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A crystal structure with N atoms in its unit cell can be solved starting from a

model with atoms 1 to j � 1 being located. To locate the next atom j, the method

uses a modified definition of the traditional R1 factor where its dependencies on

the locations of atoms j + 1 to N are removed. This modified R1 is called the

single-atom R1 (sR1), because the locations of atoms 1 to j � 1 in sR1 are the

known parameters, and only the location of atom j is unknown. Finding the

correct position of atom j translates thus into the optimization of the sR1

function, with respect to its fractional coordinates, xj, yj, zj. Using experimental

data, it has been verified that an sR1 has a hole near each missing atom. Further,

it has been verified that an algorithm based on sR1, hereby called the sR1

method, can solve crystal structures (with up to 156 non-hydrogen atoms in the

unit cell). The strategy to carry out this calculation has also been optimized. The

main feature of the sR1 method is that, starting from a single arbitrarily posi-

tioned atom, the structure is gradually revealed. With the user’s help to delete

poorly determined parts of the structure, the sR1 method can build the model to

a high final quality. Thus, sR1 is a viable and useful tool for solving crystal

structures.

1. Introduction

Most methods of solving crystal structures in crystallography

rely on a Fourier synthesis of an electron-density map.

Because the phase angles of the structure factors are not

directly measured but are required in the Fourier synthesis,

the central theme of solving structures has been recovering the

phase angles from the measured reflection intensities. This is

generally done in a two-step fashion. The first step is to

establish an approximate or partial model for making an initial

estimate of the phase angles, and the second step is to itera-

tively improve the phasing through a dual-space recycling

process, which involves reciprocal-space phase refinement

and/or real-space electron-density modifications (Weeks et al.,

1993; Miller et al., 1993; DeTitta et al., 1994). In the most

popular program for solving small structures, SHELXT

(Sheldrick, 2015), the starting model is established by the

Patterson superposition minimum function (Buerger, 1959),

and the dual-space recycling involves real-space peak picking

and reciprocal-space expansion of phases from about 40% of

the most reliable phases (Sheldrick et al., 2001; Schneider &

Sheldrick, 2002). In macromolecular crystallography, the

molecular-replacement methods (MR; Hoppe, 1957; Ross-

mann & Blow, 1962; Rossmann, 1972; Crowther, 1972; Egert,

1983; Rossmann & Arnold, 1993) establish the starting model

by optimally placing known models into a target unit cell; in

the isomorphous replacement methods (Perutz, 1956;

Kendrew et al., 1958) the heavy-atom substructure of the

derivative is determined from the measured intensity change
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between the derivative sample and the native sample (the

sample before adding heavy atoms); and in single- or multi-

wavelength anomalous dispersion/diffraction methods (SAD

or MAD; Hendrickson & Teeter, 1981; Wang, 1985; Dauter et

al., 1999, 2002; Dodson, 2003; Hendrickson, 1991; Smith, 1998)

the anomalous scatterer substructure is derived from the

anomalous differences in the observed reflection intensities.

The dual-space recycling step of macromolecular crystal-

lography involves various electron-density-modification tech-

niques: solvent flattening (Wang, 1985; Leslie, 1988) or solvent

flipping (Abrahams & Leslie, 1996), and histogram matching

and noncrystallographic symmetry averaging (Cowtan &

Zhang, 1999; Terwilliger, 2002; Brünger et al., 1998) etc.

Though the main routes towards a structure solution in

crystallography proceed via phasing, direct routes from the

measured reflection intensities to a structure solution have

also been explored extensively. The most famous example is

the Patterson function, which has been exploited in the model

searching step of the molecular-replacement calculations

(Hoppe, 1957; Rossmann & Blow, 1962; Rossmann, 1972;

Crowther, 1972; Egert, 1983; Rossmann & Arnold, 1993), as

well as in various Patterson deconvolution techniques

(Richardson & Jacobson, 1987; Pavelčı́k, 1988, 1994; Burla et

al., 2004, 2006a,b, 2007; Caliandro et al., 2008). The fact that

the reflection intensities can be calculated from a trial model

by using the atomic scattering factors and the atomic locations

(without dealing with the phasing) has also been exploited for

solving structures, that is, a structure can be solved via opti-

mization techniques by optimally matching the calculated and

the observed reflection intensities. There are a few studies

along this line of attack. McCoy et al. (2017) reported that

maximization of the log-likelihood gain on intensities (LLGI)

had been successful in locating up to ten S atoms in a protein

structure with 2525 non-hydrogen atoms. Burla et al. (2018)

reported that a diagonal least-squares technique (a simplified

version of the least-squares method) had been applied to

produce ab initio phasing for small crystal structures.

Over a 2-year period, we have been exploring a new opti-

mization method which we term the single-atom R1 (sR1). The

application of sR1 for solving crystal structures is, similarly to

the LLGI method (McCoy et al., 2017), a search over a

parameter space with the goal of locating atoms or groups of

atoms in the unit cell. As this paper is the first formal

description of this method, in Section 2 we provide a detailed

mathematical derivation of the sR1 concept. Though the sR1

method has been mathematically derived, its validity rests

solely on the test calculations. This is because the derivation is

based on mathematical intuition, not on absolute mathema-

tical facts. In Section 3 some basic properties of sR1 are

explored by calculations with experimental data. In the next

few sections, the test calculations for solving structures are

described. Along the way, rules for avoiding ghost atoms have

been established, and the best strategy for applying sR1 to

solve crystal structures has been proposed. The success of

these test calculations indicates that the algorithm can be used

to solve crystal structures. The report ends with a summary

and discussion of future directions.

2. The single-atom R1 (sR1) method

A reflection is indexed by hkl, and its intensity is proportional

to the square of the amplitude of a structure factor. We use the

square of the amplitude, Fo
2(hkl), to represent an observed

reflection intensity (which has been properly scaled, see

below), and the corresponding calculated reflection intensity

is Fc
2(hkl), which can be calculated from a model in the

following way:

F2
c ðhklÞ ¼

P

j

fjðhklÞ cos 2�ðhxj þ kyj þ lzjÞ

" #2

þ
P

j

fjðhklÞ sin 2�ðhxj þ kyj þ lzjÞ

" #2

: ð1Þ

Here atom j is located at (xj, yj, zj) and has an atomic scattering

factor fj(hkl), which is calculated with an isotropic displace-

ment parameter U = 0 Å2. This choice of U is made on

purpose, because using U > 0 will widen the holes in an sR1

map and make the sR1 method less precise and less effective

in locating missing atoms.

Equation (1) can also be expressed in the following form:

F2
c ðhklÞ ¼

P

j

f 2
j ðhklÞ þ 2

P

j< j0
fjðhklÞfj0 ðhklÞ

� cos 2�½hðxj � xj0 Þ þ kðyj � yj0 Þ þ lðzj � zj0 Þ�: ð2Þ

In this expression the first sum is positive and depends only on

the number and types, not on the locations, of the atoms. The

second sum depends on the relative location of pairs of atoms

and includes positive and negative values because the cosine

function has values from � 1 to +1. These contributions largely

cancel each other when the intensities of all reflections are

added together and, so, the following approximation can be

reached:
P

hkl

F2
c ðhklÞ ’

P

hkl

P

j

f 2
j ðhklÞ: ð3Þ

This approximation suggests that the observed intensities

Fo
2(hkl) should be scaled such that their sum equals

�hkl�jfj
2(hkl). This scaling rule will be applied in the sR1

method.

We use the traditional R1 to evaluate the mismatch between

the calculated and the observed intensities:

R1 ¼
P

hkl

jFcðhklÞ � FoðhklÞj=
P

hkl

FoðhklÞ: ð4Þ

R1 can be considered a function of the 3N atomic coordi-

nates. Thus, in principle, an atomic model can be solved by

globally minimizing R1 while simultaneously adjusting the

locations of all N atoms in the unit cell. Of course, such a

brute-force calculation is too overwhelming for the current

computing technology. Therefore, we seek a stepwise algo-

rithm, in which each step only determines the location of one

atom.

The first atom can easily be located. As seen in equation (2),

Fc
2(hkl) only depends on the relative positions of the pairs of

atoms. So, the absolute location of the whole structure is

immaterial, and the first atom can be put at any location. For
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convenience of programming, we choose (0.3, 0.3, 0.3) for the

location of the first atom, although any other location can

serve this purpose. As to which atom should be selected as the

first atom, the choice falls on the heaviest atom, so that the

first atom accounts for as much scattering power as possible.

Let us next turn our attention to the following steps. Here

we assume that the locations of atoms 1 to j � 1 have been

determined. To determine the location of atom j, we use the

R1 as defined by equation (4), in which only Fc(hkl) depends

on the locations of atoms. This dependency can be seen in

equation (2), where the locations of all N atoms are involved.

As we already know the locations of atoms 1 to j � 1, we need

not worry about these locations. The locations of the

remaining atoms j to N are still unknown. But we only want to

find the location of atom j at this step, so we should remove

any dependency of Fc
2(hkl) on the locations of atoms j + 1 to

N. By deleting all terms that are dependent on the locations of

atoms j + 1 to N from equation (2), the resulting approximate

equation can be manipulated into the following form:

F2
c ðhklÞ ’ ½f1ðhklÞ cos 2�ðhx1 þ ky1 þ lz1Þ þ . . .

þ fjðhklÞ cos 2�ðhxj þ kyj þ lzjÞ�
2

þ ½f1ðhklÞ sin 2�ðhx1 þ ky1 þ lz1Þ þ . . .

þ fjðhklÞ sin 2�ðhxj þ kyj þ lzjÞ�
2

þ f 2
jþ1ðhklÞ þ . . .þ f 2

NðhklÞ: ð5Þ

Note that one may be tempted to derive this equation by

deleting all terms that are dependent on the locations of atoms

j + 1 to N from equation (1). In that case, one reaches an

equation like equation (5) but without the tail

f 2
jþ1ðhklÞ þ . . .þ f 2

NðhklÞ. We have tested the method with

such a variant but found that the results are much worse than

when using equation (5). Of course, this is understandable,

because retaining f 2
jþ1ðhklÞ þ . . .þ f 2

NðhklÞ makes the calcu-

lation of R1 more accurate.

Now we can give a formal definition of the single-atom R1

(sR1): when Fo
2(hkl) are scaled such that their sum equals

�hkl�jfj
2(hkl), when Fc

2(hkl) are calculated by the approx-

imation of equation (5), and when the coordinates of atoms 1

to j � 1 are the known parameters, the calculated traditional

R1 depends on the unknown coordinates of atom j only and,

so, it is called the single-atom R1 (sR1).

In sR1 the locations of atoms 1 to j � 1 appear as known

parameters, while the only unknown parameters are the

coordinates of atom j: (xj, yj, zj). So, atom j acts as a probe

atom. Up to now, atoms 1 to j � 1 have already been put into

the model, and atoms j to N are missing from the model. When

we move the probe atom j around, sR1 will change. Intuition

tells us that when the probe moves over the location of a

missing atom, sR1 will decrease, because now the probe

accounts for the diffraction power of that location, though it

could be under- or overestimating it. When the probe starts to

move away from that location, sR1 will increase as the probe is

entering the regions where no diffraction power needs to be

accounted for. So, we predict that there is an sR1 hole at the

location of each missing atom.

One can ask: among all the missing atoms from j to N, which

atom should be selected as the probe? Again, intuition tells us

that we should select the heaviest atom, which potentially

yields the deepest sR1 holes. At least, if we choose the heaviest

missing atom as the probe, when the probe moves over the

location of the heaviest missing atom, we reach the deepest

sR1 hole. So, in such an arrangement, in each step, the deepest

sR1 hole locates the heaviest missing atom. And this

completes the derivation of the sR1 algorithm.

The sR1 algorithm can be carried out in two ways. In the

first, one finds all local minima (holes) of the sR1 function,

making sure to discard those not corresponding to coordinates

within the unit cell. Later on, the lowest among such minima is

selected as the correct location for the atom j. In the second,

one directly searches for the global minimum point and assigns

its location to atom j, because the minimum point of the

deepest sR1 hole must be the global minimum point. As global

minimization is arguably more straightforward to program, we

have initially used this approach. However, as shown later, and

counter to our intuition, the first approach turns out to be

more efficient.

In Section 3 we do some calculations to verify that there is

an sR1 hole nearby each missing atom. The success of the trial

calculations in the few sections after Section 3 serves as the

verification of the other prediction, namely, the deepest sR1

hole locates the heaviest missing atom.

In the current implementation of this sR1 method, all

calculations are performed in the minimal P1 space group, and

any centering is also ignored. This strategy has been proved to

be robust in some other programs (Sheldrick & Gould, 1995;

Burla et al., 2000; Caliandro et al., 2007; Sheldrick, 2015). The

reflection data are expanded to P1 by complementing any

missing symmetry equivalents, and Friedel pairs are also fully

expanded. Duplicate reflections are merged by taking a simple

(non-weighted) average. The calculation result naturally takes

care of any existing crystallographic symmetry (including

centering), which can later be recovered by examining the

resulting cell content. However, this extra step is not fully

performed for the examples in this report: only the space
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Table 1
Crystallographic information of the three samples that are studied in detail in this report.

Sample
Formula
(excluding H) Z

Non-H
atoms in cell a (Å) b (Å) c (Å) � (�) � (�) � (�)

Space
group

1 S2O2C12 2 32 5.86 10.34 10.74 90 104.50 90 P2(1)
2 C46 1 46 5.95 10.80 12.97 103.77 99.95 90.46 P1
3 C78 2 156 12.34 15.98 16.57 114.10 90.70 103.20 P1



group is extracted using the PLATON (Spek, 2020) program

to analyze the final model, but shifting the cell origin to match

the convention and extracting the asymmetric part of the

structure are not performed.

3. Basic properties of sR1

Three samples, samples 1, 2 and 3, are selected and studied in

detail in this report. Table 1 gives the crystallographic infor-

mation of these samples.

Sample 1 is used to reveal the basic properties of sR1. The

correct model of sample 1 is shown in the top panel of Fig. 1.

Note that in the correct model of sample 1, as shown in the

top panel of Fig. 1, the atoms are numbered from the heaviest

to the lightest: S1 to S4, O5 to O8, and C9 to C32. Different

sR1’s are defined, depending on which atoms are known.

Three sR1’s will be studied: sR1(S2) for which only S1 is the

known atom; sR1(O7) for which S1 to S4 and O5 to O6 are the

known atoms; and sR1(C20) for which S1 to S4, O5 to O8, and

C9 to C19 are the known atoms. All holes of each sR1 within

the unit cell are discovered, and each missing atom is assigned

an sR1 hole that is closest to it. The distance between a missing

atom and the minimum point of its assigned sR1 hole is listed

in Table 2. The listed data in Table 2 show that sR1(S2) can

locate the missing atoms within 0.00 to 0.41 Å, sR1(O7) can

locate the missing atoms within 0.00 to 0.19 Å, and sR1(C20)

can locate the missing atoms within 0.03 to 0.13 Å. Therefore,

in general, when the model becomes more complete, an sR1

can locate the missing atoms more accurately. But even the

worst accuracy 0.41 Å is smaller than 0.5 Å, so, in general,

global minimization of an sR1 can locate each missing atom

within 0.5 Å.

Fig. 2 shows the R1 values of the minimum point of the

sR1(S2) holes that are neighbors of each missing atom. The

data in Fig. 2 indicate that the heavier missing atoms S2 to S4

have much deeper sR1 holes than the lighter atoms O5 to O8

and C9 to C32.

The profiles of an sR1 hole can also be calculated (details

are provided in the supporting information). In a typical sR1

profile along a straight line passing through the minimum

point of an sR1 hole, the local minimum point of the hole is

sandwiched between two neighboring local maximum points,

and the distance between these two maximum points is larger

than 1.2 Å. This indicates that we may choose 0.4 Å step size

for setting up a coarse grid for performing the global mini-

mization of sR1’s, as well as for locating the sR1 holes.
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Figure 1
The models of sample 1. Top panel: the correct model. Middle panel: the
resulting model via global minimization calculation that allows clustering
ghost atoms. Bottom panel: the resulting model via global minimization
calculation that excludes clustering ghost atoms.

Table 2
List of the distances between the minimum point of an sR1 hole and the
location of its corresponding missing atom (unit: Å).

Atoms sR1(S2) sR1(O7) sR1(C20)

S2 0.31
S3 0.04

S4 0.30
O5 0.17
O6 0.33
O7 0.05 0.03
O8 0.16 0.05
C9 0.00 0.04

C10 0.09 0.06
C11 0.25 0.13
C12 0.12 0.05
C13 0.41 0.08
C14 0.24 0.11
C15 0.27 0.11
C16 0.13 0.06

C17 0.18 0.08
C18 0.34 0.11
C19 0.31 0.10
C20 0.29 0.15 0.09
C21 0.15 0.06 0.04
C22 0.25 0.04 0.03

C23 0.24 0.09 0.05
C24 0.33 0.06 0.04
C25 0.36 0.11 0.06
C26 0.00 0.11 0.06
C27 0.07 0.08 0.05
C28 0.21 0.07 0.05
C29 0.36 0.00 0.09

C30 0.10 0.19 0.13
C31 0.31 0.08 0.07
C32 0.24 0.14 0.08



4. Avoiding clustering ghost atoms

As predicted in Section 2, the global minimization of sR1’s can

sequentially locate the atoms of an unsolved structure. Taking

sample 1 as an example, at the start, a single atom S1 is placed

at (0.3, 0.3, 0.3) and this provides a known atom for defining

sR1(S2). Next, S2 is located by globally minimizing sR1(S2).

To perform this global minimization, a coarse grid is set up

within the whole cell with a step size of 0.4 Å. The sR1 values

are calculated on all grid points and the grid point with the

smallest sR1 value marks the global minimum point. The

precision of locating this minimum point is improved to

0.001 Å by repeatedly halving the step size locally (more

technical details are given in the supporting information). At

this point, both S1 and S2 are known, so sR1(S3) can be

defined and globally minimized to locate S3. This step is

repeated. Finally, S1 to S4, O5 to O8 and C9 to C31 are all

known, and sR1(C32) can be defined and globally minimized

to locate the last atom C32. The final resulting model of this

procedure is shown in the middle panel of Fig. 1. This resulting

model has the following problems: O5 is too close to S1 (only

0.55 Å distance), C22 is too close to S2 (only 0.47 Å distance)

and C23 is too close to S3 (only 0.43 Å distance). Atoms like

O5, C22 and C23 are called the clustering ghost atoms because

they are chemically incorrect. To avoid these clustering ghost

atoms, the following rule should be enforced: when a candi-

date location is too close to a known atom (within an exclusion

radius that depends on the type of known atom), this location

should be disqualified as a candidate for global minimization.

If the known atom is one of the heavy atoms like I, Mo, Pd and

Se etc., the exclusion radius is chosen at 2.2 Å, while for all

other atoms 1.2 Å is chosen. These choices are based on trial

and error. With this rule, the global minimization steps lead to

the resulting model shown in the bottom panel of Fig. 1. The

model has only the following minor problems: O5 should be

assigned as C5, O8 should be C8, C9 should be O9, and C13

should be O13. These minor problems can be corrected in the

structure refinement step. (Interestingly, if O5, O8, C9 and C13

are deleted and the model is rebuilt with another batch of

global minimization steps, these atoms will be assigned

correctly.)

In the sR1 method, the atomic scattering factors are

calculated with the isotropic displacement parameter U = 0.

Obviously, this atomic model does not match the real electron

density of an atom. It accounts for the electron density at the

central region of a real atom. Nearby this central region there

is some unaccounted-for electron density, which may fool the

probe atom and make an sR1 hole deep enough to produce a

ghost atom, especially when the already located atom is a

heavy one. This is the plausible formation mechanism of the

clustering ghost atoms.

5. Preventing ghost atoms at the center of completely

or partially formed benzene rings

The correct model of sample 2 is shown in the top panel of Fig.

3. This structure has several benzene rings. Applying the

global minimization of sR1’s with the rule excluding clustering

ghost atoms to this sample, the resulting model is shown in the

middle panel of Fig. 3. This resulting model has a new type of

ghost atom: C7 is a ghost atom located at the center of a

benzene ring, and C1 and C6 are two ghost atoms at the
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Figure 2
The R1 value at the minimum point of each sR1(S2) hole that is next to a
missing atom.

Figure 3
Models of sample 2. Top panel: the correct model. Middle panel: the
resulting model by applying global minimization of sR1’s with the rule
excluding clustering ghost atoms (but triangular bonding is not excluded).
Bottom panel: the resulting model when both clustering ghost atoms and
triangular bonding are excluded.



centers of two partially formed benzene rings (each with only

four atoms, short of the six atoms for a complete benzene

ring). These ghost atoms form triangular bonds with their

hosting (complete or partial) benzene rings. Therefore, these

ghost atoms can be prevented if a rule excluding triangular

bonding is enforced: given that atoms A and B have already

been located and L is a candidate location, if L can form

triangular bonding with A and B with all three bonds shorter

than 1.6 Å, then L should be disqualified as a candidate. Using

this rule to re-do the global minimization steps, the resulting

model, as shown in the bottom panel of Fig. 3, will be the same

as the correct model.

There is one catch in enforcing the rule excluding triangular

bonding: again, consider the atoms A and B, and the candidate

location L. What if one of A and B is a ghost atom, while L is a

correct location, and the three make triangular bonding? In

this instance, enforcing the rule will exclude this correct

location. One possible strategy is to abandon this rule, and

after finishing the model, manually delete the ghost atoms and

then re-do the global minimization steps to complete the

model again. However, this approach would be frustrating: the

deleted ghost atoms, with triangular bonding allowed, will

keep coming back. A better strategy is to enforce the rule

excluding triangular bonding, even though this rule may

occasionally lead to mistakes. The mistakes can be later

corrected manually by deleting the ghost atoms. After deleting

the ghost atoms, the global minimization steps are repeated to

complete the model again. This time, because the calculation is

now based on a more complete model, the result is more

accurate such that the correct locations win the competition

and get adopted before the ghost locations (even though some

ghost locations have a chance of being examined, they are

rejected by the rule excluding triangular bonding).

For structures containing benzene rings, when the probe

atom moves over the center of a benzene ring, it simulta-

neously accounts for part of the diffraction power of all six

atoms in the ring; in this way, an sR1 hole forms, and when

deep enough, a ghost atom will be created. This is the plau-

sible formation mechanism of a ghost atom at the center of a

benzene ring.

6. Using sR1 holes to predict the possible locations of

all missing atoms

Because an sR1 map has holes at the locations of the missing

atoms, the set of all holes encompasses all locations of the
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Figure 4
Correct model of sample 3 and the steps in solving this structure (using batches of global minimization steps that are started by predicting the locations of
the missing atoms by sR1 holes).



missing atoms. Therefore, the searching range of the global

minimization of an sR1 can be limited to these holes only. This

strategy can greatly shorten the calculation time of these

global minimization steps. The benefit of this strategy may not

be apparent when solving a small structure like sample 1, but

is enormous when a large structure like sample 3 is to be

solved. The correct model of sample 3 is shown in the first

panel of Fig. 4. It has 156 C atoms in its unit cell. The steps of

solving the structure by this new strategy are also shown in Fig.

4. The calculation starts by placing a single C atom at

(0.3, 0.3, 0.3). In step 1, first, the possible locations of all

missing C atoms are predicted by the holes of the sR1 map

based on the single known C atom. The holes are coarsely

discovered via a grid of 0.4 Å step size: a grid point marks a

hole if it has smaller R1 than all six neighboring grid points.

The precision of locating a hole is improved by repeatedly

halving the step size locally (more technical details are given

in the supporting information). Since the holes will only serve

to estimate the locations of the true minimum points of an sR1,

the final precision will be further refined to 0.001 Å after

identifying that a candidate point is close to the true global

minimum point. Therefore, the initial precision does not need

to be high, in order to save calculation time; but it should not

be too low either (to avoid selecting a hole that is not the

deepest). As a compromise, we choose 0.1 Å as the initial

precision. Typically, there are 2000 to 5000 holes in an sR1 map

of sample 3. Taking the deepest 780 (five times the total 156 C

atoms in the cell) holes is sufficient because the holes of the

missing atoms are deeper than the noise. After predicting the

possible locations of the missing atoms, we do a batch of global

minimization steps (in each step we only search over these 780

candidate locations) to extend the model to ten atoms. In steps

2, 3 and 4 we do the same thing and extend the model to 30, 80

and the full 156 atoms, respectively, to reach an intermediate

full model. This intermediate full model is quite complete, and

its 18 ghost atoms are identified and deleted. In step 5, after

deleting these ghost atoms and again predicting the locations

of the missing atoms, we do a final batch of global minimiza-

tion steps to extend back to the full model again. This final full

model has only one atom misplaced. The whole process of

solving the structure by this new strategy takes about 1 h to

complete. In comparison, if the calculation is done with the

complete set of 0.4 Å step size grid points (a total of 52 080

points) of the whole cell as candidate locations for performing

global minimization, the full model is finished in about 18 h.

Even worse, the resulting model only has 73 out of 156 atoms

located within 0.5 Å, and out of all 156 atoms only about 20

atoms form recognizable fragments. Therefore, manually

deleting all atoms that are not guaranteed to be correct and

repeating the calculation for a few cycles to reach the final

correct model will cause it to take many additional hours to

complete.

It is somewhat surprising that the quality of the resulting

model when the full 52 080 grid points are taken as candidates

is worse than when only 780 selected points are used in the

global minimization steps. At first glance, using all grid points

should guarantee that the minimization is carried out truly

‘globally’, so its result should be better, or at least the same.

One should realize that the problem comes from enforcing the

rule excluding clustering ghost atoms. This rule cuts ball-

shaped holes in the unit cell. These holes are centered at the

known atoms. When the true global minimization is carried

out, sometimes the global minimum is realized at the edge of

these holes. But this is not a true local minimum point and

leads to a ghost atom. On the other hand, the selected 780

points are all true local minimum points, and in using them as

candidates, even though the same rule is enforced, no new

artificial ghost atoms are created. Thus, the new strategy

unexpectedly brings the additional benefit of generating

higher-quality models.

One may notice that, after putting the first C atom at

(0.3, 0.3, 0.3), one can predict the possible locations of all the

missing atoms by using the sR1 holes. One may be tempted to

immediately extend the model from one atom to the full 156

atoms. However, the result of this rushed calculation is not

good: only 32 out of 156 atoms are located within 0.5 Å, and

hardly any fragment can be identified as a correct fragment,

thus excluding the possibility of applying manual editing. This

type of rushed calculation fails because of the low accuracy of

using the sR1 holes to represent the locations of the missing

atoms when the model is still very incomplete. Therefore, the

correct strategy, as carried out above, is to only extend by a

few atoms at the start. Later, when the model becomes more

complete, it is possible to extend with more atoms at each

batch of the global minimization steps. The sequence of

extending from one to ten to 30 to 80 to 156 atoms has been

proven to be a good strategy for solving the structure of

sample 3.

7. Effect of inaccurate estimates of the cell content on

the structure solutions

Quite often in crystallography the initial estimate of a cell

content is off (i.e. inaccurate). With an initial estimate of the

cell content being off by about 20% (more or less), we have

tested samples 1 to 3 with the sR1 calculations. Details of these

tests are presented in the supporting information. We have

found that the sR1 method still works when an initial estimate

of the cell content is off. When the cell content is under-

estimated, the resulting model is correct except that some

atoms are missing, and it is clear which atoms are missing.

When the cell content is overestimated, the correct model can

be determined but with additional spurious atoms, which

should be deleted. In either case, a user can eventually

determine the correct content and the correct structure. If

analyzed mathematically, when the cell content is off, the

scaling of Fo
2(hkl) will be off. The calculation of Fc

2(hkl) will

also be off, and in the end the absolute value of R1 will be off.

However, the probe atom can still correctly detect sR1 holes

because such detection depends on the variation of R1 with

the location of the probe. It is understandable that when the

probe moves over the location of a missing atom, R1 will still

dip, even though the absolute value of R1 is off. For this
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reason, the sR1 method can correctly locate the missing atoms

when the cell content has been estimated incorrectly.

When the initial estimate of the cell content is off, the

scaling of Fo
2(hkl) will be accordingly off, but the sR1 method

will still work correctly. One may wonder: what will happen if

the initial estimate of the cell content is correct, but the scaling

of Fo
2(hkl) itself is off? For this, we have tested (for details see

the supporting information) and found that the sR1 method

will still work correctly even if the scaling is doubled or is

halved. Though the overall calculation is still correct, during

the calculation there are more ghost atoms that need to be

deleted. In general, the best scaling is the one that we have

been using, namely, the intensities should be scaled such that

their sum equals �hkl�jfj
2(hkl). The reason that the sR1

method works correctly even when the scaling is off is the

same: the sR1 method only depends on its ability to detect sR1

holes, and when the scaling is off, sR1 still correctly dips when

the probe moves over the location of a missing atom.

8. Effect of truncating reflection data resolution to 1 Å

on the structure solution strategies

The raw reflection data are used in all the above calculations.

The raw data resolutions are: sample 1, 10.4–0.84 Å; sample 2,

12.39–0.73 Å; sample 3, 15.02–0.77 Å.

If the data resolution is truncated to 1 Å, using batches of

global minimization steps that are started by predicting the

locations of the missing atoms by the sR1 holes, the structures

of samples 1 and 2 can be solved, although it does require

extra cycles of deleting ghost atoms and re-extending back to

full models. However, handling sample 3 is tricky. As indicated

by the first step shown in Fig. 5, doing a cycle from a single

atom to the full model as normal, starting from a single C atom

at (0.3, 0.3, 0.3), then extending to ten, to 30, to 80 and to 156

atoms, the resulting model is mostly unrecognizable. To

resolve this dilemma, one must try to identify, or guess, a likely

correct small fragment of the structure. Once such a fragment

is identified, all the other atoms can be deleted. If this frag-

ment is a correct fragment, or is nearly correct, the sR1 holes

derived from this fragment can represent the missing atoms

more accurately than those derived from a single starting

atom. So, continuing to extend the model from this fragment

will more likely lead to the correct solution. As shown in the

second step of Fig. 5, a small fragment of four C atoms is

selected; this fragment’s central atom is labeled as C33 in both

step 1 and step 2. This small fragment is suggested to be a

correct fragment. Indeed, as seen in steps 3 and 4 of Fig. 5, by

extending from this fragment, the correct model can be

induced and then improved.

9. Extending the sR1 concept to a more general concept

of partial structure R1 (pR1)

For the difficult case of sample 3 with the truncated resolution,

one strategy to jumpstart the global minimization steps is to

use a single benzene ring that is correctly oriented. To

correctly orient a fragment like a benzene ring, it is necessary

to extend the sR1 concept to a more general concept called the

partial structure R1 (pR1). The same equation (5) is used to

define pR1. When defining sR1, among the atoms 1 to j, only j

is the single missing atom. For defining pR1, there are multiple

missing atoms: 1 to i � 1 are the known atoms, while i to j are

the missing atoms. The missing atoms i to j form a fragment, or

a partial structure, or a partial model. The structure of this

fragment is known. For example, the fragment could be a

benzene ring with a bond length of 1.39 Å. If the fragment

contains a single atom, pR1 turns into sR1. Just like an sR1 can

locate a single atom by the deepest hole in an sR1 map of a

three-dimensional location space, in general, a pR1 can

determine the orientation and location of a missing fragment

by the deepest hole in a pR1 map of a six-dimensional

orientation-location space (or five-dimensional if the fragment

is linear). In a special case, when the fragment is free-standing,

that is, there are no known atoms, then the location of this

free-standing fragment is immaterial, and the correct orien-

tation of this fragment can be determined by the deepest hole

of a pR1 map of a three- or two-dimensional orientation space.

To locate the deepest pR1 hole in an orientation space, a

coarse grid of step size 5� in rotation angles is set up. The value

of pR1 is calculated over all grid points, and the grid point with

the smallest pR1 marks the global minimum point (the same as

the deepest hole). The precision of locating this minimum

point is further refined by halving the step size five times

locally (more technical details are given in the supporting

information). Applying this method to sample 3, a single

benzene ring is placed with its center at (0.3, 0.3, 0.3), and its

correct orientation is determined by the deepest hole of the
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Figure 5
One attempt to solve the structure of sample 3 after truncating the data
resolution to 1 Å (using batches of global minimization steps that are
started by predicting the locations of the missing atoms by the sR1 holes).
Step 1: starting from a single C atom, extend the model to ten, to 30, to 80
and to 156 atoms. Step 2: select a small fragment. Step 3: extend the model
to ten, to 30, to 80 and to 156 atoms, and delete the ghost atoms. Step 4:
extend the model to 156 atoms.



pR1 map of a free-standing benzene. This correctly oriented

benzene ring is shown in step 1 of Fig. 6. Starting from this

correctly oriented benzene ring, applying batches of global

minimization of sR1’s, combined with manual deletion of bad

or uncertain atoms, as shown in steps 2 to 5 in Fig. 6, one

eventually reaches the correct model of sample 3.

10. General strategies of using sR1 to solve crystal

structures

The sR1 map has holes at the locations of missing atoms, and

the deepest hole locates the heaviest missing atom (after

avoiding clustering ghost atoms and excluding triangular

bonding). As the holes of an sR1 map encompass all missing

atoms, when a new sR1 is defined by including the newly

located atom as a known atom, it is not necessary to re-

discover a new set of sR1 holes. Instead, the deepest hole of

the new sR1 map can be discovered by testing the locations of

the old holes. However, the sR1 holes are inaccurate repre-

sentations of the locations of the missing atoms when the

model is very incomplete. They become more accurate

representations when the model becomes more complete. So,

at the start, after finding the sR1 holes, the first batch of using

the deepest sR1 holes to extend the model should only extend

the model by a few atoms; at later stages the number of atoms

being extended at each batch of such a calculation can

increase quickly. Finally, the resulting model should always be

examined for chemical soundness, and the atoms that do not

make chemical sense should be deleted. To minimize propa-

gation of mistakes, it is better to correct any identifiable

mistakes as early as possible.

After deleting the ghost atoms, the calculation is resumed.

As a matter of fact, sR1 can also be used to improve the

quality of the model. Any deformed part of the model, for

example, a distorted benzene ring, can be deleted and rebuilt

to better quality. Sometimes, one may meet difficult cases like

that of sample 3 after truncating the data resolution to 1 Å. In

these difficult cases, the resulting model is mostly unrecog-

nizable. In such cases, it is necessary to look for a small

fragment which looks more likely to be correct. Alternatively,

one may place a known fragment with its local origin (for

more technical details about the local origin of a fragment, see

the supporting information) at (0.3, 0.3, 0.3) and use the

deepest hole in a pR1 map of a free-standing fragment to
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Figure 7
A general flowchart of applying the sR1 method for solving an unknown
structure. Step 1: the starting model, which is either a single atom that is
arbitrarily positioned, or a known fragment that is also arbitrarily posi-
tioned but is correctly oriented by pR1 of a free-standing fragment. After
defining a new sR1 the calculation moves on to step 2: set up a grid within
the cell with step size 0.4 Å. Note that whenever defining a new sR1 the
known model up to that point is used. Step 3: discover sR1 holes. A grid
point (colored blue) with an sR1 value smaller than all its six neighbors
(colored red) marks an sR1 hole. Step 4: use a local grid with halved step
size to refine the location of the sR1 holes. The local grid point with the
lowest sR1 is accepted as the improved location of the hole. After
repeating step 4 one more time, the 5N of the deepest holes are adopted
as the candidate locations; here N is the number of atoms expected in the
unit cell. Step 5: locate atom j. First, the candidate locations are filtered by
applying rules excluding ghost atoms. The filtered candidate locations are
shown as colored balls. Calculate sR1 over these candidate locations and
assign the one (colored blue) with the smallest sR1 to atom j. The
precision of this location is refined to 0.001 Å. After defining the new sR1
repeat step 5. In total, step 5 is executed Ni times. Note that Ni represents
one number from a set of N1, N2, N3, . . . , and this set constitutes a
calculation strategy. For example, for sample 3, the set of Ni’s is 9, 20, 50,
76. Note that N1 + N2 + N3 + . . . = N � N0, where N0 is the number of
atoms in the starting model. After finishing Ni cycles of step 5, with a
newly defined sR1, the calculation goes back to steps 2, 3, 4, then executes
the next Ni cycles of step 5. Repeat this until all Ni’s in the set N1, N2, N3,
. . . , are finished. At that point, one reaches step 6: the tentative full
model. With the user’s help to delete ghost atoms, one moves on to step 7:
the intermediate partial model. After defining a new sR1, the calculation
goes back to steps 2, 3, 4, and then repeats step 5 for certain cycles, and
then goes back to step 2 again etc., until a new tentative solution is
produced. If the new tentative solution still has many ghost atoms, the
above calculations will again be repeated. Once the new tentative solu-
tion has high quality, one reaches step 8: the final model.

Figure 6
Another attempt to solve the structure of sample 3 after truncating the
data resolution to 1 Å. Step 1: place a single benzene ring with its center
at (0.3, 0.3, 0.3) and with its orientation determined by the deepest hole in
a pR1 map of a three-dimensional orientation space. Step 2: using sR1,
extend the model to 30 and to 80 atoms, and keep a recognizable frag-
ment. Step 3: repeat step 2. Step 4: using sR1, extend the model to 30, to
80 and to 156 atoms, and delete the ghost atoms. Step 5: using sR1, extend
the model to 156 atoms.



determine its correct orientation. Extending the model from a

correct fragment leads to more recognizable fragments. By

retaining these recognizable fragments and extending from

them, one eventually reaches the full structure.

To summarize, a general flowchart of applying sR1 for

solving an unknown structure is shown in Fig. 7.

11. Comparison with other methods

The Patterson deconvolution techniques (Richardson &

Jacobson, 1987; Pavelčı́k, 1988, 1994; Burla et al., 2004,

2006a,b, 2007; Caliandro et al., 2008) succeed in providing

initial phasing for small molecules up to protein structures.

However, the Patterson deconvolution techniques typically

can only serve an initial phasing purpose since they are not

powerful enough to solve a complete structure on their own.

In comparison, the sR1 method can independently solve a

complete structure. This is due to its power of gradually

revealing the structure. Starting from an arbitrarily positioned

single atom, sR1 reveals a little of the structure at the start.

Once a little is known, more can be revealed, and then much

more can be revealed. In the end, a full structure is revealed.

When needed, poorly determined parts of the structure can be

deleted and rebuilt. All these abilities have been demon-

strated with test calculations of small structures. In the future,

we will test how the sR1 method can meet the challenges of

protein structures.

The diagonal least-squares technique was successful in

performing ab initio phasing of small molecules (Burla et al.,

2018). Mathematically, the least-squares method requires the

starting solution to be close to the correct solution to

converge, because it uses Taylor expansion to linearize the

model. Therefore, the success of the least-squares technique

relies on a multi-solution strategy by trying many initial

guesses, combined with its ability to discern which atoms are

the bad ones and which therefore need to be replaced by new

random guesses. In comparison, the sR1 method is determi-

nistic. However, its initial result may contain ghost atoms; thus,

it requires a user to identify and delete the ghost atoms and

then re-extend back to the full model by resuming the sR1

calculations.

The maximization target of the LLGI was successful in

locating up to ten S atoms in a protein structure with 2525 non-

hydrogen atoms (McCoy et al., 2017). The theoretical basis for

LLGI is statistical hypothesis testing (Read, 2001), which is

theoretically sound and sophisticated, but the formulas of

LLGI are complicated, with unknown parameters that need to

be estimated and/or optimized. In comparison, the basis of the

sR1 minimization target is simple mathematical intuition: the

correct model has the smallest R1 factor. This is the beauty of

the sR1 target, leading to simple and transparent formulas

with no unknown parameters (except for the cell content). It is

surprising that such a simple idea can effectively solve crystal

structures. One main reason for this success is that the part

relating to the effects of the missing atoms j + 1 to N on the R1

factor that is independent of their location, namely,

f 2
jþ1ðhklÞ þ . . .þ f 2

NðhklÞ, is retained in equation (5). This part

accounts for the baseline effect of these missing atoms on the

R1 factor. Because the effect of the probe atom j on R1 is

weak, if this baseline effect is not accounted for, the weak

effect of the probe would be lost in noise. Though the effect of

the probe is weak, its variation with (xj, yj, zj) is consistent such

that all missing atoms appear as holes in the sR1 map. Just

because the missing atoms leave such discernible trace foot-

prints on the sR1 map, the sR1 method turns out to be

successful. (In retrospect, we are still amazed that this simple

sR1 idea can solve crystal structures, because it employs an

oversimplified model: the atomic electron densities are

spherically shaped without any thermal effects. There is no

way that such an oversimplified model can mimic the real

electron density. However, the magic is that, even though the

model can never fit the real electron density, it can accurately

locate the central portion of the real electron density of each

real atom, such that it is good at locating the atoms without

fitting the complete electron-density map.)

As far as we can see, the main advantage of the sR1 method

is its ability to gradually reveal an unknown structure, and the

main disadvantage is its slow rate of calculation. Conceptually,

the calculation time is proportional to the product of the

number of atoms, the number of grid points and the number of

reflections. All these numbers are proportional to N, the

number of atoms in the cell. Thus, roughly speaking, the

calculation time is proportional to N3. We have not imple-

mented parallel calculation. However, the sR1 method is well

suited for parallel calculation. For example, the calculation

over all grid points can be executed simultaneously. We expect

that with parallel programming the sR1 method can turn into a

usable tool. Up to this point, we have only tested sR1 with

small molecules and without parallel programming. For

sample 3, sR1 needs about 1 h to solve a structure with a

Python program without parallel calculation on a Surface Pro

7. In comparison, the SHELXT program (Sheldrick, 2015) can

solve it in seconds. Clearly, the sR1 method, as we have

implemented it to this point, has no practical advantages for

solving small structures. It can only serve an enrichment

purpose: it is viable to solve structures via the sR1 method.

It is probable that sR1 may find practical applications for

solving protein structures. However, that area is still

awaiting exploration. At this point, it is too early to speculate

how the sR1 method can meet the challenges of protein

structures.

12. Future directions

In the current implementation of using sR1 to solve a crystal

structure, no prior knowledge of the symmetry of the crystal is

required. After solving the structure, the crystallographic

symmetry can be determined by examining the content of the

unit cell (see Section 2). However, when prior knowledge of

the symmetry does exist, that fact can be exploited to shorten

the calculation time. Considering the crystallographic

symmetry (including centering), a group of symmetry-related

atoms are assigned together, at the locations of Air + di, for i =

0 to n � 1, where A0 is the unit matrix and d0 = (0, 0, 0). The
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whole group is completely determined by r = (x, y, z), thus

reducing 3n dimensions to three dimensions. Because a group

of symmetry-related atoms are assigned together, the concept

pR1 should be used. The algorithm should watch out for

special positions: within the group of the symmetry-related

atoms, if two or more atoms are clustering together, namely,

their interatomic distance is less than, say, 0.5 Å, these atoms

should be replaced by a single atom at their average location.

Now r = (x, y, z) of the first group of symmetry-related atoms

should be determined by the deepest hole of the corre-

sponding pR1 map. Afterwards, this group of atoms serve as

the starting known atoms. Once there are known atoms, the

calculation can be accelerated by using the holes in an sR1

map to predict the possible locations of r = (x, y, z) for the next

batch of symmetry-related atomic groups. Only these

predicted locations need to be examined for determination of

the deepest pR1 hole for locating a group of symmetry-related

atoms.

One thing hindering the automation of the sR1 calculation

is its requirement of a user’s manual help for identifying and

deleting ghost atoms. With accumulation of experience of

applying the sR1 method, in the future such pattern recogni-

tion of human intelligence can ultimately be automated. For

now, we are testing one automation strategy: let sR1 finish the

initial steps of building a first trial full model, then repeat the

following step: randomly delete half of the model and rebuild

back to the full model. The process is monitored by the R1

value. Initially, R1 drops. Later, it stays at an average level

with some ripples. This state signals the end of the calculation.

This strategy has been tested and found to be successful for all

three examples reported in this paper. More studies will be

performed. Alternatively, techniques for identifying ghost

atoms can be borrowed from published studies (Kinneging &

Graaff, 1984; Shi & Schenk, 1988) and will be tried in future

explorations.

Finally, the concept of partial structure R1 (pR1) offers a

new way of doing molecular-replacement calculations. The

correct orientation of a free-standing fragment, or a partial

structure, or sometimes called a partial model, can be deter-

mined by the deepest hole in a pR1 map of a three-dimen-

sional orientation space. When some atoms of the model have

already been determined, the orientation and location of a

missing fragment can be determined by the deepest hole in a

pR1 map of a six-dimensional orientation-location space.

After determination of this fragment, a new pR1 can be

defined by including the atoms of this fragment as known

atoms, and the deepest hole of this new pR1 map determines

the orientation and location of the next missing fragment. In

this way, the missing fragments are sequentially determined.

In this implementation of pR1 for doing molecular-replace-

ment calculations, no prior knowledge of crystallographic

symmetry is required. Similarly to using sR1, if prior knowl-

edge of crystallographic symmetry does exist, that fact can

likewise be exploited to reduce the calculation time. (At the

time of this writing, we have tested pR1 for molecular-repla-

cement calculations on small structures with success and are

planning further testing with protein structures.)
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