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The bulk solvent is a major component of biomacromolecular crystals that

contributes significantly to the observed diffraction intensities. Accurate

modelling of the bulk solvent has been recognized as important for many

crystallographic calculations. Owing to its simplicity and modelling power, the

flat (mask-based) bulk-solvent model is used by most modern crystallographic

software packages to account for disordered solvent. In this model, the bulk-

solvent contribution is defined by a binary mask and a scale (scattering) func-

tion. The mask is calculated on a regular grid using the atomic model coordi-

nates and their chemical types. The grid step and two radii, solvent and

shrinkage, are the three parameters that govern the mask calculation. They are

highly correlated and their choice is a compromise between the computer time

needed to calculate the mask and the accuracy of the mask. It is demonstrated

here that this choice can be optimized using a unique value of 0.6 Å for the grid

step irrespective of the data resolution, and the radii values adjusted corre-

spondingly. The improved values were tested on a large sample of Protein Data

Bank entries derived from X-ray diffraction data and are now used in the

computational crystallography toolbox (CCTBX) and in Phenix as the default

choice.

1. Introduction

Bulk solvent (or disordered solvent) on average occupies

about half the volume of a macromolecular crystal and

noticeably contributes to the medium- and low-resolution

structure factor intensities [see e.g. Weichenberger et al. (2015)

for a recent review]. It is therefore important to include its

contribution into the model-calculated structure factors

to account for the entire unit-cell contents adequately.

The procedure needs to be fast and accurate because this

calculation is repeated many times during atomic model

refinement.

The flat (or mask-based) bulk-solvent model (Jiang &

Brünger, 1994) is currently the option of choice in most

crystallographic software packages. The model first requires

the definition of a solvent mask in the unit cell. This mask is a

binary function calculated on a regular grid with values of zero

inside the molecular region and one outside. The Fourier

coefficients Fmask(s) of this binary mask are then calculated

and scaled together with the structure factors Fcalc(s) calcu-

lated from the atomic model,

Fmodel sð Þ ¼ ktotal sð Þ Fcalc sð Þ þ kmask sð ÞFmask sð Þ
� �

: ð1Þ

The resolution-dependent scales kmask(s) and ktotal(s) are

obtained by fitting Fmodel(s) to the experimental data [see e.g.

Afonine et al. (2013)].
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The mask calculation as introduced by Jiang & Brünger

(1994) uses the following parameters:

(i) The size of the grid step dgrid.

(ii) The solvent probe radius rprobe or rsolv.

(iii) The shrinking radius rshrink.

(iv) Tabulated atomic van der Waals radii.

The mask calculation procedure involves augmenting the

atomic van der Waals radius with the solvent probe radius to

create a sphere of combined radius around each atom. Grid

points falling outside of these spheres, which define the

expanded macromolecular region, are designated as the

solvent-accessible region surrounding the macromolecule.

Subsequently, all grid points within a distance rshrink from any

point of the tentative solvent-accessible region defined above

are assigned to the bulk-solvent region. The resulting mask is

referred to as the bulk-solvent mask.

An optimal choice for these parameters should balance

structure factor accuracy and the time required to compute the

mask and its Fourier coefficients by Fourier transformation.

Based on two cases at 2.2 and 1.8 Å resolution, Jiang &

Brünger (1994) determined optimal choices for rprobe, rshrink

and dstep to be 1.0, 1.1 and (dmin/4) Å, respectively, where dmin

is the resolution of the data set. Later, Rees et al. (2005)

showed that for low-resolution data sets a step size of

(dmin/4) Å is too coarse, leading to inaccurate masks, and that

a step size somewhere between dmin/5 and dmin/10 is more

appropriate. While this solves the problem of mask accuracy at

low resolution, at high resolution such a fine grid step will

result in a significant (and unnecessary) increase in compu-

tational time.

In this work, we suggest that the grid step for mask calcu-

lation should not depend on the resolution. We demonstrate

that using a step size of 0.6 Å, along with values of rsolv and

rshrink set to 1.1 and 0.9 Å, respectively, does not compromise

the accuracy of the mask or the calculation time. Therefore, we

recommend this combination of parameters for calculating the

bulk-solvent mask for structures of any resolution.

2. Method

2.1. Why is a common resolution-independent grid step

expected?

The electron-density distribution of a macromolecule in a

crystal is a peaky function, while the function that describes

the bulk solvent is a flat function with a smooth border [see

e.g. Fenn et al. (2010)]. Consequently, the Fourier coefficients

that describe the bulk-solvent distribution decrease sharply,

and usually become negligibly small, at resolutions better than

dsolv ’ 3.5–4.0 Å [see e.g. Phillips (1980), Jiang & Brünger

(1994) or Afonine et al. (2013)]. To understand the conse-

quences of this on the choice of the grid step, we refer to a

one-dimensional example below.

For a periodic function of a single variable with period a, the

integral Fourier transform gives an infinite number of Fourier

coefficients F(h), where h is an integer, both positive and

negative. When such a function is sampled on a regular grid

with N points per interval, the discrete Fourier transform

yields only N independent values Fgrid(h), e.g.

Fgrid hð Þ ¼ F hð Þ þ
X1

m¼1

F hþmNð Þ þ F h � mNð Þ½ �; ð2Þ

for � N/2 < h � N/2 [see, for example, formula (4) in Ten Eyck

(1977)]. Fgrid(h) differ from the respective F(h) by a conver-

gent infinite series of correcting terms (Appendix A) where

lim hj j!1 F hð Þ ¼ 0. Let us suppose that F(h) values are equal

exactly to zero for |h| > H = a/dsolv with some resolution limit

dsolv. If N in (2) is sufficiently large, for example, N > 2H, all

correcting terms with indices h � mN are also zero, resulting

in Fgrid(h) = F(h) as desired. Taking N larger than 2H, i.e.

taking the grid step dgrid = a/N smaller than

a

N
<

a

2H
¼

1

2
dsolv; ð3Þ

has no effect. Conversely, taking smaller N makes Fgrid(h)

different from F(h) by at least one non-zero term F(h � mN),

m 6¼ 0. The analogue of (2) for three-dimensional functions

can be found in Sayre (1951), Lunin et al. (2002), Navaza

(2002) and Afonine & Urzhumtsev (2004).

This suggests the potential existence of a universally

optimal grid step d0
grid for the problem under study, which is

related to dsolv ’ 3.5 Å in a manner similar to (3), albeit with

a scale factor that may not be equal to 1
2
; the latter arises from

the facts that these high-resolution structure factors may be

different from exactly zero and the Fourier analysis is carried

out in three-dimensional space.

2.2. Models and data

The search for the optimal bulk-solvent mask parameters

was conducted using 277 quality-filtered models and X-ray

diffraction data obtained from the Protein Data Bank (PDB;

Burley et al., 2021). The quality filters included a crystal-

lographic R factor better than 0.25, overall and per-resolution

shell data completeness above 95%, no data pathologies such

as twinning, and a relatively high upper data resolution limit

(dmin � 3.0 Å). To accelerate the calculations, we excluded

very large models. The results obtained with these 277 models

were then validated with a larger set of 2077 structures used in

a previous bulk-solvent study (Afonine et al., 2013) and

representing a broad range of model sizes and data resolu-

tions, from subatomic to low.

Among the 277 models, 54% were refined using Refmac

(Murshudov et al., 2011), 25% using Phenix (Afonine et al.,

2012), 14% using CNS/X-plor (Brünger et al., 1998), 0.04%

using BUSTER/TNT (Tronrud et al., 1987; Roversi et al., 2000;

Blanc et al., 2004) and 0.03% using SHELX (Sheldrick, 2015).

These programs may potentially employ different types of

bulk-solvent models, for example the Babinet-based model

(Langridge et al., 1960; Moews & Kretsinger, 1975) in SHELX,

Refmac and BUSTER/TNT, as well as different parameters for

mask calculations when the mask-based solvent model was

used, such as in Phenix, CNS/X-plor and again Refmac. We

believe that this diversity in refinement programs, each with its
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distinct formulation of bulk-solvent modelling, helps mitigate

any potential model bias related to the solvent parameters

used in these programs.

2.3. Finding optimal values for rsolv, rshrink and dgrid

For each selected PDB entry, the values of dgrid were

systematically sampled in the range between 0.2 and 1 Å in

steps of 0.1 Å, and both rsolv and rshrink were sampled between

0.5 and 1.5 Å, also in steps of 0.1 Å. For each trial triplet of

values (rsolv, rshrink, dgrid), the scales ktotal(s) and kmask(s) in (1)

were re-calculated as detailed by Afonine et al. (2013), and the

R-factor values, referred to as R(4), were calculated using all

reflections up to 4 Å resolution. In what follows, Rð4Þn stands for

R(4) calculated for the structure numbered n. These values

were the principal information to identify potential universal

values for r0
solv, r0

shrink and d0
grid. The details follow in Section 3.

3. Results

3.1. Variation of the optimal R factor with the mask grid step

The search for common parameters was based on the

hypothesis that there is a common behaviour of Rð4Þn with

parameter values for different structures. First, we tried to

decouple the search for optimal dgrid and (rsolv, rshrink). This

was achieved by finding the combination of (rsolv, rshrink) that

minimizes Rð4Þn for each trial dgrid and for each structure n,

�R
ð4Þ

n dgrid

� �
¼ min

rsolv;rshrink

Rð4Þn rsolv; rshrink; dgrid

� �� �
: ð4Þ

Obviously, these values are different for each structure, but

they vary with dgrid very similarly. In particular, this is true for

their variation around the average of �R
ð4Þ

n ðdgridÞ over grid steps

� �R
ð4Þ

n dgrid

� �
¼ �R

ð4Þ

n dgrid

� �
� �R

ð4Þ

n dgrid

� �D E

grid
: ð5Þ

Subtracting the average in (5) makes the dependency of

� �R
ð4Þ

n ðdgridÞ on dgrid similar for all structures, which in turn

makes it possible to analyse the average of these dependencies

over all structures (Fig. 1).

It is to be expected that � �R
ð4Þ

n ðdgridÞ should increase with

step size. However, the value does not change significantly for

dgrid in the range of 0.2–0.4 Å, suggesting that steps smaller

than 0.4 Å are unnecessarily small. Above this step value,

� �R
ð4Þ

n ðdgridÞ starts to increase, and the goal is to find a

compromise between the introduced errors and the gain in

computation time. Increasing the step from 0.4 Å to 0.6 Å or

0.8 Å increases the grid size, and therefore the number of

computing operations, by about four times or eight times,

respectively.

A step size of 1.0 Å resulted in very large errors and was

excluded from further analysis. Calculations with a step size of

0.9 Å resulted in a large number of outliers with large � �R
ð4Þ

n ,

making this step size also unsuitable. This leads to 0.4–0.8 Å as

the range for the grid-step search.

3.2. Acceptable combinations of parameters

Next, for each model n, we analysed the parameter values

that lead to the lowest Rð4Þn value across all combinations of

(rsolv, rshrink, dgrid),

�R
ð4Þ

n ¼ min
rsolv;rshrink;dgrid

Rð4Þn rsolv; rshrink; dgrid

� �� �

¼ min
dgrid

�R
ð4Þ

n dgrid

� �n o
: ð6Þ

It is possible that, for a given structure, several combina-

tions of (rsolv, rshrink, dgrid) result in Rð4Þn values that are

close to the global minimum of (6). To address such small

fluctuations in the Rð4Þn values, we introduce a parameter "R

considering all values Rð4Þn ðrsolv; rshrink; dgridÞ � �R
ð4Þ

n þ "R to be

as good as �R
ð4Þ

n , where the value of "R varies in the range

0.001–0.002.

The parameter values (rsolv, rshrink, dgrid) corresponding to

(6) are expected to vary from one structure to another, and we

are looking for the combinations that are persistent over all

structures. As a formal quantitative measure, for each set of

parameters (rsolv, rshrink, dgrid) and for each structure n, we

calculate a non-negative value

�Rð4Þn rsolv; rshrink; dgrid; "R

� �

¼ max Rð4Þn rsolv; rshrink; dgrid

� �
� �R

ð4Þ

n � "R; 0
n o

: ð7Þ

To be able to combine the distribution of (rsolv, rshrink, dgrid)

for each structure into one cumulative distribution over all

structures, we convert �Rð4Þn in (7) into

Pn rsolv; rshrink; dgrid

� �
¼ exp � C �Rð4Þn rsolv; rshrink; dgrid; "R

� �� �

ð8Þ

with constants C > 0 and "R. The product of (8) over all

structures,

P rsolv; rshrink; dgrid

� �
¼
Y

n

Pn rsolv; rshrink; dgrid

� �
; ð9Þ

reflects both the contrast of the lowest Rð4Þn for an individual

structure and the persistence of the parameter values over all

structures. P(rsolv, rshrink, dgrid) varies from 0 to 1; the higher

the value of (9), the more preferable the combination of
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Figure 1
The variation � �R

ð4Þ

n in the �Rð4Þn factor, as defined in the text, as a function
of the grid step dgrid. Each data point is the average of � �R

ð4Þ

n across all
structures. Intervals of 1� are given for each grid step.



parameters. Calculations with data sets of different sizes

suggested the choice of C in the range between 0.01 and 1.0

and "R as stated above in order to obtain a decent contrast

while keeping points with neighbouring Rð4Þn values. In general,

we observed that the variation in the constants C and "R

around the values given above obviously modifies the contrast

of the distribution (9) while not influencing the location of its

peaks.

Fig. 2 shows the results with "R = 0.002 and C = 0.5. As

expected, the distribution shows that mask shrinking does not

impact the results when rshrink < dgrid (rectangular bottom-left

regions). Also, the distribution shows a clear nearly linear

correlation between rsolv and rshrink, giving preferable values

roughly at the line rsolv � rshrink ’ 0.2 Å for each grid step.

Finally, it shows that the optimal radii (rsolv, rshrink) cluster in

the range (1.1 � 0.1 Å, 0.9 � 0.1 Å).

As expected, increasing the grid step makes Rð4Þn worse. In

agreement with the first test (Fig. 1), most frequently the

lowest Rð4Þn occurred for a grid step size of 0.3–0.4 Å (P values

up to 0.99). Consequently, a step of 0.4 Å may be considered

as a candidate for the most accurate calculations since a

smaller step of 0.3 Å does not significantly improve the R

factors while leading to an increased computational time.

Using a grid with step sizes of 0.5–0.6 Å makes it possible for

Rð4Þn to be close to �R
ð4Þ

n , indicated by high values of the function

P(rsolv, rshrink, dgrid) in the range 0.91–0.93. Increasing the step

further reduces the maximum P-function value to 0.83. Since a

larger grid step is preferable to reduce the computing time,
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Figure 2
The distribution P(rsolv, rshrink, dgrid) � 102 of the variation in Rð4Þn with respect to the best value �R

ð4Þ

n for all combinations of the mask parameters. The
values on the axes are rsolv � 10 (horizontal) and rshrink � 10 (vertical). High P values correspond to the (rsolv, rshrink, dgrid) combinations giving Rð4Þn close
to the minimum best value of �R

ð4Þ

n . The colour scheme indicates the P-function value ranges: red (P < 0.01), yellow (0.01� P < 0.2), light green (0.2� P <
0.9) and dark green (P � 0.9).



dgrid = 0.6 Å is a good potential compromise candidate for the

universal value.

The values of the radii (rsolv, rshrink) leading to the minimum
�R
ð4Þ

n value in (6) also varied only slightly over the trial grid step

sizes. This provided a relatively small number of tentative

combinations (rsolv, rshrink, dgrid) to identify the optimal ones

which we denote ðr0
solv; r0

shrink; d0
gridÞ.

3.3. Optimal set of parameters

The analysis described in Sections 3.1–3.2 results in a range

of (rsolv, rshrink, dgrid) parameters minimizing R(4) on average

for all test models. These values, however, do not necessarily

lead to the lowest R(4) for a particular model.

Next, we can ask which of these combinations, if any, lead to

a value of Rð4Þn ðrsolv; rshrink; dgridÞ that is larger than, and by how

much, the lowest value of �R
ð4Þ

n in (6) for what fraction of

structures. To answer this question, we calculate the fraction

p(�R) of the structures with the difference

Rð4Þn rsolv; rshrink; dgrid

� �
� �R

ð4Þ

n >�R ð10Þ

for different �R values. The expected solution corresponds to

the minimum of the p(�R) function. For the sake of
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Figure 3
The fraction of the models that satisfy Rð4Þn ðrsolv; rshrink; dgridÞ � �R

ð4Þ

n >�R shown as a function of �R. The colour scheme for the grid step is the same for
all plots and is given in the top right plot. The values of ðrsolv; rshrinkÞ are indicated in each plot.



completeness, we calculated p(�R) for all triplet values of the

parameters considered above.

The combination (rsolv = 1.0 Å, rshrink = 1.0 Å) gives poor

results for all grid step sizes and the combination (rsolv = 1.2 Å,

rshrink = 0.8 Å) gives results acceptable only for very small grid

steps, dgrid = 0.3–0.4 Å (Fig. 3). The best results are observed

for the sets of rsolv, rshrink with rsolv � rshrink = 0.2 Å, with a

slight preference for the combination (rsolv = 1.1 Å, rshrink =

0.9 Å, dgrid = 0.6 Å). Here, Rð4Þn increased by less than 0.5% for

all structures of the search set except one, for which this value

was below 0.6%. The same plots (Fig. 3) indicate that if more

accurate calculations are required, then the combination (rsolv

= 1.1 Å, rshrink = 0.8 Å, dgrid = 0.4 Å) is optimal. However,

using this finer grid step would lead to a nearly fourfold

increase in the number of grid points and, consequently, in the

number of computational operations required. Conversely, for

a very large structure, if a coarser grid is acceptable, a possible

combination would be (rsolv = 1.0 Å, rshrink = 0.8 Å, dgrid =

0.7 Å), resulting in only a slight increase in overall R factors.

3.4. New versus old mask calculation parameters

Finally, for each model from the complete data set, we

analysed how much the R(4) and the R factor calculated using

all reflection data change if the new mask calculation para-

meter values (r0
solv = 1.1 Å, r0

shrink = 0.9 Å, d0
grid = 0.6 Å) are

used instead of the values of (rsolv = 1.1 Å, rshrink = 1.0 Å, dgrid

= dmin/4) used previously.

Fig. 4 shows that Rð4Þn varies little and typically remains

within �0.3% for most structures, with the exception of a few

cases where it varies within �0.5%. We consider these

variations negligible. As expected, Rn changes even less than

Rð4Þn , since the bulk-solvent contribution vanishes beyond 3–

4 Å resolution.

The only notable outlier is PDB entry 3b6a (Willems et al.,

2008), for which �Rð4Þn = 0.92% (�Rn = 0.64%). This structure

was solved at a resolution of dmin = 3.0 Å, which means that

the original algorithm used a mask with a grid step size of

0.75 Å, coarser than the proposed 0.6 Å. This seemingly

counterintuitive result can be rationalized as follows. The

bulk-solvent mask typically consists of a large region and

several (often many) smaller isolated regions (Afonine et al.,

2024). These small regions are typically cavities inside the

protein or computational artefacts. The number and size of

such regions vary based upon the choice of mask parameters

(rsolv, rshrink, dgrid). With a step size d0
grid = 0.6 Å, the mask for

3b6a contains about 20 isolated small regions incapable of

containing even a single disordered water molecule. Excluding

these regions from the bulk-solvent mask reduces �Rð4Þn and

�Rn to 0.36% and 0.26%, respectively, suggesting that these

regions are computational artefacts.

4. Conclusions

The choice of mask parameters for the flat bulk-solvent model,

i.e. solvent and mask shrinkage radii and the grid sampling

step size, affects both the accuracy of the fit between model

and data at medium to low resolution and the speed of the

calculations. Since accounting for the bulk solvent typically

occurs in crystallographic calculations that involve atomic

model and reflection data, from simple operations like R-

factor or map calculation to complex procedures like model

refinement and building, the computational efficiency of this

step is critical. The parameters governing the speed and

accuracy of the flat bulk-solvent model are the solvent radius

rsolv, the mask shrinkage radius rshrink and the grid step dgrid for

the mask sampling. When this model was introduced (Jiang &

Brünger, 1994) the choice of values for these parameters, of

rsolv = 1.0 Å, rshrink = 1.1 Å and dgrid = (dmin/4) Å, was based on

only two study cases at medium resolution (around 2 Å). A

decade later, this choice was revisited for low-resolution cases

by Rees et al. (2005), resulting in the suggestion that much
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Figure 4
The variation in �R(4) calculated for the test set of 2077 models when moving from the conventional set of mask parameters to the selected set
r0

solv; r0
shrink; d0

grid of optimal values. Each point corresponds to an individual model. The plots show the distribution of the variation in �R(4) (vertical)
versus (left) the variation �R in the overall R factor calculated for the whole set of reflections and (right) the R(4) value itself. For the model of 3b6a
(indicated by red arrows) the values (0.64; 0.92) become (0.26; 0.36) after the removal of isolated small-volume regions appearing in the new mask.



finer steps are needed at these resolutions. While these finer

steps, calculated as a fraction of dmin, address the problem of

accuracy for low-resolution models, they in turn create the

problem of substantially increasing the computational time for

higher-resolution cases. A universal resolution-independent

choice of mask calculation parameters is therefore highly

desirable, and we here show that this is possible. A systematic

study across hundreds of models from the PDB performed in

this work reveals an optimal choice of these parameters to be

r0
solv = 1.1 Å, r0

shrink = 0.9 Å and d0
grid = 0.6 Å. Validation of this

choice with a much larger test set of models shows that these

values are broadly applicable. In the last stages of refinement,

a finer grid with a step dgrid = 0.4 Å and radii rsolv = 1.1 Å,

rshrink = 0.8 Å may possibly be used to improve the results

further. The parameters described here are implemented in

CCTBX and are used in the Phenix suite (Liebschner et al.,

2019), where applicable, starting from Version 1.20rc4-4425.

APPENDIX A

Discrete Fourier transform and Fourier coefficients

For a periodic function f(x) of a single variable with period

a = 1, the integral Fourier transform results in an infinite

number of Fourier coefficients F(h), where h is an integer. The

infinite Fourier series defined by these coefficients converges

to the function f(x). The sharper the function, the faster the

convergence is (we do not specify the formal, mathematically

strict, conditions of convergence when studying smooth

functions like density distributions). When such a function is

sampled on a regular grid with N points per interval, using the

obvious equation for integer m

exp i2�n
hþmN

N

� �

¼ exp i2�n
h

N

� �

ð11Þ

gives the convergent Fourier series on the grid nodes xn = n/N

which can be expressed as

f xnð Þ ¼
X1

h¼� 1

F hð Þ exp i2�hxnð Þ

¼
X1

h¼� 1

F hð Þ exp i2�h
n

N

� �

¼
X1

h¼� 1

F hð Þ exp i2�n
h

N

� �

¼
XHþN� 1

h¼H

X1

m¼� 1

F hþmNð Þ½ �

( )

exp i2�n
h

N

� �

:

ð12Þ

Here H is any integer number, and convergence of the original

Fourier series proves convergence of each internal series in

the right-hand expression of (12). In other words, given N real

numbers on a regular grid, the discrete Fourier transform

results in a set of values

Fgrid hð Þ ¼
X1

m¼� 1

F hþmNð Þ½ �; ð13Þ

which possess Hermitian symmetry. There are only N/2 inde-

pendent values since, according to their definition in (13),

Fgrid(h) are periodic and so Fgrid(h) = Fgrid(h + N) for every h.

Usually, Fgrid(h) taken with the consecutive indices are used as

approximations to F(h). In some applications, the range 0 � h

< N can be chosen. However, since the Fourier coefficients

F(h) for convergent series generally decrease with |h|, it is

more practical to choose � N/2 < h � N/2, which results in a

smaller |Fgrid(h) � F(h)| difference.
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