Coupling Of Charge Density Wave to A Spin Cycloid in Topological Semimetal $Ndsb_xte_{2-X-\Delta}$

Tyger H Salters¹, Dr Fabio Orlandi², Dr. Tanya Berry¹, Dr. Jason F Khoury¹, Dr. Pascal Manuel³, Dr. Leslie M Schoop¹

¹Princeton University, Department of Chemistry, ²ISIS Neutron Pulsed Facility, Rutherford Appleton Laboratory ³ISIS Neutron Pulsed Facility, Rutherford Appleton Laboratory

tsalters@princeton.edu

LnSb_xTe_{2-x- δ} (*Ln*= Lanthanide) is a family of square-net-derived magnetic topological semimetals that exhibits an evolving charge density wave (CDW) distortion, in which q_{CDW} is controllable by *x* and the distortion of the structure is localized within the square net^[1]. Control of band filling by substitution allows for access to different topological states^[2], making LnSb_xTe_{2-x- δ} an interesting system to study the interplay of crystal symmetry, band topology, magnetism, and electronic correlation. Previous studies on Gd^[3] and Ce^[4] members displaying CDW have shown complex magnetic phase diagrams which imply the interaction of the CDW with spins localized on Ln, but a dearth of magnetic structures have been solved within the CDW regime for this family of compounds. Herein, we report on the interaction of the CDW with magnetism in NdSb_xTe_{2-x- δ} via comparison of the undistorted square net member NdSb_{0.94}Te_{0.92} with the CDW-distorted phase NdSb_{0.48}Te_{1.37}, using single-crystal x-ray

diffraction, magnetometry, heat capacity, and neutron powder diffraction^[5]. NdSb_{0.94}Te_{0.92} is a collinear antiferromagnet with $T_N \sim 2.7$ K, where spins align parallel to the plane of the square net, but antiparallel to each other.

NdSb_{0.48}Te_{1.37} exhibits a CDW with a near-five-fold structural modulation ($\mathbf{q}_{CDW} = 0.18\mathbf{b}^*$), isostructural to previously studied LnSb_xTe_{2-x- δ} at similar *x*. The magnetic phase diagram of NdSb_{0.48}Te_{1.37} is significantly more complex, with T_N = 2.3 K, additional metamagnetic transitions, and an elliptical cycloid magnetic structure ($\mathbf{q}_{mag} = -0.41\mathbf{b}^*$) determined by neutron diffraction. The magnitudes of \mathbf{q}_{CDW} and \mathbf{q}_{mag} fit to an integer relationship 1+2 $\mathbf{q}_{mag} = 2 \mathbf{q}_{CDW}$, indicating a coupling relationship between the CDW and the spin cycloid. Finally, preliminary neutron diffraction on Ce analogue CeSb_{0.57}Te_{1.4} indicates that the spin alignment of the undistorted parent may determine if the same coupling occurs in other *Ln*.

References

- *{2} Lei, S.; et. al., Adv. Mater.* **2021**, 2101591
- {3} Lei, S.; et. al., Phys. Rev. B. 2021, 103, 134418
- {4} Singha, R.; Salters, T. H.; et. al., Adv. Mater. 2021, 2103476
- *{5} Salters, T. H.; et. al., Phys. Rev. B., accepted.*

^{1} Lei, S.; et. al., Adv. Quantum Technol. 2019, 2, 1900045