Table 2. Rotation pattern data for L-isoleucine

(Zero layer line and first layer line)

Line	Inten-			
number	sity	$d_{\rm obs}$	d_{calc}	hkl
1	S	14·15 Å	13·89 Å	100
2	S	6.972	6.945	200
3	vs	4.849	4.832	230
4	vw	4.695	4.746	140; 300
5	vs	4.467	4.503	310
6	vw	4.191	4.173	320
7	vw	4.040	4.031	050
8	vs	3.842	3.875	150
9	vs	3.506	3.489	250
10	w	3.251	3.268	160
11	vw	3.099	3.083	430
12	vs	2.812	2.832	170
13	w	2.714	2.721	360
14	т	2.528	2.522	080
15	w	2.426	2.421	540
16	5	2· 364	2.369	280
17	vw	2.241	2.242	090
18	vw	2.103	2.106	640
19	vw	2.004	2.008	650; 570
20	vs	4.794	4.854	111
21	m	4.674	4.733	021
22	S	4.517	4.480	211
23	vw	4.052	4.013	131
24	S	3.918	3.911	221
25	S	3.657	3.673	041
26	w	3.314	3.272	321
27	vw	3.217	3.224	051
28	υw	3.088	3.107	331
29	vs	2.860	2.848	061
30	5	2.793	2.800	421
31	UW	2.625	2 .635	261
32	vw	2.492	2 ·499	171
33	w	2.421	2.425	361

reliability of an indexed powder pattern gave $M_{20}=7.6$, where $(10^4 \sin^2 \theta)_{20}=934$, $X_{20}=0$, $N_{20}=28$, and the discrepancy in the $10^4 \sin^2 \theta$ value, $\bar{e}=2.20$. The number of observed lines below $(10^4 \sin^2 \theta)_{20}$ is 26% of the theoretically expected number and the actual discrepancy in this range is 0.28 times the average expected discrepancy calculated by de Wolff's (1961) method. This corresponds to a probability of 10^{-12} for an alternative lattice of the same size. The cell data derived are thus substantially correct. No systematic absences among observed reflexions could be found except 00*l* for l=2n+1. The probable space group is $P222_1$.

The crystal structure of D-leucine (Möller, 1949) is based on double-layer units stacked along the *b* axis, where a =5·36, b = 14.70, c = 9.65 Å; space group P2₁22 or P222, and Z = 4. Comparing present data, the molecules of L-isoleucine are expected to pack in double-layer units parallel to the *bc* plane, with the length of the chain along the *a* axis, as proposed for DL-isoleucine (Dawson & Mathieson, 1951).

The author is grateful to Dr C Dakshinamurti and Dr M. S. Swaminathan for their interest in this work.

References

- Azároff, L. V. & BUERGER, M. J. (1958). *The Powder Method in X-ray Crystallography*, p. 118–123. New York: McG1aw-Hill.
- Dawson, B. & Mathieson, A. M. (1951). Acta Cryst. 4, 475.
- DE WOLFF, P. M. (1961). Acta Cryst. 14, 579.
- DE WOLFF, P. M. (1968). J. Appl. Cryst. 1, 108.
- LIPSON, H. (1949). Acta Cryst. 2, 43.
- Möller, C. K. (1949). Acta Chem. Scand. 3, 1326.
- TROMMEL, J. & BIJVOET, J. M. (1954). Acta Cryst. 7, 703.

Book Reviews

Works intended for notice in this column should be sent direct to the Book-Review Editor (M.M.Woolfson, Physics Department, University of York, Heslington, York YO1 5DD, England). As far as practicable books will be reviewed in a country different from that of publication.

Infra-red spectra and structure of organic long chain polymers. By ARTHUR ELLIOT. Pp. viii+119. London: Arnold, 1969. Price 35 s.

This book deals exclusively with one topic – the infraredspectroscopic study of polymer structures of organic and biological origin.

The author considers in some detail the practical aspects of obtaining polymer spectra – choice of spectrometer, utilization of polarized radiation, preparation of samples, methods of drying and deuteroexchange, *etc.* Special attention is given to the question of dichroism in the infraredspectra of polymers, polypeptides and some proteins (*i.e.* to the field in which the author of the book has acquired a worldwide reputation.)

Special aspects of polymer spectroscopy are treated separately – hydrogen-bond formation, vibrational modes in the amide (peptide) group and the variation of the frequency of infrared absorption with the conformation of polypeptides and polyamides.

Theoretical methods of polymer infrared-spectra analysis are presented very briefly – the symmetry of chain vibrations selection rules, intensity and polarization of vibrations. The book is written in perspicuous language and is well illustrated; the bibliography includes 143 references. It will be found useful by experts in infrared spectroscopy as well as by anyone investigating the physico-chemical properties and structure of polymers and biopolymers.

G. N. TISHCHENKO

Institute of Crystallography Academy of Science of the USSR. Leninsky Prospekt 59 Moscow B-333 USSR

Methods of molecular quantum mechanics. By R. McWEENY and B. T. SUTCLIFFE. Pp. ix + 307. London: Academic Press, 1969. Price 84 s. \$ 13.50.

This book is the second volume in a series of monographs on theoretical chemistry with consulting editors D. P. Craig and R. McWeeny. The book contains 9 chapters: Introductory survey, Mathematical methods, Many-electron w_i 'e functions, Digression: the nature of the electron