Structural Resolution of H2 and D2 Within Metal-Organic Frameworks Using Neutron Diffraction

Hayden Evans¹, David Jamarillo², Brandon Barnett², Jeff Long², Craig Brown³, Taner Yildirim³ ¹NCNR, Gaithersburg, ²University of California Berkeley ³National Institute of Standards and Technology hayden.evans@nist.gov

Metal-organic frameworks are a class of adsorbents which can potentially engender H₂ storage above cryogenic temperatures. These materials can leverage undercoordinated metal sites to produce strong associations with H₂ molecules, or they can be leverage small pores framework associations to trap H₂ gas. Regardless of gas adsorption, structural determinations of metal-organic frameworks through powder diffraction, whether X-ray or neutron, are generally complicated given each material's often-large unit cell and complex organic moieties. Introduction of gas molecules into the porous materials undoubtedly furthers refinement complication. To facilitate success, careful experimental conditions as well as careful refinement parameters must be considered. In this talk, I will discuss neutron diffraction work done by our team on leading metal-organic framework materials for hydrogen storage, and how to best deal with often delicate refinements.