exhibit hexagonal as well as tetragonal symmetry, as the formation energy of both models is -1.03 eV . In comparison, the potential tetragonal superstructure is less favorable than a highly symmetric hexagonal
structure. The results of this work do not exclude the existence of structures that are equally or more stable than the ones presented here. The solid solutions with disorder at the Si / T position may always present potential candidates for the ground state of a specific $R_{2} \mathrm{TSi}_{3}$ compound.

At this point, the question of particular driving forces for a certain type of symmetry and the multiplicity of the superstructure symmetry types and structure types remains. This question will be addressed in the second part of this work (Nentwich et al., 2020) focusing on the electronic structure.

APPENDIX A

Wyckoff positions of the different superstructures

Wyckoff positions of the different superstructures are presented here in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,16 and 17.

Table 2
Wyckoff positions of the hexagonal aristotypic structure type AlB_{2} with space group $P 6 / m m m$ (No. 191) and lattice parameters $a_{\mathrm{h}} \approx 3.00, c_{\mathrm{h}} \approx$ $3.24 \AA$.

Element	Wyckoff symbol	x	y	z
R	$1 a$	0	0	0
Si / T	$2 d$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{2}$

Table 3
Wyckoff positions of the hexagonal structure type $\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ with space group P6/mmm (No. 191) and lattice parameters $a \approx 2 a_{\mathrm{h}}, c \approx c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$1 a$	0	0	0
R	$3 f$	$\frac{1}{2}$	0	0
T	$2 d$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{2}$
Si	$6 m$	$x_{\mathrm{Si}} \approx \frac{1}{6}$	$2 x_{\mathrm{Si}} \approx \frac{2}{6}$	$\frac{1}{2}$

Table 4
Wyckoff positions of the hexagonal structure type $\mathrm{U}_{2} \mathrm{RuSi}_{3}$ with space group $P 6 / \mathrm{mmm}$ (No. 191) and lattice parameters $a \approx 2 a_{\mathrm{h}}, c \approx c_{\mathrm{h}}$.
The Si site is only half occupied.

Element	Wyckoff symbol	x	y	z
R	$1 a$	0	0	0
R	$3 f$	$\frac{1}{2}$	0	0
T	$2 d$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{2}$
Si	$12 o$	$x_{\mathrm{Si}} \approx \frac{1}{6}$	$2 x_{\mathrm{Si}} \approx \frac{2}{6}$	$z_{\mathrm{Si}} \approx \frac{1}{2}$

Table 5
Wyckoff positions of the hexagonal structure type $\mathrm{Er}_{2} \mathrm{RhSi}_{3}$ with space group $P 6_{3} / m m c$ (No. 194) and lattice parameters $a \approx 2 a_{\mathrm{h}}, c \approx 2 c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$2 b$	0	0	$\frac{1}{4}$
R	$6 h$	$x_{R} \approx \frac{1}{2}$	$2 x_{R} \approx 0$	$\frac{1}{4}$
T	$4 f$	$\frac{1}{3}$	$\frac{2}{3}$	$z_{T} \approx 0$
Si	$12 k$	$x_{\mathrm{Si}} \approx \frac{1}{6}$	$2 x_{\mathrm{Si}} \approx \frac{1}{3}$	$z_{\mathrm{Si}} \approx 0$

Table 6
Wyckoff positions of the hexagonal structure type $\mathrm{Er}_{2} \mathrm{RhSi}_{3}$ with space group $P \overline{6} 2 c$ (No. 190) and lattice parameters $a \approx 2 a_{\mathrm{h}}, c \approx 2 c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$2 b$	0	0	$\frac{1}{4}$
R	$6 h$	$x_{R} \approx \frac{1}{2}$	$y_{R} \approx \frac{1}{2}$	$\frac{1}{4}$
T	$4 f$	$\frac{1}{3}$	$\frac{2}{3}$	$z_{T} \approx 0$
Si	$12 h$	$x_{\mathrm{Si}} \approx \frac{1}{6}$	$y_{\mathrm{Si}} \approx \frac{1}{3}$	$z_{\mathrm{Si}} \approx 0$

Table 7
Wyckoff positions of the orthorhombic structure type $\mathrm{Ho}_{2} \mathrm{PdSi}_{3}$ with space group $I 112 / b$ (No. 15) and lattice parameters $a \approx 2 a_{\mathrm{h}}, c \approx 8 c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$4 e$	0	$\frac{1}{4}$	$z_{R, 1} \approx 0$
R	$4 e$	0	$\frac{1}{4}$	$z_{R, 2} \approx \frac{1}{8}$
R	$4 e$	0	$\frac{1}{4}$	$z_{R, 3} \approx \frac{2}{8}$
R	$4 e$	0	$\frac{1}{4}$	$z_{R, 4} \approx \frac{3}{8}$
R	$4 e$	0	$\frac{1}{4}$	$z_{R, 5} \approx \frac{4}{8}$
R	$4 e$	0	$\frac{1}{4}$	$z_{R, 6} \approx \frac{5}{8}$
R	$4 e$	0	$\frac{1}{4}$	$z_{R, 7} \approx \frac{6}{8}$
R	$4 e$	0	$\frac{1}{4}$	$z_{R, 8} \approx \frac{7}{8}$
T	$8 f$	$x_{T, 1} \approx \frac{1}{6}$	$y_{T, 1} \approx \frac{1}{12}$	$z_{T, 1} \approx \frac{7}{16}$
T	$8 f$	$x_{T, 2} \approx \frac{1}{6}$	$y_{T, 2} \approx \frac{1}{12}$	$z_{T, 2} \approx \frac{13}{16}$
Si	$8 f$	$x_{\mathrm{Si}, 1} \approx \frac{1}{6}$	$y_{\mathrm{Si}, 1} \approx \frac{1}{12}$	$z_{\mathrm{Si}, 1} \approx \frac{1}{16}$
Si	$8 f$	$x_{\mathrm{Si}, 2} \approx \frac{1}{6}$	$y_{\mathrm{Si}, 2} \approx \frac{1}{12}$	$z_{\mathrm{Si}, 2} \approx \frac{3}{16}$
Si	$8 f$	$x_{\mathrm{Si}, 3} \approx \frac{1}{6}$	$y_{\mathrm{Si}, 3} \approx \frac{1}{12}$	$z_{\mathrm{Si}, 3} \approx \frac{5}{16}$
Si	$8 f$	$x_{\mathrm{Si}, 4} \approx \frac{1}{6}$	$y_{\mathrm{Si}, 4} \approx \frac{1}{12}$	$z_{\mathrm{Si}, 4} \approx \frac{9}{16}$
Si	$8 f$	$x_{\mathrm{Si}, 5} \approx \frac{1}{6}$	$y_{\mathrm{Si}, 5} \approx \frac{1}{12}$	$z_{\mathrm{Si}, 5} \approx \frac{11}{16}$
Si	$8 f$	$x_{\mathrm{Si}, 6} \approx \frac{1}{6}$	$y_{\mathrm{Si}, 6} \approx \frac{1}{12}$	$z_{\mathrm{Si}, 6} \approx \frac{15}{16}$

Table 8
Wyckoff positions of the orthorhombic structure type $\mathrm{Er}_{3} \square \mathrm{Si}_{5}$ with space group Pmmm (No. 47) and lattice parameters $a \approx a_{\mathrm{h}}, b \approx \sqrt{3} a_{\mathrm{h}}, c \approx c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$1 a$	0	0	0
R	$1 f$	$\frac{1}{2}$	$\frac{1}{2}$	0
Si / T	$2 p$	$\frac{1}{2}$	$y_{\mathrm{Si} / T, 1} \approx \frac{1}{4}$	$\frac{1}{2}$
Si / T	$2 n$	0	$y_{\mathrm{Si} / T, 2} \approx \frac{1}{4}$	$\frac{1}{2}$

Table 9
Wyckoff positions of the orthorhombic structure type $\mathrm{U}_{2} \mathrm{RhSi}_{3}$ with space group Pmmm (No. 47) and lattice parameters $a \approx a_{\mathrm{h}}, b \approx \sqrt{3} a_{\mathrm{h}}, c \approx c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$1 a$	0	0	0
R	$1 f$	$\frac{1}{2}$	$\frac{1}{2}$	0
Si / T	$2 n$	0	$y_{T} \approx \frac{1}{3}$	$\frac{1}{2}$
Si	$2 p$	$\frac{1}{2}$	$y_{\mathrm{Si}} \approx \frac{5}{6}$	$\frac{1}{2}$

Table 10
Wyckoff positions of the orthorhombic structure type $\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$ with space group Fmmm (No. 69) and lattice parameters $a \approx 2 a_{\mathrm{h}}, b \approx 2 c_{\mathrm{h}}, c \approx$ $2 \sqrt{3} a_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$8 i$	0	0	$z_{R} \approx \frac{1}{4}$
R	$8 f$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
T	$8 h$	0	$y_{T} \approx \frac{2}{3}$	0
Si	$8 h$	0	$y_{\mathrm{S}, 1} \approx \frac{1}{6}$	0
Si	$16 o$	$x_{\mathrm{Si}, 2} \approx \frac{1}{4}$	$y_{\mathrm{Si}, 2} \approx \frac{1}{12}$	0

Table 11
Wyckoff positions of the orthorhombic structure type $\mathrm{Ho}_{3} \square \mathrm{Si}_{5}$ with space group $P 2 m m$ (No. 25) and lattice parameters $a \approx 3 a_{\mathrm{h}}, b \approx \sqrt{3} a_{\mathrm{h}}, c \approx 2 c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$1 a$	0	$y_{R, 1} \approx 0$	0
R	$1 b$	$\frac{3}{6}$	$y_{R, 2} \approx \frac{1}{2}$	0
R	$2 g$	$x_{R, 1} \approx \frac{2}{6}$	$y_{R, 3} \approx 0$	0
R	$2 g$	$x_{R, 2} \approx \frac{1}{6}$	$y_{R, 4} \approx \frac{1}{2}$	0
\square	$1 c$	0	$y_{\square, 1} \approx \frac{2}{6}$	$\frac{1}{2}$
\square	$1 d$	$\frac{3}{6}$	$y_{\square, 1} \approx \frac{5}{6}$	$\frac{1}{2}$
Si	$1 c$	0	$y_{\mathrm{Si}, 1} \approx \frac{4}{6}$	$\frac{1}{2}$
Si	$1 d$	$\frac{3}{6}$	$y_{\mathrm{Si}, 2} \approx \frac{5}{6}$	$\frac{1}{2}$
Si	$2 h$	$x_{\mathrm{Si}, 1} \approx \frac{2}{6}$	$y_{\mathrm{S}, 3} \approx \frac{4}{6}$	$\frac{1}{2}$
Si	$2 h$	$x_{\mathrm{Si}, 2} \approx \frac{1}{6}$	$y_{\mathrm{Si}, 4} \approx \frac{5}{6}$	$\frac{1}{2}$
Si	$2 h$	$x_{\mathrm{Si}, 3} \approx \frac{1}{6}$	$y_{\mathrm{Si}, 5} \approx \frac{1}{6}$	$\frac{1}{2}$
Si	$2 h$	$x_{\mathrm{Si}, 4} \approx \frac{2}{6}$	$y_{\mathrm{Si}, 6} \approx \frac{2}{6}$	$\frac{1}{2}$

Table 12
Wyckoff positions of the orthorhombic structure type $\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$ with space group Fddd (No. 70) and lattice parameters $a \approx 2 a_{\mathrm{h}}, b \approx 2 \sqrt{3} a_{\mathrm{h}}, c$ $\approx 4 c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$16 g$	$\frac{1}{8}$	$\frac{1}{8}$	$z_{R, 1} \approx \frac{2}{8}$
R	$16 g$	$\frac{1}{8}$	$\frac{1}{8}$	$z_{R, 2} \approx \frac{6}{8}$
T	$16 f$	$\frac{1}{8}$	$y_{T} \approx \frac{7}{24}$	$\frac{1}{8}$
Si	$16 f$	$\frac{1}{8}$	$y_{\mathrm{Si}, 1} \approx \frac{11}{24}$	$\frac{1}{8}$
Si	$32 h$	$x_{\mathrm{Si}, 2} \approx \frac{1}{8}$	$y_{\mathrm{Si}, 2} \approx \frac{7}{24}$	$z_{\mathrm{Si}, 2} \approx \frac{1}{8}$

Table 13
Wyckoff positions of the Si vacancy cell of structure type $\mathrm{Yb}_{3} \square \mathrm{Si}_{5}$ with space group $P \overline{6} 2 m$ (No. 189) and lattice parameters $a \approx \sqrt{3} a_{\mathrm{h}}, c \approx c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$3 f$	$x_{R} \approx \frac{2}{3}$	0	0
\square	$1 b$	0	0	$\frac{1}{2}$
Si	$3 g$	$x_{\mathrm{Si}} \approx \frac{1}{3}$	0	$\frac{1}{2}$
Si	$2 d$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{2}$

Table 14
Wyckoff positions of the Si vacancy cell of structure type $\mathrm{Tb}_{3} \square \mathrm{Si}_{5}$ with space group $P \overline{6} 2 c$ (No. 190) and lattice parameters $a \approx \sqrt{3} a_{\mathrm{h}}, c \approx 2 c_{\mathrm{h}}$.

Element	Wyckoff symbol	x	y	z
R	$6 g$	$x_{R} \approx \frac{1}{3}$	0	0
\square	$2 c$	0	0	$\frac{1}{4}$
Si	$6 h$	$x_{\mathrm{Si}} \approx \frac{1}{3}$	$y_{\mathrm{Si}} \approx \frac{1}{3}$	$\frac{1}{4}$
Si	$2 d$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{4}$
Si	$2 b$	0	0	$\frac{1}{4}$

Table 15
Wyckoff positions of the tetragonal structure type ThSi_{2} with space group $I 4_{1} /$ amd (No. 141) with lattice parameters $a_{\mathrm{t}} \approx a_{\mathrm{h}}, c_{\mathrm{t}} \approx 13.4-14.4 \AA$.

Element	Wyckoff symbol	x	y	z
R	$4 a$	0	0	$\frac{1}{8}$
Si / T	$8 e$	0	0	$z_{\mathrm{Si} / T} \approx \frac{7}{24}$

Table 16
Wyckoff positions of the orthorhombic structure type GdSi_{2} with space group Imma (No. 74) and lattice parameters $a \approx a_{\mathrm{t}}, c \approx c_{\mathrm{t}}$.

Element	Wyckoff symbol	x	y	z
R	$4 e$	0	$\frac{1}{4}$	$z_{R} \approx \frac{1}{8}$
Si / T	$4 e$	0	$\frac{1}{4}$	$z_{\mathrm{Si} / \mathrm{T}, 1} \approx \frac{7}{24}$
Si / T	$4 e$	0	$\frac{1}{4}$	$z_{\mathrm{Si} / \mathrm{T}, 2} \approx \frac{11}{24}$

Table 17
Wyckoff positions of the proposed orthorhombic superstructure of the tetragonal branch with space group $C 222_{1}($ No. 20) and lattice parameters $a \approx \sqrt{2} a_{\mathrm{t}}, b \approx c_{\mathrm{t}}, c \approx \sqrt{2} a_{\mathrm{t}}$.

Element	Wyckoff symbol	x	y	z
R	$4 a$	$x_{R} \approx \frac{1}{4}$	0	0
R	$4 b$	0	$y_{R} \approx \frac{1}{4}$	$\frac{1}{4}$
T	$4 b$	$x_{T} \approx 0$	$y_{T} \approx \frac{4}{12}$	$z_{T} \approx \frac{1}{4}$
Si	$4 b$	$x_{\mathrm{Si}, 1} \approx 0$	$y_{\mathrm{Si}, 1} \approx \frac{2}{12}$	$z_{\mathrm{Si}, 1} \approx \frac{1}{4}$
Si	$8 c$	$x_{\mathrm{Si}, 2} \approx \frac{1}{4}$	$y_{\mathrm{Si}, 2} \approx \frac{1}{12}$	$z_{\mathrm{Si}, 2} \approx 0$

APPENDIX B

Fundamentals of the DFT calculations

To calculate the formation energies with DFT, it is necessary to know the energy of the components that make up the compound. Table 19 contains a list of the underlying singleelement compounds used to calculate the formation energies in Table 18.

Table 18
Formation energies (eV) and lattice parameters (A) calculated with DFT.
Formation energies are given for $R_{2} \mathrm{Si}_{4}$ and $R_{2} T \mathrm{Si}_{3}$ compounds, respectively (same amount of atoms within calculated range). Compounds marked with * have already been reported in the literature.

Compound	Structure type	Reported			Calculated			$\Delta E^{\text {tot }}$
		a	b	c	a	b	c	
Co series								
$\mathrm{La}_{2} \mathrm{CoSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}{ }^{*}$	8.185	a	4.350	8.14	a	4.34	-4.52
$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}{ }^{*}$	8.110	a	4.220	8.01	a	4.08	-4.61
$\mathrm{Pr}_{2} \mathrm{CoSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.03	a	4.11	-4.58
$\mathrm{La}_{2} \mathrm{CoSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$ *	8.185	a	4.350	8.14	a	4.34	-4.52
$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}{ }^{*}$	8.110	a	4.220	8.01	a	4.08	-4.61
$\mathrm{Pr}_{2} \mathrm{CoSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.03	a	4.11	-4.58
$\mathrm{Nd}_{2} \mathrm{CoSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.04	a	4.15	-4.37
Rh series								
$\mathrm{Eu}_{2} \mathrm{RhSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.26	a	4.27	-4.35
	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	-	-	-	8.26	a	8.55	-4.34
$\mathrm{Gd}_{2} \mathrm{RhSi}_{3}$	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$ *	8.112	a	7.976	8.21	a	8.02	-6.68
$\mathrm{Tb}_{2} \mathrm{RhSi}_{3}$	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}{ }^{*}$	8.110	a	7.860	8.18	a	7.90	-5.51
$\mathrm{Dy}_{2} \mathrm{RhSi}_{3}$	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}{ }^{*}$	8.097	a	7.823	8.18	a	7.90	-5.45
$\mathrm{Ho}_{2} \mathrm{RhSi}_{3}$	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}{ }^{*}$	8.086	a	7.804	8.18	a	7.89	-5.31
Pt series								
$\mathrm{Eu}_{2} \mathrm{PtSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.27	a	4.34	-5.11
	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	-	-	-	8.27	a	8.67	-5.11
$\mathrm{Gd}_{2} \mathrm{PtSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.17	a	4.14	-5.97
	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}{ }^{*}$	8.139	a	8.303	8.17	8.17	8.28	-5.97
$\mathrm{Tb}_{2} \mathrm{PtSi}_{3}$		-	-	-	8.15	a	4.08	-5.92
	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)^{*}$	8.122	a	8.237	8.16	a	8.18	-6.17
	$P 1$	-	-	-	8.16	a	8.17	-6.18
$\mathrm{Dy}_{2} \mathrm{PtSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.16	a	4.07	-5.84
	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c) *$	-	-	-	8.22	8.23	8.33	-6.14
	$P 1$	8.100	a	8.200	8.16	a	8.14	-6.14
$\mathrm{Ho}_{2} \mathrm{PtSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.16	a	4.07	-5.77
	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}$	-	-	-	8.16	a	8.13	-6.04
	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)$	-	-	-	8.16	8.16	8.10	-6.04
	$P 1$	-	-	-	8.16	a	8.11	-6.05
$\mathrm{La}_{2} \mathrm{PdSi}_{3}$								
$\mathrm{La}_{2} \mathrm{PdSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}{ }^{*}$	-	-	-	8.34	a	4.38	-5.54
SrSi_{2} versus BaSi_{2}								
SrSi_{2}	ThSi ${ }_{2}$ *	4.438	a	13.830	4.46	4.46	13.82	-2.21
	AlB_{2}	-	-	-	4.14	a	4.64	-1.90
BaSi_{2}	ThSi_{2}	-	-	-	4.67	4.67	14.16	-2.06

Table 15 (continued)

Compound	Structure type	Reported			Calculated			$\Delta E^{\text {tot }}$
		a	b	c	a	b	c	
	AlB_{2}	-	-	-	4.17	a	5.06	-2.06
$\mathrm{Sr}_{2} \mathrm{AgSi}_{3}$ versus $\mathrm{Ba}_{2} \mathrm{AgSi}_{3}$								
$\mathrm{Sr}_{2} \mathrm{AgSi}_{3}$	$\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}$	-	-	-	8.48	14.69	18.56	-2.83
	$\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$	-	-	-	8.48	9.28	14.67	-2.74
$\mathrm{Ba}_{2} \mathrm{AgSi}_{3}$	$\mathrm{Ba}_{4} \mathrm{Li}_{2} \mathrm{Si}_{6}{ }^{*}$	8.613	14.927	19.639	8.63	14.97	19.84	-2.74
	$\mathrm{Ca}_{2} \mathrm{AgSi}_{3}$	-	-	-	9.11	10.19	15.58	-2.36
Potential tetragonal structure with ordered Si/T sites								
NdSi_{2}	$\mathrm{ThSi}_{2}{ }^{*}$	3.968	a	13.715	4.12	a	14.05	-3.97
	AlB_{2}	-	-	-	4.08	a	4.13	-4.20
$\mathrm{Nd}_{2} \mathrm{AgSi}_{3}$	$\mathrm{ThSi}_{2}{ }^{*}$	4.175	a	14.310	-	-	-	-
	POTS	-	-	-	5.96	5.93	14.54	-3.72
	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.35	a	4.28	-3.69
$\mathrm{Nd}_{2} \mathrm{PdSi}_{3}$	AlB_{2} *	4.103	a	4.204	-	-	-	-
	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.26	a	4.24	-5.17
$\mathrm{Nd}_{2} \mathrm{CuSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}$	-	-	-	8.06	a	4.26	-4.23
	$\mathrm{Er}_{2} \mathrm{RhSi}_{3}(P \overline{6} 2 c)^{*}$	8.076	a	8.440	8.07	a	8.46	-4.54
	$P 1$	-	-	-	8.06	a	8.44	-4.14
$\mathrm{Nd}_{2} \mathrm{NiSi}_{3}$	$\mathrm{Ce}_{2} \mathrm{CoSi}_{3}{ }^{*}$	4.020	a	4.190	7.98	a	4.14	-6.32

Table 19
Space groups of the unary R crystals used for standardization of the formation energies.

Atomic number	Element	Space group	ICSD code
14	Si	$F d \overline{3} m$ (No. 227)	51688
27	Co	$\mathrm{Pb}_{3} / \mathrm{mmc}$ (No. 194)	184251
28	Ni	Fm $\overline{3} m$ (No. 225)	646089
38	Sr	$F m \overline{3} m$ (No. 225)	652875
45	Rh	$F m \overline{3} m$ (No. 225)	171677
46	Pd	$F m \overline{3} m$ (No. 225)	76148
47	Ag	$F m \overline{3} m$ (No. 225)	181730
56	Ba	$\operatorname{Im} \overline{3} m$ (No. 229)	108091
57	La	$\mathrm{P6}_{3} / m m c$ (No. 194)	641382
58	Ce	$F m \overline{3} m$ (No. 225)	620620
59	Pr	$F m \overline{3} m$ (No. 225)	649185
60	Nd	$\mathrm{Pb}_{3} / \mathrm{mmc}$ (No. 194)	164281
63	Eu	$\operatorname{Im} \overline{3} m$ (No. 229)	604033
64	Gd	$\mathrm{P}_{3} / \mathrm{mmc}$ (No. 194)	184250
65	Tb	$R \overline{3} m H$ (No. 166)	652944
66	Dy	$\mathrm{P}_{3} / \mathrm{mmc}$ (No. 194)	95172
67	Но	$R \overline{3} m H$ (No. 166)	639322
78	Pt	$F m \overline{3} m$ (No. 225)	649490

Funding information

Funding for this research was provided by: European regional development fund (grant No. 100109976); Federal Ministry of Education and Research (grant No. 03EK3029A; grant No. 03SF0542A); Helmholtz Excellence Network (grant No. ExNet 0026); Deutsche Forschungsgemeinschaft (grant No. 324641898).

References

Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. \& Etourneau, J. (1994). J. Alloys Compd. 206, 133139.

Auffret, S., Pierre, J., Lambert, B., Soubeyroux, L. J. \& Chroboczek, J. A. (1990). Physica B, 162, 271-280.

Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. \& Siaud, E. (1991). Physica B, 173, 265-276.
d'Avitaya, F. A., Perio, A., Oberlin, J.-C., Campidelli, Y. \& Chroboczek, J. A. (1989). Appl. Phys. Lett. 54, 2198-2200.
Baptist, R., Ferrer, S., Grenet, G. \& Poon, H. C. (1990). Phys. Rev. Lett. 64, 311-314.
Baptist, R., Pellissier, A. \& Chauvet, G. (1988). Solid State Commun. 68, 555-559.
Bärnighausen, H. (1980). Commun. Math. Chem. 9, 139-175.
Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. \& Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.
Behr, G., Löser, W., Souptel, D., Fuchs, G., Mazilu, I., Cao, C., Köhler, A., Schultz, L. \& Büchner, B. (2008). J. Cryst. Growth, 310, 22682276.

Benesovsky, F., Nowotny, H., Rieger, W. \& Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.
Bertaut, E. F. \& Blum, P. (1950). Acta Cryst. 3, 319.
Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.
Bodak, O. I. \& Gladyshevskii, E. I. (1968). Dopovi. Akad. Nauk Ukr. RSR Ser. A, 10, 944.
Bodak, O. I. \& Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.
Bordet, P., Affronte, M., Sanfilippo, S., Núñez-Regueiro, M., Laborde, O., Olcese, G. L., Palenzona, A., LeFloch, S., Levy, D. \& Hanfland, M. (2000). Phys. Rev. B, 62, 11392-11397.

Boutarck, N., Pierre, J., Lambert-Andron, B., L'Heritier, P. \& Madar, R. (1994). J. Alloys Compd. 204, 251-260.

Brauer, G. \& Haag, H. (1950). Naturwissenschaften, 37, 210-211.
Brauer, G. \& Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.
Brauer, G. \& Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.
Brown, A. (1961). Acta Cryst. 14, 860-865.
Brown, A. \& Norreys, J. J. (1959). Nature, 183, 673.
Brown, A. \& Norreys, J. J. (1961). Nature, 191, 61-62.
Brutti, S., Nguyen-Manh, D. \& Pettifor, D. (2006). Intermetallics, 14, 1472-1486.
Cao, C., Blum, C. G. F. \& Löser, W. (2014). J. Cryst. Growth, 401, 593595.

Cao, C., Blum, C. G. F., Ritschel, T., Rodan, S., Giebeler, L., Bombor, D., Wurmehl, S. \& Löser, W. (2013). CrystEngComm, 15, 90529056.

Cao, C., Klingeler, R., Vinzelberg, H., Leps, N., Löser, W., Behr, G., Muranyi, F., Kataev, V. \& Büchner, B. (2010). Phys. Rev. B, 82, 134446.

Cao, C., Löser, W., Behr, G., Klingeler, R., Leps, N., Vinzelberg, H. \& Büchner, B. (2011). J. Cryst. Growth, 318, 1009-1012.
Cardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. \& von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285-293. Chaika, A. N., Ionov, A. M., Busse, M., Molodtsov, S. L., Majumdar, S., Behr, G., Sampathkumaran, E. V., Schneider, W. \& Laubschat, C. (2001). Phys. Rev. B, 64, 125121.

Chevalier, B., Lejay, P., Etourneau, J. \& Hagenmuller, P. (1983). Mater. Res. Bull. 18, 315-330.
Chevalier, B., Lejay, P., Etourneau, J. \& Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.
Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. \& Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.

Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. \& Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.

Coffinberry, A. S. \& Ellinger, F. H. (1955). Proceedings of the United Nations International Conference on the Peaceful Uses of Atomic Energy, Vol. 8, p. 826.
Demchenko, P., Bodak, O. I. \& Muratova, L. (2002). J. Alloys Compd. 346, 170-175.
Dhar, S. K., Balasubramanium, R., Pattalwar, S. M. \& Vijayaraghavan, R. (1994). J. Alloys Compd. 210, 339-342.
Dhar, S. K., Gschneidner, K. A., Lee, W. H., Klavins, P. \& Shelton, R. N. (1987). Phys. Rev. B, 36, 341-351.

Dijkman, W. H., Moleman, A. C., Kesseler, E., de Boer, F. R. \& de Chatel, P. F. (1982). Valence Instabilities. Proceedings of the International Conference held 13-16 April 1982 in Zürich, Switzerland, edited by P. Wachter and H. Boppart, p. 515. NorthHolland Publishing Company.
Dshemuchadse, J. (2008). Diplomarbeit, Technische Universität Dresden, Germany.
Dwight, A. E. (1982). Report ANL-82-14. Argonne National Laboratory, IL, USA.
Eisenmann, B., Riekel, C., Schäfer, H. \& Weiss, A. (1970). Z. Anorg. Allg. Chem. 372, 325-331.
Enyashin, A. N. \& Gemming, S. (2007). Phys. Status Solidi B, 244, 3593-3600.
Eremenko, V. N., Listovnichii, V. E., Luzan, S. P., Buyanov, Y. I. \& Martsenyuk, P. S. (1995). J. Alloys Compd. 219, 181-184.
Evers, J. (1979). J. Solid State Chem. 28, 369-377.
Evers, J. (1980). J. Solid State Chem. 32, 77-86.
Evers, J., Oehlinger, G. \& Weiss, A. (1979). Z. Naturforsch. Teil B, 34, 358-359.
Evers, J., Oehlinger, G. \& Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.
Evers, J., Oehlinger, G. \& Weiss, A. (1977b). Angew. Chem. 89, 673674.

Evers, J., Oehlinger, G. \& Weiss, A. (1978a). Angew. Chem. 90, 562563.

Evers, J., Oehlinger, G. \& Weiss, A. (1978b). J. Less-Common Met. 60, 249-258.
Evers, J., Oehlinger, G. \& Weiss, A. (1980). J. Less-Common Met. 69, 399-402.
Evers, J., Oehlinger, G., Weiss, A. \& Hulliger, F. (1983). J. LessCommon Met. 90, L19-L23.
Felner, I. \& Schieber, M. (1973). Solid State Commun. 13, 457-461.
Flores-Livas, J. A., Debord, R., Botti, S., San Miguel, A., Pailhès, S. \& Marques, M. A. L. (2011). Phys. Rev. B, 84, 184503.
Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.
Frontzek, M. D., Kreyssig, A., Doerr, M., Hoffman, J., Hohlwein, D., Bitterlich, H., Behr, G. \& Loewenhaupt, M. (2004). Physica B, 350, E187-E189.
Frontzek, M. D., Kreyssig, A., Doerr, M., Rotter, M., Behr, G., Löser, W., Mazilu, I. \& Loewenhaupt, M. (2006). J. Magn. Magn. Mater. 301, 398-406.

Gemming, S., Enyashin, A. \& Schreiber, M. (2006). Amorphisation at Heterophase Interfaces. In Parallel Algorithms and Cluster Computing, Lecture Notes in Computational Science and Engineering, edited by K. H. Hoffmann and A. Meyer, pp. 235-254. Springer.
Gemming, S. \& Seifert, G. (2003). Phys. Rev. B, 68, 075416.
Gladyshevskii, E. I. (1959). Dopov. Akad. Nauk. Ukr. RSR, p. 294.
Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.

Gladyshevskii, E. I. \& Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.
Gladyshevskii, E. I. \& Émes-Misenko, E. I. (1963). Zh. Strukt. Khim. 4, 861 .
Gladyshevskii, R. E., Cenzual, K. \& Parthé, E. (1992). J. Alloys Compd. 189, 221-228.
Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. \& Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.
Gribanov, A., Grytsiv, A., Rogl, P., Seropegin, Y. \& Giester, G. (2010). J. Solid State Chem. 183, 1278-1289.

Haynes, W. M. (2012). Editor. CRC Handbook of Chemistry and Physics, 93rd ed. Chemical Rubber Company.
Hoffmann, R.-D. \& Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.
Hofmann, W. \& Jäniche, W. (1935). Naturwissenschaften, 23, 851.
Holleman, A. F. \& Wiberg, N. (2007). Lehrbuch der anorganischen Chemie, 102nd ed. De Gruyter Reference Global.
Houssay, E., Rouault, A., Thomas, O., Madar, R. \& Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.

Hwang, J. S., Lin, K. J. \& Tien, C. (1996). Solid State Commun. 100, 169-172.
Iandelli, A., Palenzona, A. \& Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.
Imai, Y. \& Watanabe, A. (2010). Intermetallics, 18, 1432-1436.
Inosov, D. S., Evtushinsky, D. V., Koitzsch, A., Zabolotnyy, V. B., Borisenko, S. V., Kordyuk, A. A., Frontzek, M. D., Loewenhaupt, M., Löser, W., Mazilu, I., Bitterlich, H., Behr, G., Hoffmann, J.-U., Follath, R. \& Büchner, B. (2009). Phys. Rev. Lett. 102, 145276.
International Union for Crystallography (2017). Polymorphism. Online Dictionary of Crystallography.
Jacobson, E. L., Freeman, R. D., Tharp, A. G. \& Searcy, A. W. (1956). J. Am. Chem. Soc. 78, 4850-4852.

Janzon, K. H., Schäfer, H. \& Weiss, A. (1970). Z. Anorg. Allg. Chem. 372, 87-99.
Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. \& Williams, R. S. (2004). Appl. Phys. A, 78, 287289.

Kaczorowski, D. \& Noël, H. (1993). J. Phys. Condens. Matter, 5, 91859195.

Kase, N., Muranaka, T. \& Akimitsu, J. (2009). J. Magn. Magn. Mater. 321, 3380-3383.
Kimura, A., Li, D. X. \& Shiokawa, Y. (1999). Solid State Commun. 113, 131-134.
Kitano, A., Moriguchi, K., Yonemura, M., Munetoh, S., Shintani, A., Fukuoka, H., Yamanaka, S., Nishibori, E., Takata, M. \& Sakata, M. (2001). Phys. Rev. B, 64, 045206.

Knapp, J. A. \& Picraux, S. T. (1985). MRS Proceedings, 54, 261.
Koleshko, V. M., Belitsky, V. F. \& Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.
Kotroczo, V. \& McColm, I. J. (1994). J. Alloys Compd. 203, 259265.

Kotsanidis, P. A., Yakinthos, J. K. \& Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.
Kotur, B. Y. \& Mokra, I. R. (1994). Neorg. Mater. 30, 783-787.
Kresse, G. \& Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15-50.
Kresse, G. \& Joubert, D. (1999). Phys. Rev. B, 59, 1758-1775.
Kubata, C., Krumeich, F., Wörle, M. \& Nesper, R. (2005). Z. Anorg. Allg. Chem. 631, 546-555.

Lahiouel, R., Galéra, R. M., Pierre, J. \& Siaud, E. (1986). Solid State Commun. 58, 815-817.
Land, C. C., Johnson, K. A. \& Ellinger, F. H. (1965). J. Nucl. Mater. 15, 23-32.
Lawrence, J. M., den Boer, M. L., Parks, R. D. \& Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.
Lazorenko, V. I., Rud', B. M., Paderno, Yu. B. \& Dvorina, L. A. (1974). Izv. Akad. Nauk. SSSR Neorg. Mater. 10, 1150-1151.

Leciejewicz, J., Stüsser, N., Szytuła, A. \& Zygmunt, A. (1995). J. Magn. Magn. Mater. 147, 45-48.

Leisegang, T. (2010). Röntgenographische Untersuchung von Seltenerdverbindungen mit besonderer Berücksichtigung modulierter Strukturen, Vol. 7, 1st ed. Freiberger Forschungshefte: E, Naturwissenschaften. TU Bergakademie.
Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. \& Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.

Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. \& Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.
Li, D. X., Kimura, A., Homma, Y., Shiokawa, Y., Uesawa, A. \& Suzuki, T. (1998a). Solid State Commun. 108, 863-866.
Li, D. X., Nimori, S., Homma, Y. \& Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.
Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. \& Onuki, Y. (2001). Solid State Commun. 120, 227-232.

Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. \& Onuki, Y. (2003). Phys. Rev. B, 68, 012413.

Li, D. X., Nimori, S., Yamamura, T. \& Shiokawa, Y. (2008). J. Appl. Phys. 103, 07B715.
Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A., Dönni, A., Suzuki, T., Haga, Y., Yamamoto, E., Honma, T. \& Ōnuki, Y. (1998b). Phys. Rev. B, 57, 7434-7437.
Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A. \& Suzuki, T. (1997). J. Magn. Magn. Mater. 176, 261-266.

Li, D. X., Shiokawa, Y., Nimori, S., Haga, Y., Yamamoto, E., Matsuda, T. D. \& Ōnuki, Y. (2002b). Physica B, 329-333, 506-507.

Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. \& Haga, Y. (2013). J. Korean Phys. Soc. 62, 22332238.

Lourdes Pinto, M. de (1966). Acta Cryst. 21, 999.
Lu, J. J., Gan, K. J., Mo, T. S. \& Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.
Luo, C. H., Shen, G. H. \& Chen, L. J. (1997). Appl. Surf. Sci. 113-114, 457-461.
Majumdar, S., Mahesh Kumar, M., Mallik, R. \& Sampathkumaran, E. V. (1999a). Solid State Commun. 110, 509-514.

Majumdar, S., Mallik, R. \& Sampathkumaran, E. V. (1998). Proceedings of the DAE Solid State Physics Symposium, 41, 409410.

Majumdar, S., Mallik, R., Sampathkumaran, E. V., Rupprecht, K. \& Wortmann, G. (1999b). Phys. Rev. B, 60, 6770-6774.
Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. \& Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.
Majumdar, S., Sampathkumaran, E. V., Paulose, P. L., Bitterlich, H., Löser, W. \& Behr, G. (2000). Phys. Rev. B, 62, 14207-14211.
Malik, Z., Grytsiv, A., Rogl, P. \& Giester, G. (2013). Intermetallics, 36, 118-126.
Mallik, R. \& Sampathkumaran, E. V. (1996). J. Magn. Magn. Mater. 164, L13-L17.
Mallik, R., Sampathkumaran, E. V. \& Paulose, P. L. (1998a). Solid State Commun. 106, 169-172.
Mallik, R., Sampathkumaran, E. V., Strecker, M. \& Wortmann, G. (1998b). Europhys. Lett. 41, 315-320.
Mallik, R., Sampathkumaran, E. V., Strecker, M., Wortmann, G., Paulose, P. L. \& Ueda, Y. (1998c). J. Magn. Magn. Mater. 185, L135-L143.
Mayer, I. P., Banks, E. \& Post, B. (1962). J. Phys. Chem. 66, 693-696. Mayer, I. P. \& Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.

Mayer, I. P. \& Felner, I. (1972). J. Less-Common Met. 29, 25-31.
Mayer, I. P. \& Felner, I. (1973a). J. Solid State Chem. 8, 355-356.
Mayer, I. P. \& Felner, I. (1973b). J. Solid State Chem. 7, 292-296.
Mayer, I. P. \& Tassa, M. (1969). J. Less-Common Met. 19, 173-177.
Mayer, I. P., Yanir, E. \& Shidlovsky, I. (1967). Inorg. Chem. 6, 842844.

McWhan, D. B., Compton, V. B., Silverman, M. S. \& Soulen, J. R. (1967). J. Less-Common Met. 12, 75-76.

Migas, D. B., Shaposhnikov, V. L. \& Borisenko, V. E. (2007). Phys. Status Solidi B, 244, 2611-2618.
Mitsufuji, S., Kagawa, T. \& Kawamoto, M. (1996). Tohoku Daigaku Kinzoku Zairyo Kenkyusho Kyojiba Chodendo Zairyo Kenkyu Senta Nenji Hokoku, p. 223.
Mo, Z. J., Shen, J., Yan, L. Q., Gao, X. Q., Tang, C. C., Wu, J. F., Sun, J. R. \& Shen, B. G. (2015). J. Alloys Compd. 618, 512-515.

Mulder, F. M., Thiel, R. C. \& Buschow, K. H. J. (1994). J. Alloys Compd. 205, 169-174.
Mulder, F. M., Thiel, R. C., Tung, L. D., Franse, J. J. M. \& Buschow, K. H. J. (1998). J. Alloys Compd. 264, 43-49.

Murashita, Y., Sakurai, J. \& Satoh, T. (1991). Solid State Commun. 77, 789-792.
Nakano, H. \& Yamanaka, S. (1994). J. Solid State Chem. 108, 260266.

Nasir, N., Melnychenko-Koblyuk, N., Grytsiv, A., Rogl, P., Giester, G., Wosik, J. \& Nauer, G. E. (2010). J. Solid State Chem. 183, 565574.

Nentwich, M., Zschornak, M., Richter, C., Novikov, D. V. \& Meyer, D. C. (2016). J. Phys. Condens. Matter, 28, 066002.

Nentwich, M., Zschornak, M., Sonntag, M., Leisegang, T. \& Meyer, D. C. (2020). Acta Cryst. B, Submitted.

Nesper, R., von Schnering, H. G. \& Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.
Nimori, S. \& Li, D. X. (2006). J. Phys. Soc. Jpn, 75, 195-197.
Nörenberg, C., Moram, M. A. \& Dobson, P. J. (2006). Surf. Sci. 600, 4126-4131.
Palenzona, A. \& Pani, M. (2004). J. Alloys Compd. 373, 214-219.
Pan, Z.-Y., Cao, C., Bai, X.-J., Song, R.-B., Zheng, J.-B. \& Duan, L.-B. (2013). Chin. Phys. B, 22, 056102.

Patil, S., Iyer, K. K., Maiti, K. \& Sampathkumaran, E. V. (2008). Phys. Rev. B, 77, 094443.
Paulose, P. L., Sampathkumaran, E. V., Bitterlich, H., Behr, G. \& Löser, W. (2003). Phys. Rev. B, 67, 212401.
Pechev, S., Roisnel, T., Chevalier, B., Darriet, B. \& Etourneau, J. (2000). Solid State Sci. 2, 773-780.

Perdew, J. P., Burke, K. \& Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.
Perri, J. A., Banks, E. \& Post, B. (1959a). J. Phys. Chem. 63, 20732074.

Perri, J. A., Binder, I. \& Post, B. (1959b). J. Phys. Chem. 63, 616-619.
Peter, S. C. \& Kanatzidis, M. G. (2012). Z. Anorg. Allg. Chem. 638, 287-293.
Sarkar, S., Gutmann, M. J. \& Peter, S. C. (2013). CrystEngComm, 15, 8006-8013.
Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. \& Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.
Pierre, J., Siaud, E. \& Frachon, D. (1988). J. Less-Common Met. 139, 321-329.
Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. \& Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.
Pöttgen, R., Hoffmann, R.-D. \& Kußmann, D. (1998). Z. Anorg. Allg. Chem. 624, 945-951.
Pöttgen, R. \& Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.
Raman, A. (1967). Naturwissenschaften, 54, 560.
Raman, A. (1968). Trans. Indian Inst. Met. 21, 5-8.
Raman, A. \& Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.
Rodewald, U. Ch., Hoffmann, R.-D., Pöttgen, R. \& Sampathkumaran, E. V. (2003). Z. Naturforsch. Teil B, 58, 971-974.

Roge, T. P., Palmino, F., Savall, C., Labrune, J. C., Wetzel, P., Pirri, C. \& Gewinner, G. (1995). Phys. Rev. B, 51, 10998-11001.
Rojas, D. P., Rodríguez Fernández, J., Espeso, J. I., Gómez Sal, J. C., da Silva, L. M., Gandra, F. G., dos Santos, A. O. \& Medina, A. N. (2010). J. Magn. Magn. Mater. 322, 3192-3195.

Romaka, V. V., Falmbigl, M., Grytsiv, A. \& Rogl, P. (2012). J. Solid State Chem. 186, 87-93.
RÖMPP Online (2011). Seltenerdmetalle. Thieme Chemistry online encyclopedia.
Ruggiero, A. F. \& Olcese, G. L. (1964). Atti Accad. Naz Lincei Cl. Sci. Fis. Mat. Nat. Rend. 37, 169-174.
Runnalls, O. J. C. \& Boucher, R. R. (1955). Acta Cryst. 8, 592.
Salamakha, P., Demchenko, P., Sologub, O. \& Bodak, O. (1998). J. Alloys Compd. 278, 227-230.
Sasa, Y. \& Uda, M. (1976). J. Solid State Chem. 18, 63-68.
Sato, N., Kagawa, M., Tanaka, K., Takeda, N., Satoh, T. \& Komatsubara, T. (1992). J. Magn. Magn. Mater. 108, 115-116.
Sato, N., Kagawa, M., Tanaka, K., Takeda, N., Satoh, T., Sakatsume, S. \& Komatsubara, T. (1991). J. Phys. Soc. Jpn, 60, 757-759.
Sato, N., Mori, H., Yashima, H., Satoh, T. \& Takei, H. (1984). Solid State Commun. 51, 139-142.
Schäfer, H., Janzon, K. H. \& Weiß, A. (1963). Angew. Chem. 75, 451452.

Schnering, H. G. von, Bolle, U., Curda, J., Peters, K., Carrillo-Cabrera, W., Somer, M., Schultheiss, M. \& Wedig, U. (1996). Angew. Chem. 108, 1062-1064.
Schobinger-Papamantellos, P., Buschow, K. H. J. \& Fischer, P. (1991). J. Magn. Magn. Mater. 97, 53-68.

Schröder, A., Collins, M. F., Stager, C. V., Garrett, J. D., Greedan, J. E. \& Tun, Z. (1995). J. Magn. Magn. Mater. 140-144, 1407-1408.
Sekizawa, K. \& Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.
Sengupta, K., Rayaprol, S. \& Sampathkumaran, E. V. (2003). arXiv preprint cond-mat/0309701.
Shaheen, S. A. \& Schilling, J. S. (1987). Phys. Rev. B, 35, 6880-6887.
Stauffer, L., Pirri, C., Wetzel, P., Mharchi, A., Paki, P., Bolmont, D., Gewinner, G. \& Minot, C. (1992). Phys. Rev. B, 46, 13201-13206.
Stokes, H. T. \& Hatch, D. M. (2005). J. Appl. Cryst. 38, 237-238.
Szlawska, M., Gnida, D. \& Kaczorowski, D. (2011). Phys. Rev. B, 84, 134410.

Szlawska, M. \& Kaczorowski, D. (2011). Phys. Rev. B, 84, 094430.
Szlawska, M. \& Kaczorowski, D. (2012). Phys. Rev. B, 85, 134423.
Szlawska, M., Kaczorowski, D., Ślebarski, A., Gulay, L. \& StępieńDamm, J. (2009). Phys. Rev. B, 79, 134435.
Szlawska, M., Majewicz, M. \& Kaczorowski, D. (2016). J. Alloys Compd. 662, 208-212.
Szlawska, M., Pikul, A. \& Kaczorowski, D. (2007). Mater. Sci. Pol. 25, 1267.

Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. \& Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.
Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. \& Zygmunt, A. (2000). Acta Phys. Pol. A, 97, 823-826.
Szytuła, A., Leciejewicz, J. \& Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.

Tang, F., Frontzek, M. D., Dshemuchadse, J., Leisegang, T., Zschornak, M., Mietrach, R., Hoffmann, J.-U., Löser, W., Gemming, S., Meyer, D. C. \& Loewenhaupt, M. (2011). Phys. Rev. B, 84, 104105.
Tang, F., Link, P., Frontzek, M. D., Mignot, J.-M., Hoffmann, J.-U., Löser, W. \& Loewenhaupt, M. (2010a). J. Phys. Conf. Ser. 251, 012017.

Tang, F., Link, P., Frontzek, M. D., Schneidewind, A., Löser, W. \& Loewenhaupt, M. (2010b). J. Phys. Conf. Ser. 251, 012004.
Tien, C., Luo, L. \& Hwang, J. S. (1997). Phys. Rev. B, 56, 1171011714.

Tsai, W. C., Hsu, H. C., Hsu, H. F. \& Chen, L. J. (2005). Appl. Surf. Sci. 244, 115-119.
Wang, F., Yuan, F.-Y., Wang, J.-Z., Feng, T.-F. \& Hu, G.-Q. (2014). J. Alloys Compd. 592, 63-66.
Wang, L. R., Tran, B., He, M. Q., Meingast, C., Abdel-Hafiez, M., Cao, C. D., Bitterlich, H., Löser, W. \& Klingeler, R. (2019). J. Phys. Soc. Jpn, 88, 094709.
Weigel, F. \& Marquart, R. (1983). J. Less-Common Met. 90, 283290.

Weigel, F., Wittmann, F. D. \& Marquart, R. (1977). J. Less-Common Met. 56, 47-53.
Weigel, F., Wittmann, F. D., Schuster, W. \& Marquart, R. (1984). J. Less-Common Met. 102, 227-238.
Weitzer, F., Schuster, J. C., Bauer, J. \& Jounel, B. (1991). J. Mater. Sci. 26, 2076-2080.
Xu, Y., Frontzek, M. D., Mazilu, I., Löser, W., Behr, G., Büchner, B. \& Liu, L. (2011a). J. Cryst. Growth, 318, 942-946.
Xu, Y., Löser, W., Behr, G., Frontzek, M. D., Tang, F., Büchner, B. \& Liu, L. (2010). J. Cryst. Growth, 312, 1992-1996.
Xu, Y., Löser, W., Tang, F., Blum, C. G. F., Liu, L. \& Büchner, B. (2011b). Cryst. Res. Technol. 46, 135-139.
Yaar, I., Fredo, S., Gal, J., Potzel, W., Kalvius, G. M. \& Litterst, F. J. (1992). Phys. Rev. B, 45, 9765.

Yamamura, T., Li, D. X., Yubuta, K. \& Shiokawa, Y. (2006). J. Alloys Compd. 408-412, 1324-1328.
Yashima, H., Mori, H., Satoh, T. \& Kohn, K. (1982a). Solid State Comтии. 43, 193-197.
Yashima, H., Sato, N., Mori, H. \& Satoh, T. (1982b). Solid State Соттии. 43, 595-599.
Yashima, H. \& Satoh, T. (1982). Solid State Commun. 41, 723-727.
Yashima, H., Satoh, T., Mori, H., Watanabe, D. \& Ohtsuka, T. (1982c). Solid State Commun. 41, 1-4.
Yubuta, K., Yamamura, T., Li, D. X. \& Shiokawa, Y. (2009). Solid State Commun. 149, 286-289.
Yubuta, K., Yamamura, T. \& Shiokawa, Y. (2006). J. Phys. Condens. Matter, 18, 6109-6116.
Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.
Zajdel, P., Kisiel, A., Szytuła, A., Goraus, J., Balerna, A., Banaś, A., Starowicz, P., Konior, J., Cinque, G. \& Grilli, A. (2015). Nucl. Instrum. Methods Phys. Res. B, 364, 76-84.
Zeiringer, I., Grytsiv, A., Bauer, E., Giester, G. \& Rogl, P. (2015). Z. Anorg. Allg. Chem. 641, 1404-1421.
Zhong, W. X., Ng, W. L., Chevalier, B., Etourneau, J. \& Hagenmuller, P. (1985). Mater. Res. Bull. 20, 1229-1238.

