Approximate Symmetry in $P 2$ and c2 Organic Structures
 Professor Carolyn P Brock ${ }^{1}$
 ${ }^{1}$ University of Kentucky
 cpbrock@uky.edu

The crystal packing in well-determined, organic, $\mathrm{Z}^{*} \geq 1^{\dagger}$ structures in groups \#3 ($P 2$) and \#5 ($C 2 / A 2 / I 2$) has been analyzed. The study completes the survey of packing in organic structures archived in the CSD that have $\mathrm{R} \leq 0.050$ and that were reported in low- symmetry ($\mathrm{SG} \# \leq 8$), low-frequency (<5000 entries) space groups. Surveys of the structures described in $P 1^{1}$ and in group \#7 $(P c / P n / P a)^{2}$ have already been published.
There are only 6 such structures in group \#6 (Pm) and only 12 in \#8(Cm), with a number of those being either suspicious or very inorganic.
In only 2% of the $c a .550 P 2$ and $C 2, Z^{*} \geq 1$ structures investigated does crystallographic symmetry seem to have been overlooked; for the structures in $P 1$ and $P c$ that value was 8%. Approximate periodic symmetry, however, is again found in more than 80% of the structures in which it is possible ($Z^{\prime}>1$ or molecular symmetry). The most common categories are approximate translations, mimics of SG \#15 (C2/c, etc.), and structures having additional symmetry that is periodic only within layers.
In most cases the distortions that make a translation approximate seem too large to have been the result of cooling through a phase transition. That observation suggests that it may be common for a crystal nucleus to have a smaller (or perhaps more symmetric) unit cell than does the macroscopic crystal.
In another important group of $C 2$ structures there are two independent layers related by an approximate rotation perpendicular to the monoclinic axis (e.g., a rotation around a) that is paired with a translation that is not close to either 0 or (e.g.) a/2. That observation suggests slippage of layers during the very early stages of crystal growth.
$(\dagger) Z^{*}$ is the number of independent formula units. If $Z^{\prime}=1$ but both units lie on twofold axes then $Z^{*}=2$.

References

\{1\} C. P. Brock (2022). Acta Cryst. B78, 576-588.
\{2\} C. P. Brock (2023). Helv. Chim. Acta 106, e202200170.

