Site Occupancy and Disorder Effects On Mg_{1-x}co_xps₃ Obtained Through Metal Ionexchange Metathesis

Hector C Mandujano¹, Dr. Tianyu Li¹, Dr. Peter Y Zavalij¹, Profesor Efrain E Rodriguez¹ ¹University of Maryland hcmanduj@umd.edu

One of the greatest advanced in 2D materials has been the observation of Kitaev physics in α -RuCl₃ which arises from the underlying honeycomb lattice. Van der Waals materials posing a honeycomb sublattice have since been explored. Cobalt thiophosphate (CoPS₃) has an antiferromagnetic ground state ordering below $T_N = 120$ K and has been proposed to potentially host Kiteav-type physics. One of the major drawbacks of studying CoPS₃ is the long periods of time required to synthesize and the disorders that the honeycomb sublattice accommodates. Here we present a new synthesis approach via solid-state metathesis which considerably reduces the synthesis time. By exploiting the stability of the isostructural MgPS₃, we have successfully performed an ion exchange reaction using CoCl₂ at different ratios and reported the structural disorder and effects on magnetic properties. In situ synchrotron powder diffraction was analyzed to gain insight into the reaction path of the solid-state metathesis.