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Recent advances in quantum crystallography have shown that, beyond

conventional charge density refinement, a one-electron reduced density matrix

(1-RDM) satisfying N-representability conditions can be reconstructed using

jointly experimental X-ray structure factors and directional Compton profiles

(DCP) through semidefinite programming. So far, such reconstruction methods

for 1-RDM, not constrained to idempotency, have been tested only on a toy

model system (CO2). In this work, a new method is assessed on crystalline urea

[CO(NH2)2] using static (0 K) and dynamic (50 K) artificial experimental data.

An improved model, including symmetry constraints and frozen core-electron

contribution, is introduced to better handle the increasing system complexity.

Reconstructed 1-RDMs, deformation densities and DCP anisotropy are

analysed, and it is demonstrated that the changes in the model significantly

improve the reconstruction quality, even when there is insufficient information

and data corruption. The robustness of the model and the strategy are thus

shown to be well adapted to address the reconstruction problem from actual

experimental scattering data.

1. Introduction

While N-electron wavefunctions provide the most complete

and exact description of electronic structure in crystals, their

experimental determination is still out of reach due to their

exponentially large complexity for real systems. Moreover, in

Coulson’s words: ‘a conventional many-electron wavefunction

tells us more than we need to know’ (Coulson, 1960). It is then

worth considering the one(two)-electron reduced density

matrices (1,2-RDM) as compact substitutes for wavefunctions

since they involve significantly fewer parameters. As of today,

the incompleteness of N-representability conditions (Liu et al.,

2007), which ensure that a reduced density matrix can be

associated with a complete N-body density matrix, and the

lack of experimental observables with sufficient information

content still pose daunting obstacles to the reconstruction of 2-

RDMs. Therefore, 1-RDMs, which do not suffer from the

same impediment and still contain valuable quantum

mechanical information, are considered suitable candidates

for modelling electron behaviour from experimental data. The

reconstruction process, however, remains a challenging task.

Firstly, N-representability conditions still need to be fulfilled

for an experimentally reconstructed 1-RDM to be physically

meaningful. Secondly, from a pure measurement perspective,

as the 1-RDM contains both position and momentum space

information, it cannot currently, to the best of our knowledge,

be obtained using a single experimental technique.

The challenge of 1-RDM reconstruction from experimental

data was initiated by Clinton and coworkers in the 1960s using
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a drastic idempotency condition as a means to ensure N-

representability (Clinton et al., 1969a,bc,d; Clinton & Lamers,

1969). Based on a series of works combining position and

momentum space data on isolated atoms, Schmider et al.

(1992) argued that the idempotency condition would hinder

the recovery of the electron (static and dynamical) correlation

effect in the reconstructed density matrix. The potential

presence of such information in position space was recently

confirmed by an X-ray constrained wavefunction refinement

on urea and alanine (Hupf et al., 2023). The authors argue that

evidence of significant deviation from the Hartree–Fock

description can be found using high-resolution X-ray diffrac-

tion structure factors. Any single-determinant-based model

would forbid access to such subtle features in the data.

Adopting a formal perspective, Mazziotti (2007) discussed

different strategies to include N-representability conditions in

a series of articles and proposed a semidefinite programming

(SDP) formulation of the 1,2-RDM reconstruction problem

(Foley & Mazziotti, 2012). On more practical grounds,

following Schmider and coworkers’ seminal work, several

papers reported the joint use of X-ray diffraction structure

factors (SF) and directional Compton profiles (DCP) to

explore different non-single-determinant models and strate-

gies for 1-RDM modelling in both magnetic and non-magnetic

molecular compounds (Schmider & Smith, 1993; Schmider et

al., 1993; Schwarz et al., 1994; Schmider, 1996; Gueddida et al.,

2018a,b; De Bruyne & Gillet, 2020; Launay & Gillet, 2021).

However, all SDP-based reconstruction attempts at 1-RDM,

which have been put forward, were applied to isolated atoms

or molecules with at most two or three atoms.

The present work further investigates the 1-RDM recon-

struction problem in molecular crystals by building upon the

convex optimization approach put forward by De Bruyne &

Gillet (2020), Launay & Gillet (2021), scaling up the system

size from modest dry ice (CO2) to the more realistic urea

[CO(NH2)2] crystal. The purpose is thus to demonstrate the

potential of an improved method more relevant to practical

applications and its suitability to compensate for sparse

momentum space data. To address the challenges posed by a

significant increase in system size, we propose the imple-

mentation of symmetry constraints and the possibility of

freezing core-electron contributions. For the first time,

approximate energy and virial ratio are used to determine the

optimal data set for the 1-RDM model refinement.

This article is structured as follows. In Section 2, we explain

how the 1-RDM reconstruction can be formulated as a convex

optimization problem, with the N-representability condition,

symmetry and frozen core electrons as convex constraints. The

method used for reconstruction, deconvoluted from thermal

motion, is briefly reviewed. In Section 3, we showcase the

importance of the joint use of position and momentum space

data even when Compton scattering data are suspected of

being poorly informative. Additional degradation due to

noise and temperature effects and the improved robustness

using symmetry and frozen core constraints are illustrated.

The conclusion and future directions are given in the last

section.

2. Methods

2.1. 1-RDM reconstruction using least-squares fitting

For a spin-traced (spin-free) pure-state N-electron system,

the 1-RDM can be derived by integrating out the N � 1

coordinates of the N-electron-density matrix, i.e.

� ð1Þðr; r0Þ ¼ N
R
 ðr; r2; . . . rNÞ 

�ðr0; r2; . . . ; rNÞ dr2 . . . drN;

ð1Þ

where  (r, r2, . . . rN) is the pure-state N-electron wavefunc-

tion. A mixed-state system 1-RDM is a mere convex combi-

nation of pure-state 1-RDMs.

It is well known (Löwdin, 1955) that the 1-RDM can be

conveniently approximated using a discrete one-electron basis

set {�i} as

� ð1Þðr; r0Þ ¼
P

ij

Pij�iðrÞ�
�
j ðr
0Þ: ð2Þ

If the basis set is kept fixed, the 1-RDM is determined once the

population matrix P in (2) is found. The number of parameters

in the model is thus solely conditioned by the size of the

population matrix and, therefore, by the number of basis

functions. In this work, the basis functions are atomic orbitals,

but plane waves could also be considered, if needed, for

strongly delocalized electron systems.

The 1-RDM is directly connected to the mean electron-

density distribution in position space through its diagonal

elements,

�ðrÞ ¼ � ð1Þðr; rÞ: ð3Þ

Furthermore, the 1-RDM encapsulates momentum space

information through a 6D Fourier–Dirac transform (Weyrich,

1996),

nðpÞ ¼
1

ð2�h- Þ
3

Z

� ð1Þðr; rþ tÞ expð� ip � t=h- Þ d3t d3r; ð4Þ

with n(p) being the momentum density. This double connec-

tion to both axes of phase space strongly suggests there is little

hope of reconstructing a good-quality 1-RDM from data

provided by a single experimental technique.

Thanks to very efficient refinement methods and models

(Gatti & Macchi, 2012), high-resolution X-ray SF, which are

obtained by elastic coherent X-ray diffraction, are almost

routinely used in the reconstruction of position space electron

density. Using (3), the relationship between SF and 1-RDM is

simply

FðqÞ ¼
R

� ð1Þðr; rÞ expð� ir � qÞ dr: ð5Þ

On the other hand, DCP are measured by deep inelastic

incoherent X-ray scattering. Within the impulse approxima-

tion (Phillips & Weiss, 1968), they give access to projections of

momentum space electron density, i.e.

Jðq; uÞ ¼

Z

nðpÞ�ðp � u � qÞ dp ð6Þ
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¼
1

2�h-

Z

� ð1Þðr; rþ tuÞ expð� iqt=h- Þ dt d3r; ð7Þ

where u is the unit vector giving the direction in momentum

space onto which the electron density is projected. It is colli-

near with the scattering vector of the Compton measurement.

The model used in this work is based on expression (2). The

determination of the best population matrix given a set of SF

and DCP thus requires expressing experimental observable

values as functions of matrix P using the operator form

FðqÞ ¼ TrðFqPÞ and JðqÞ ¼ TrðJqPÞ; ð8Þ

with Fq and Jq being the SF and DCP operators, respectively.

For conciseness, q stands for (q, u) in the Compton profile

matrix element of (8). To proceed any further, the operators

Fq and Jq as matrix elements need to be written in the basis-set

representation as

ðFqÞij ¼

Z

��i ðrÞ�jðrÞ expð� iq � rÞ d3r;

ðJqÞij ¼
1

2�h-

Z

��i ðrÞ�jðrþ tuÞ expð� iqtÞ dt d3r: ð9Þ

In this work, particular attention has been paid to the

reliability of the final 1-RDM reconstruction. If one assumes

that error bars on data points are uncorrelated and follow a

normal distribution law, for an unbiased model, the most

probable population matrix P is found by solving the mini-

mization problem

argminP

X

i

TrðOiPÞ � O
exp
i

�i

� �2

; ð10Þ

where the model is expected to yield the mean value for each

observable datum represented by Oi while its actual experi-

mental measurement gives O
exp
i with the associated estimated

variance �2
i . In our case, each data point originates either from

X-ray diffraction or Compton scattering measurements so that

Oi ¼ Fqi
or Oj ¼ Jqj

for different scattering vectors. In the

present work, for a given basis set of Gaussian contracted

Slater-type orbitals, the closed form of each matrix element (9)

is calculated prior to refinement using a Mathematica code

(Wolfram Research, 2023).

The minimization of (10) is a convex least-squares fitting

problem. The following section will explain how, together with

the necessary N-representability conditions, the reconstruc-

tion problem falls into a convex optimization problem called

semidefinite programming (Boyd & Vandenberghe, 2004).

2.2. Constraints: N-representability, symmetry and frozen-

core

The N-representability conditions must be satisfied to

ensure that the population matrix yields a physically mean-

ingful density matrix. It is worth noting that the N-repre-

sentability conditions are significantly more difficult if one

requires the system to be in a pure state instead of a statistical

mixture of quantum states. Pure N-representability and

ensemble N-representability are generally employed to

distinguish the respective situations (Chakraborty &

Mazziotti, 2015). We have chosen to consider the latter case

for practical reasons and because the system cannot always be

exactly in its ground state, without interacting with the

environment. Consequently, for an ensemble N-representable

1-RDM, the population matrix P? for a closed-shell system,

associated with an orthonormal basis set, must satisfy the

following constraints,

P? � 0; ð11aÞ

2I � P? � 0; ð11bÞ

TrðP?Þ ¼ N; ð11cÞ

together with the obvious condition that P? is Hermitian.

Here I is the identity matrix, and the symbol � means the

matrix is semidefinite positive, which is equivalent to stating

that all eigenvalues are non-negative. Hence, constraint (11b)

requires the eigenvalues of P? to be smaller than 2. As

previously mentioned, the present basis set is made of Slater-

type atomic orbitals (expressed as Gaussian contractions),

which are not mutually orthogonal. A Lowdin orthogonali-

zation is thus performed on the atomic-orbital basis set prior

to the reconstruction.

All constraints listed in (11) are convex; thus, the convexity

of the minimization of equation (10) is preserved. Moreover,

the semidefinite positivity of P? imposed in (11a) makes it

possible to use the tools of SDP (Foley & Mazziotti, 2012; De

Bruyne & Gillet, 2020). Access to the solution is thereby

significantly facilitated.

The model developed in this work is specifically adapted to

molecular crystals for which a single group of atoms can be

considered to form a specific entity. It is assumed that this

group, referred to as ‘the molecule’, does not share any charge

with other entities in the same or neighbouring unit cells. The

1-RDM model is thus a mere molecular 1-RDM onto which

translation and rotational symmetry operations can be applied

to generate the density matrix of the entire crystal. These

operations are fully taken into account in the present work.

The symmetry invariance at the molecular level can also be

considered. The population matrix is thus required to be a

direct sum of matrices in the invariant subspaces of each

symmetry operator. In other words, P should be block-diag-

onal when using the symmetry-adapted orbitals as the new

basis, i.e. STPS ¼ �n
j¼1Pj, where S transforms the basis of

atomic orbitals into symmetry-adapted orbitals, n is the

number of irreducible representations and Pj the block

matrices associated with each irreducible representation.

The new model also allows for freezing core-electron

contributions. It effectively reduces the model’s active space,

hence the number of parameters to be determined in the

population matrix. As a consequence, illustrated in the next

section, the computational cost is lowered, and the robustness

of the result is improved against noise contamination and

thermal-induced effects. It can be best observed on core-

electrons’ spatial density distribution, contributing to sharp

peaks near each nucleus. Therefore, accurately reproducing
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such features for a population matrix model would require

knowledge of high-q SF, which may present an experimental

challenge at usual temperatures. Here, an alternative but

common approach was chosen. A single-determinant calcu-

lation of the wavefunction is performed from which core-

electron molecular orbitals are extracted to construct an

approximate core-electron density matrix. As a result, the

model population matrix is given by P? ¼ P0? þ P?core, with

P?core being the frozen core-electron population matrix. The

latter represents a fixed number of electrons and is – by

construction – idempotent. The optimization is thus forced to

search for the optimal solution in the subspace orthogonal to

that spanned by the core-electron’s orbitals if the N-repre-

sentability on the total 1-RDM is to be preserved.

Combining symmetry and frozen-core conditions and

assuming a non-magnetic system, the N-representability

constraints become

P0? � 0; ð12aÞ

2I � P0? � P?core � 0; ð12bÞ

TrðP0? þ P?coreÞ ¼ N ð12cÞ

S0
T
ðP0? þ P?coreÞS

0 ¼ �n
j¼1Pj; ð12dÞ

with P0? being the population matrix for valence electrons and

N the total electron number for a single molecule. S0 trans-

forms the orthogonalized atomic basis into the symmetry-

adapted basis. We remark that with (12a)–(12d), the optimi-

zation problem can still be modelled with SDP. In this work,

the constrained optimization problem is solved from the

closed form of our model using the CVXPY package

(Diamond & Boyd, 2016).

2.3. Reconstruction from non-zero temperature data

It must be noted that the reconstruction method is inher-

ently temperature independent, since the 1-RDM describes

both mixed states and pure states. However, comparison with

first-principle calculations is generally best done at the zero-

Kelvin limit. It is thus helpful to deconvolute thermal motion

effects to recover the ideal static 1-RDM. In this work, it is

assumed that, given the large photon–electron energy transfer

involved in the Compton scattering process, DCP are hardly

affected by nuclear agitation at reasonably low temperature

(Sternemann et al., 2000; Dugdale & Jarlborg, 1998; Matsuda

et al., 2020). Therefore, temperature-induced alteration of

experimental data is only taken into consideration for X-ray

SF. In this case, the model is modified so that the SF matrix

elements include an anisotropic Debye–Waller factor,

ðFqÞij ¼ expð� q �bBa � qÞ
R
��i ðrÞ�jðrÞ expð� iq � rÞ d3r; ð13Þ

where bBa is the thermal displacement tensor for nucleus a on

which both basis functions �i and �j are centred. No change is

applied when the basis functions are associated with different

atoms. More sophisticated temperature schemes are worth

considering (Stevens et al., 1977). For example, the Mulliken

partitioning approach to two-centre contribution was imple-

mented in our previous work (Launay & Gillet, 2021) and

should be used with real data. However, the usual indepen-

dent-atom model was chosen to prevent unfair similarity with

the computational method used to generate the reference data

(Erba et al., 2013). It has been checked that this simple

approach allows for a fair deconvolution of thermal agitation

effects when data are not contaminated with noise.

3. Results

The model explained above is well suited to molecular crystals

and should be assessed for realistic systems. In particular, for

such an approach which combines different experiments it is

necessary to evaluate the impact of data quality on the 1-RDM

reconstruction.

The urea crystal [CO(NH2)2] (Fig. 1) has been chosen for

two specific reasons: firstly, it has long been considered a

‘standard’ test system in the field of charge density recon-

struction. Several bond types are represented, among which

highly mobile and delocalized electron density contributes to

non-linear optical properties (Cassidy et al., 1979; West et al.,

2015). Secondly, because of the interest it has attracted over

the years, high-quality SF (Zavodnik et al., 1999; Birkedal et

al., 2004) and Compton profile data (Shukla et al., 2001) are

available from the literature. This thus positions urea as a

legitimate candidate for a first phase-space-derived recon-

struction of experimental 1-RDM on a molecular compound.

Additionally, the urea molecule is significantly larger than our

previous test systems and possibly one of the largest molecules

for which Compton measurement has ever been reported

(Shukla et al., 2001). It can thus be considered a significant

step in the quest for 1-RDM reconstruction. This paper is the
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Figure 1
(a) The unit cell of urea crystal (P421m with a = 5.66, c = 4.71 Å). (b) The
dashed green line represents the path along which the 1-RDM values
displayed in this article have been computed. The path is a succession of
segments passing through O–C–N–H atoms.



last stage of model calibration before a final reconstruction

from true experimental data is undertaken.

We use here the same strategy for model assessment as for

smaller systems, and described in previous papers (De Bruyne

& Gillet, 2020; Launay & Gillet, 2021): a reference 1-RDM is

obtained from a periodic density functional theory (DFT)

calculation using the B3LYP functional (Becke, 1993) and a

pob-DZVP basis set (Peintinger et al., 2013) using the

CRYSTAL14 program (Dovesi et al., 2014). The nuclei posi-

tions are those given by Worsham (1957) and derived from

neutron diffraction data. Artificial experimental data points

are then generated based on this DFT-derived 1-RDM. 50 K

SF are computed up to sin �=� ¼ 1.1 Å� 1 after atomic

displacement parameters have been obtained using the dedi-

cated option of CRYSTAL14 (Erba et al., 2013). Compton

profiles are little affected by thermal motion at such low

temperatures, and no particular treatment is applied in their

case. The CRYSTAL14 SF and DCP values are considered

ideal mean values on which a Gaussian noise distribution is

centred for each data point. Consequently, noise-contami-

nated data are also considered in our test reconstructions. The

reconstructed density matrix is obtained by determining a

population matrix for a basis of poorer quality than that

employed for artificial data generation. An inevitable bias in

the model is therefore introduced. The basis set for the 1-

RDM model is thus taken as a simple 6-31G basis set, with

additional p orbitals on hydrogen atoms.

3.1. Reconstructions from ideal data

The best reconstruction result is expected when data are

obtained without thermal motion and noise. The use of arti-

ficial data cannot be circumvented to test this optimal case.

Observing what type of reconstruction results from the sole

use of X-ray diffraction data is then quite illustrative. The

artificial experimental set includes 3627 SF with sin �=� <

1.1 Å� 1. Inspection of the 1-RDM � (r, r0) on the O–C–N–H

path as a 2D function clearly shows that the SF-only derived 1-

RDM lacks most of the off-diagonal regions’ important

features (Fig. 2). It is consistent with conclusions drawn from

previous works on a much smaller system. In such a case,

inferring the off-diagonal region is inherently difficult because

SF are solely related to the position space density, and

therefore to the diagonal component �(r) = � (r, r). Only

constraints on the model are likely to improve the off-diagonal

description. This is an important criterion to assess the quality

of the 1-RDM reconstruction since, in essence, off-diagonal

parts are conditioned by the bonding mechanisms and how

different locations interfere to shape the wavefunction.

A second step is to include noise-free Compton data in the

observables. In all the following cases, eight non-equivalent

crystalline directions are used ([100], [110], [111], [210], [211],

[310], [311], [321]). For each direction, data points are taken

every 0.1 atomic unit. This value corresponds to usual

Compton spectrometer resolutions and prevents significant

correlation between consecutive points. The maximum

momentum value is set to 10 atomic unit. The data set thus

contains 800 DCP values in total. Obviously, a noise-free

refinement case does not justify any weighting scheme, and the

�i in the objective function (10) are uniformly taken to be 1.

As displayed in Fig. 2(b), the reconstructed 1-RDM now

exhibits very marginal deviation from the reference. Slight

differences persist in the off-diagonal regions � (r, r0 6¼ r). A

discrepancy is observed when the reconstructed 1-RDMs are

visualized along the two different O–C–N–H paths. Such a

discrepancy is corrected once the symmetry restriction is

imposed.

The virial ratio � V/2T is calculated for the reconstructed 1-

RDMs, where the two-electron potential energy is estimated

using the 2-RDM expression ansatz � (2)(r01, r02; r1, r2) =

� (1)(r1, r01)� (1)(r02, r2) � � (1)(r01, r2)� (1)(r02, r1). The virial

ratios for reconstruction with and without DCP are 0.996 and

0.934, respectively, confirming the role of Compton data in

reaching a more pertinent solution. The distinction between

the two reconstructions showcases the importance of

momentum space measurement even for a system like urea

crystal, where the DCP anisotropy does not exceed 1% of the

total electron number (see Fig. 5). Note that the good post-

refinement virial ratio is a mere consequence of the recon-

struction quality and did not require any ad hoc constraint in

our model or the objective function.

In the following paragraphs, possible sources of recon-

struction errors will be discussed in more detail, and techni-

ques for improving the model’s robustness will be emphasized.

3.2. Closer to real life: noise and temperature effects

When real experimental data are used, noise contamination

cannot be avoided. This section first considers the effect of

statistical noise and, as a common practice, assumes no bias in

the model. Then, the thermal motion of nuclei is introduced,

and we study how it combines with statistical noise to dete-

riorate the reconstructed 1-RDM further.

Artificial data are now contaminated by a random noise

generated according to a Gaussian law. For example, the

SF data values become F0(q) = F(q) + n � �(q) with
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Figure 2
(a) The reference 1-RDM along the O–C–N–H path was calculated from
CRYSTAL14. The reconstructed 1-RDMs with and without the DCP
artificial data are shown, respectively, in the upper left and lower right
corner of (b). The contours are drawn at �10� 2 � 2ne Å� 3, n 2 ½0; 20�,
where the positive (negative) contours are shown in solid (dashed) lines
with blue (red) shades.



� � N ½0; jFðqÞj�. The noise level is chosen to be of the order

of 1% by setting n = 0.01. A similar procedure is applied to the

DCP values. Notice that, given the weak Compton anisotropy

in this system, the chosen noise level wipes out most of the

directional information from the Compton scattering spec-

trum. We have found that such a noise model results in highly

unbalanced weight in the objective function. Hence, an

unweighted version of (10) is used in practice.

As expected, the 1-RDM reconstruction from noisy data

now exhibits stronger deviations from the reference. It can be

seen in Fig. 3(a). The modest discrepancies in the diagonal

part of the RDM can be emphasized by looking at the electron

deformation density displayed in Fig. 4(a). As a reminder, the

deformation density is the difference between the total elec-

tron density and the sum of independent-atom densities, i.e.

promolecular density. The latter is obtained from

CRYSTAL14 software using the same basis set as the refer-

ence calculation (pob-DZVP). As anticipated, discrepancies

are more significant in the off-diagonal region of the 1-RDM

[Fig. 3(a)]. The model, constrained by the N-representability

conditions, obviously struggles to get sensible information

from the weak Compton anisotropies buried under the noise.

It is demonstrated by the noticeable mismatch of anisotropy

oscillations shown in Fig. 5 (filled red triangles). Nevertheless,

it can be seen that the deviation of reconstructed DCP

anisotropy is still moderate, possibly due to the information

carried by SF data. This assumption is validated after obser-

ving further deterioration when SF are removed from the data

(filled blue triangles).

For the proposed model, deconvolution of temperature

effects constitutes a difficult challenge. In contrast to most

common electron-density reconstructions, using, for example,

the widely used kappa-refinement pseudo-atom multipolar

model (Hansen & Coppens, 1978; Gatti & Macchi, 2012), our

approach to 1-RDM determination relies on a linear expres-

sion (2) which, combined with linear constraints (Section 2.2),

makes it possible to use positive SDP methodology. Insertion

of the Debye–Waller formulation to account for the thermal

effect destroys such a linearity. While an alternative formu-

lation is currently under development, it was decided for the

present work to explore the possibility of treating sequentially

both problems. First, an ab initio 1-RDM is computed with the

basis set of the model. Then, the atomic displacement para-

meters (ADPs) are determined from high-order SF (sin �=� >

0.7 Å� 1), as explained in Section 2.3. Then, these ADP values

B are fixed and incorporated into the model. Therefore, the

model remains linear for the 1-RDM refinement step, since a

mere factor exp(� q · B · q) is added to the SF operators. The

quality of such ADPs depends heavily on the model basis set,

and one cannot expect the refined P matrix to be exempt from

thermal motion contamination. As shown in the lower panels

of Fig. 3(b) and Fig. 4(b), the reconstructed 1-RDM and

deformation density continue to worsen, which is clear

evidence that the thermal motion effect has not been thor-

oughly deconvoluted. Although Compton data are assumed to

be unperturbed at such low temperatures, the off-diagonal

region continues to deteriorate. It must be attributed to the

sparsity of reliable information from momentum space, which

cannot be compensated for by the SFs. The poor performance

of our independent-atom Debye–Waller description is clearly

shown by unphysical electron depletion in the vicinity of

nitrogen centres shown in Fig. 4(b). Further, it is confirmed by

the significant differences between the refined and reference

(from CRYSTAL14) ADPs for the nitrogen nuclei (about

25% discrepancy). When real data are involved, this very

crude scheme will necessitate the addition of the previously
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Figure 3
(a) The reference (upper left) and reconstructed (lower right) 1-RDM
� (r, r0) with 0 K 1% noisy data. (b) The reconstruction 1-RDMs from
50 K 1% noisy data with (upper left) and without (lower right) restric-
tions. (c) Estimated standard deviations for reconstructions shown in (b).
The contours for (a) and (b) are the same as in Fig. 2. For (c) the contours
are drawn at 10� 4 � 2ne Å� 3, n 2 ½0; 12�. (Abbreviations: N 0 K w/o R. =
noised 0 K data without restriction.)

Figure 4
(a) Deformation density on the C–O–N reference plane (left) and
reconstruction with 0 K 1% noisy data (right). (b) Deformation density
reconstructed from 50 K 1% noisy data with (left) and without (right)
core-electron and symmetry restrictions. The contours are drawn at the
same levels as in Fig. 2.



mentioned two-centre terms in (13) and a more thorough

inclusion of the Debye–Waller contribution in the general

refinement. The feature is currently being implemented.

3.3. Further restrictions: frozen-core and symmetry

In the previous section, we discussed how the combination

of noise and thermal motion affects the 1-RDM reconstruction

using (2). To mitigate such problems, a possible method is to

reduce the degrees of freedom of the model, thus making it

more robust against noise contamination. As introduced in

Section 2.2, one would naturally first invoke the necessity of

applying symmetry restrictions to the model. An overall

improvement in reconstruction quality is observed as unne-

cessary free parameters are eliminated.

A further limitation of the active space is obtained by

freezing the core-electron contribution to the density matrix.

This common procedure does not affect our ability to absorb

momentum space data, which primarily describe delocalized

valence electrons. On the SF side, freezing the core compo-

nent of the 1-RDM helps stabilize the refinement against high-

order reflections, which are the most affected by the noise and

nuclear motion, while preserving nearly all the model’s flex-

ibility. In this subsection, we report the impact of such a

scheme under the non-ideal reconstruction scenarios.

When the frozen-core and symmetry restrictions are added

to those concerning N-representability, Fig. 3(b) (upper panel)

shows that the distortion in the reconstructed 1-RDM is

greatly reduced. In this case, even in the presence of noise and

thermal agitation, the model catches most of the features

observed in the reference 1-RDM [Fig. 3(a)]. Note that the

most significant discrepancy is in the off-diagonal region

corresponding to the long-range interaction between

hydrogen and carbon, which are second neighbours. Such a

striking improvement confirms that limiting the active space

can effectively improve the reconstruction’s robustness

against noise. The standard deviation on the reconstructed 1-

RDMs with and without additional constraints [Fig. 3(c)] was

estimated upon resampling from the Gaussian noise distri-

bution. It is observed that the restriction of active space

distinctly diminishes the uncertainty of the reconstruction.

Interestingly, such an improvement in the 1-RDM model-

ling brings only minor changes to the resulting deformation

density near the nuclei. Similarly, no major improvement is

observed for the DCP anisotropy reconstruction (see the

supporting information). This seemingly paradoxical obser-

vation can be resolved when adopting an optimization

problem perspective.

As mentioned earlier, the 1-RDM reconstruction was

defined through (10) as a least-squares minimization problem

given the SF and DCP data. Therefore, introducing constraints

such as (12a)–(12d) can only result in a new optimal solution

with a higher �2 value, i.e. a worse fit to the SF and DCP.

Consequently, the DCP anisotropies and deformation density

are not likely to be improved because they only depend on our

ability to fit the Compton data and a set of Fourier coefficients

of the electron density. However, a 1-RDM is a function in 6D

space which contains more information than its limited

number of projections given by the data values. In such a case,

it is well founded to believe that restricting the size of solution

space effectively regularizes the model, giving it stronger

predictive ability.

Estimating the total electron energy from experimental SF

is a well known, difficult challenge. Adding Compton scat-

tering information does not significantly facilitate the task.

However, on a mere relative scale, the energy criterion can be

employed to compare the performances of different refine-

ment strategies. Throughout this work, a recurrent question

has been to evaluate the optimal cut-off value in sin �=� for

the SF. In a perfect world, free from thermal motion, high-

Miller-indices reflections should be retained as long as they

rise above statistical noise. The solid curve in Fig. 6 shows that,
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Figure 5
Reference (dots) and reconstructed (lines) DCP anisotropy for the [110]
direction without (circles) and with (triangles) 1% noise. The dotted line
shows the reconstruction without the use of SF artificial data. The red
shaded area indicates the standard deviation of reconstruction upon
resampling.

Figure 6
Mean field energy (see text) of one urea molecule reconstructed from 1%
noisy data. Dashed and solid lines with circle and triangle data points
represent the reconstruction with 0 K and 50 K SF data, respectively, and
with identical Compton data. Blue lines show the reconstruction with no
additional constraints. Light blue and red lines show the results when
symmetry and core-electron constraints are used. The purple dotted line
shows the virial ratio of a 0 K 1% noisy data reconstruction with addi-
tional restrictions.



for an ideal 0 K set of SF, the total electron energy stabilizes

for any cut-off value above 0.7 Å� 1. It is no longer true when

data values are affected by temperature agitation. In the 50 K

case (dashed curve), SF corresponding to sin �=� > 0.7 Å� 1

contribute to a significant deterioration of the reconstruction

from an electron-energy perspective. As shown in Fig. 6 (all

dashed curves), minimum energy is reached when only

reflections lower than 0.7 Å� 1 are included in the set. Then, as

one increases the Ewald sphere radius, the total energy starts

to rise continuously. This confirms that the additional high-

order reflections, which are the most affected by thermal

motion, are not sufficiently well deconvoluted by the one-

centre Debye–Waller model and merely contribute to

perturbing the refinement process.

When symmetry enforcement alone is applied, an overall

improvement can already be observed under 0 K and 50 K

scenarios. More remarkably, introducing an additional frozen-

core component not only further reduces the perturbation

instilled by high-order reflections but also dramatically

improves the reconstruction ability when only a small amount

of reflection data is available. Thus, both restrictions effec-

tively increase the stability of the model by filtering out most

of the perturbation brought by thermal motion and noise

contamination and by reducing the number of unnecessary

free parameters. In addition, the behaviour of the fully

restricted model in the reduced qmax domain suggests the

possibility of reconstructing the 1-RDM with a limited amount

of low-angle SF data, those that describe the most diffused

electrons.

We insist that the Hartree–Fock-like energy computed here

is only meaningful as an indicator of the reconstruction quality

since it uses both position and momentum space electron

densities. However, due to the intrinsic difficulty of predicting

energy from 1-RDMs, the question of whether one could

accurately determine the total (or interaction) energy from

scattering experiments should be left for more careful exam-

ination and discussion.

4. Conclusion and discussion

In this work, an improved 1-RDM reconstruction method has

been tested on a system which is significantly larger than those

previously investigated (De Bruyne & Gillet, 2020; Launay &

Gillet, 2021). The crucial role played by momentum space

information, originating from Compton scattering data, is

confirmed. It is instrumental in the quality of the reconstruc-

tion, even when the weak anisotropy is buried under statistical

noise. The two main additions to the model, symmetry

restrictions and frozen-core contributions, are shown to

drastically stabilize the 1-RDM reconstruction process against

statistical noise and temperature effects. Meanwhile, with no

additional constraints, it is shown that the resulting energies,

evaluated from the modelled 1-RDM, closely satisfy the virial

theorem. As a consequence, the approximated total energy

and virial ratio were found to be valuable indicators to identify

an optimal portion of the Ewald sphere, which balances

pertinent information and noise contamination.

However, proper deconvolution of temperature-induced

nuclear motion remains a challenging problem. In the current

approach, two main obstacles have been identified: firstly, our

choice of limiting the flexibility of the temperature model and

the basis set to avoid bias in the assessment; secondly, the

necessity of keeping the 1-RDM model linear. Both inevitably

led to strong discrepancies in atomic displacement parameters

but allowed for a reliable assessment of the model’s stability.

Moreover, we have good reasons to believe that using a non-

linear version of the optimization, including two-centre

temperature factors and a better basis set, will drastically

improve the performance when real experimental data are

considered.

The current method for 1-RDM reconstruction is essentially

a statistical inference procedure. Therefore, the quality of its

outcome depends not only on the data distribution but also on

the prior distribution of the model. In the present stage, a

uniform prior was used, which means no prior knowledge is

assumed. In the future, one could consider a more informed

prior, for example, a Gaussian distribution centred on a lower-

level theory calculation. The use of additional priors will help

the model’s performance, especially in the case of poor data

quality.

Finally, our results illustrate that 1-RDM reconstruction is

achievable for a system of moderate size from X-ray SF and

DCP measurements, even when the momentum space infor-

mation is drastically limited. In the next step, such a method

can be readily applied to actual experimental data.
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