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Diffraction-based tomographic strain tensor reconstruction problems in which a

strain tensor field is determined from measurements made in different

crystallographic directions are considered in the context of sparse matrix

algebra. Previous work has shown that the estimation of the crystal elastic strain

field can be cast as a linear regression problem featuring a computationally

involved assembly of a system matrix forward operator. This operator models

the perturbation in diffraction signal as a function of spatial strain tensor state.

The structure of this system matrix is analysed and a block-partitioned

factorization is derived that reveals the forward operator as a sum of weighted

scalar projection operators. Moreover, the factorization method is generalized

for another diffraction model in which strain and orientation are coupled and

can be reconstructed jointly. The proposed block-partitioned factorization

method provides a bridge to classical absorption tomography and allows

exploitation of standard tomographic ray-tracing libraries for implementation of

the forward operator and its adjoint. Consequently, RAM-efficient, GPU-

accelerated, on-the-fly strain/orientation tensor reconstruction is made possible,

paving the way for higher spatial resolution studies of intragranular

deformation.

1. Introduction

Diffraction-based strain tomography is an experimental

technique deployed for estimation of the six-component

elastic strain tensor field, """ðxÞ, within the bulk of poly-

crystalline aggregates. Whether used with X-rays (Hektor et

al., 2019; Korsunsky et al., 2005; Lionheart & Withers, 2015) or

neutrons (Hendriks et al., 2020), the method offers a unique

possibility to probe the internal heterogeneity of the strain in

dense materials in a non-destructive way. In essence, the

measured diffraction signal from the specimen can be reduced

to average strains along line integral domains across a sample

volume. Each of these scalar strain measures, �j, can be

associated to a spatial sampling direction, jj, which in

general varies between measurements. Considering a set of

j ¼ 1; . . . ;m such measurements, it is possible to construct a

global linear system of equations,

As ¼ c; ð1Þ

where s holds the basis coefficients of a decomposed strain

tensor field and c is a vector with all measurements [the

formation of c from raw diffraction images and the decoupling

of the crystal strain from orientation are discussed by

Henningsson & Hendriks (2021)]. The rows of the system

matrix, A, are required to contain the integral weights of the

strain tensor basis functions combined with non-linear

combinations of the components of jj. Using measurements
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only from a single axis of rotation, there exist no known,

closed-form, direct back-projection algorithms to recover the

strain tensor field s. This motivates the need for iterative

solvers, which may seem to require the assembly of A.

Unfortunately, the storage of A can be very RAM inefficient

and the assembly routines needed to construct A involve ray-

tracing through the strain tensor volume. Indeed, direct

storage of the forward operator is unfeasible for high-resolu-

tion scalar, absorption-based, tomography. Considering a fixed

resolution, strain tomography of symmetric strain tensor fields

offers no relaxation in this respect as the number of non-zeros

in the system matrix, A, is a factor six greater compared with

scalar tomography. As a result, several existing reconstruction

methods have been cast in settings with few strain tensor basis

functions limiting the achievable reconstruction resolution

(Henningsson et al., 2020; Henningsson & Hendriks, 2021;

Hendriks et al., 2020). Similarly, in scanning 3D X-ray

diffraction (scanning-3DXRD) microscopy applications, it is

common to collapse the rich 2D pixel intensity distribution of

the recorded diffraction peaks to a single centre of gravity

prior to the pursuit of strain reconstruction (Hayashi et al.,

2015).

We present a system matrix factorization for strain tensor

tomography in which the forward operator, A, can be imple-

mented as a weighted sum of scalar forward projections as

As ¼
Pi¼6

i¼1

SiPai; ð2Þ

where P is a scalar forward projection operator, a1; . . . ; a6 are

the six individual components of the strain tensor field and

S1; . . . ; S6 are diagonal weight matrices. This factorization

allows for RAM-efficient, on-the-fly implementations to be

easily achieved with existing tomographic libraries (for scalar

projection). Additionally, our proposed factorization allows

for access to GPU-accelerated implementations commonly

deployed in scalar tomography to facilitate large sparse

iterative solvers (Palenstijn et al., 2011; van Aarle et al., 2015,

2016).

For illustrative purposes we have selected to present our

derivations in the context of strain reconstruction and for the

experimental setup of scanning-3DXRD. The methodology is,

however, also applicable for other neutron and X-ray scanning

diffraction experiments given that a fixed axis of rotation is

used and that the diffraction peak centre-of-mass positions

can be accurately measured (typically in far-field geometry).

The key ingredient in our derivation is the linearity of the

diffraction model, which allows us to rearrange the order of

the involved operators. In contrast to the far-field diffraction

setting considered in this paper, near-field diffraction methods

(Reischig & Ludwig, 2020) model the full detector intensity

distribution of the diffraction peaks rather than the peak

centroid positions. As a result, the forward operator in near-

field diffraction models depends non-linearly on the intra-

granular strain and orientation. To highlight that our factor-

ization method is applicable to multiple models, as long as

they fall within the class of far-field diffraction, we derive and

demonstrate (in Appendix C) a factorization similar to that of

equation (2) for a previously suggested diffraction model that

features coupling between the intragranular strain and

orientation. This factorization enables efficient reconstruction

of the full intragranular deformation field, including both

strain and orientations.

2. Per-ray factorization

Given an unknown, symmetric, second-order strain tensor

field,

"""ðxÞ ¼
"1ðxÞ "4ðxÞ "5ðxÞ

"4ðxÞ "2ðxÞ "6ðxÞ

"5ðxÞ "6ðxÞ "3ðxÞ

2
4

3
5; ð3Þ

defined on a 3D spatial domain, x ¼ ½x y z�T, we shall consider

measurements of the average strain, �j, on the line integral

domain Rj as

�j ¼
1

Lj

Z
Rj

jT
j """ðxÞjj dx; ð4Þ

where jj ¼ ½�1 �2 �3�
T is a unit normal vector that describes the

sampled strain direction and Lj is the ray intersection path

length measured over the compact support of """. For scanning-

3DXRD the formation of �j from the raw diffraction image

data has been described elsewhere (Henningsson & Hendriks,

2021). Following a flattened vector format similar to that of

Henningsson & Hendriks (2021) we find the alternative

measurement model

�j ¼
R
Rj

�jjT
j �""""""ðxÞ dx; ð5Þ

where

�""""""ðxÞ ¼

"1ðxÞ

"3ðxÞ

"2ðxÞ

"4ðxÞ

"5ðxÞ

"6ðxÞ

2
6666664

3
7777775
; �jj ¼

1

Lj

�2
1j

�2
2j

�2
3j

2�1j�2j

2�1j�3j

2�2j�3j

2
6666664

3
7777775
: ð6Þ

Let �"""""" be decomposed on x with n basis functions ’lðxÞ as

�""""""ðxÞ ¼
Pn
l¼1

’lðxÞal; ð7Þ

where the basis coefficients al are defined as

al ¼ �1l �2l �3l �4l �5l �6l

� �T
: ð8Þ

In the following we select ’l to represent an equidistant grid of

pixels such that ’lðxÞ ¼ 1 when x is in pixel number l and

’l ¼ 0 otherwise. By insertion of (7) into (5) we have

�j ¼
R
Rj

�jjT
j

Pn
l¼1

’lðxÞal dx: ð9Þ

Reordering the integral and sum we can write
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�j ¼ �jjT
j

Pn
l¼1

al

R
Rj

’lðxÞ dx: ð10Þ

We now introduce the vector wj which contains the scalar

weights of the ray integral with respect to basis functions,

wj ¼

R
Rj
’1ðxÞ dxR

Rj
’2ðxÞ dx

..

.R
Rj
’nðxÞ dx

2
66664

3
77775: ð11Þ

Using the weights, wj, we may form a matrix projection

operator that projects the six components of the strain field

along a single ray path as

Rj ¼

wT
j 0 0 . . . 0

0 wT
j 0 . . . 0

..

. . .
. . .

. . .
. ..

.

0 . . . 0 0 wT
j

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
6�6n

: ð12Þ

Additionally we introduce the vectors

a1 ¼

�11

�12

..

.

�1n

2
6664

3
7775; a2 ¼

�21

�22

..

.

�2n

2
6664

3
7775 . . . a6 ¼

�61

�62

..

.

�6n

2
6664

3
7775; ð13Þ

and stack the basis coefficients of the unknown strain tensor

field in a single column vector as

s ¼

a1

a2

a3

a4

a5

a6

2
6666664

3
7777775

|fflffl{zfflffl}
6n�1

: ð14Þ

We can now facilitate a fully vectorized and discretized format

of the measurement model, equation (4), as

�j ¼ �jjT
j Rjs: ð15Þ

To arrive at a global format, in which several measurements,

�j, are considered simultaneously, we introduce the vector

c ¼ �1 �2 . . . �m

� �T
: ð16Þ

Stacking the matrices �jjT
j and Rj in the same fashion,

K ¼

�jjT
1 0 0 . . . 0

0 �jjT
2 0 . . . 0

..

. . .
. . .

. . .
. ..

.

0 . . . 0 0 �jjT
m

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m�6m

; V ¼

R1

R2

..

.

Rm

2
6664

3
7775

|fflfflfflffl{zfflfflfflffl}
6m�6n

; ð17Þ

we find the global matrix formulation as

c ¼ KVs: ð18Þ

We note that in equation (18) the matrix A ¼ KV is factorized

in two terms: K, which contains information on the directional

sampling of the strain field, and V, which holds information on

the projections of the sampled fields.

3. Hexa-block-diagonal form

In scalar tomography the forward projection operator, P, is

commonly block-partitioned over a series of projection views,

P i, as

P ¼

P1

P2

..

.

Pk

2
6664

3
7775; ð19Þ

where each projection view, P i, represents an ordered set of

parallel line integrals defined over a single scalar field. In

contrast, we note that the ray integrals contained in V, as

defined by equations (12) and (17), are neither ordered in

complete views nor defined over a single scalar field. We

therefore seek to reorder and partition the rays in V in a way

that will allow our projection operator to be easily imple-

mented using standard tomographic libraries. To this end, we

note that the set of rows in V separated by a fixed multiple 6,

with start at row number 1, forms the block-partitioned matrix

L 0 0 0 0 0
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m�6n

; ð20Þ

where L is now acting on the single scalar field a1. If the

measurements in c are selected to be stacked in complete

projection views, we find that L ¼ P. Since the initial selected

ordering of measurements in c is arbitrary, we shall assume

that this ordering has been selected. Now, by simply repeating

the row shifting operation with increasing row starting index,

1; 2; . . . ; 6, it is possible to mutate V into the block-diagonal

matrix form,

P ¼

P 0 0 0 0 0

0 P 0 0 0 0

0 0 P 0 0 0

0 0 0 P 0 0

0 0 0 0 P 0

0 0 0 0 0 P

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
6m�6n

; ð21Þ

which contains the reordered rows of V. Naturally, to maintain

the global formulation in equation (17), we are required to

now also modify K. The shifting of the rows of V, therefore,

requires a corresponding shifting of columns in K, leading to

the block-partitioned matrix

S ¼ S1 S2 S3 S4 S5 S6

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m�6m

; ð22Þ

with diagonal blocks

S1 ¼ Diag
�2

1j

Lj

� �
; S2 ¼ Diag

�2
2j

Lj

� �
; ð23Þ
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S3 ¼ Diag
�2

3j

Lj

� �
; S4 ¼ Diag

2�1j�2j

Lj

� �
; ð24Þ

S5 ¼ Diag
2�1j�3j

Lj

� �
; S6 ¼ Diag

2�2j�3j

Lj

� �
: ð25Þ

It is now possible to write

c ¼ SPs ¼
Pi¼6

i¼1

SiPai: ð26Þ

In this factorization the execution of the forward operator,

A ¼ SP, corresponds to six scalar forward projections

followed by the application of S, which, due to its diagonal

form, presents a modest 6m multiplications and additions. The

implementation of P can be directly achieved by any ray-

tracing library, e.g. the ASTRA-toolbox (Palenstijn et al., 2011;

van Aarle et al., 2015, 2016). The implementation of S is trivial

and, owing to its diagonal form, there is no need to assemble

the matrix, as it suffices to store the six vectors of diagonal

weights. Since the six projections being executed in P are

independent, we note that the resulting arrays, a1; . . . ; a6,

may be stacked and projected in parallel on a GPU. To

service the diffraction imaging community, and to illustrate

how equation (26) can be put to use to achieve an easily

implementable GPU-accelerated diffraction model, we

provide an open-source demo Python code at https://

github.com/AxelHenningsson/flyxdm.

4. Generalizations

For the sake of clarity, we derived equation (26) in the setting

of strain reconstruction. This setting features scalar measure-

ments, �j, which simplifies the exposition and allows us to

focus on the core rearrangement of equations necessary to

arrive at our block-partitioned factorized format. The same

algebraic manipulations can be used to factorize a wider class

of linear far-field diffraction models. We demonstrate the

generality of our matrix factorization method in Appendix C

where we have pursued an extended diffraction model

originally suggested by Henningsson et al. (2020). In this

alternative setting the intragranular orientation field is jointly

reconstructed with the strain tensor field and the measure-

ment associated to the ray integral is vector valued rather than

scalar.

To reconstruct a target field, s, in practice, it is often

desirable to introduce a measurement weight matrix, W, that

describes the measurement precision. For instance, in the

work of Henningsson et al. (2020) a diagonal weight matrix

was used to reconstruct strain in a weighted least-squares

sense. We note that our factorization is indifferent to the

introduction of W and the global equation system would in

practical application be extended as

Wc ¼ WSPs; ð27Þ

where W2 ¼ R�1
c is the covariance of the measurements, c.

Another practical concern is the incorporation of

constraints on the solution vector, s. One popular approach is

to modify the basis of the unknown target field to encode the

prior knowledge. To exploit our factorized format in these

settings, we suggest introducing a rendering matrix, N, that

maps the basis coefficients, q, from the constrained basis set

back to the pixel basis coefficients, s, as

s ¼ Nq: ð28Þ

The resulting global equations now become

Wc ¼ WSPNq; ð29Þ

where the columns of N can be interpreted as pixel images of

the selected basis set. As the forward operator, WSPN, and

the adjoint operator, NTPTSTWT, still feature the desired

multiplicative block-partitioned split between P and S, we

conclude that the results in equation (26) can be exploited in a

wide range of applications.

As a final note, on the topic of generalizations, we would

like to mention that, just as the tensor components of the

target field can be stacked into a 3D volume and projected in

parallel on a GPU card, one may instead consider stacking

grain slices into a volume and projecting each tensor compo-

nent separately. This modification, reconstructing a full grain

volume rather than a grain slice, has no impact on the alge-

braic format of equation (26). The rendering matrix, N, is then

computing the coefficients of a set of voxels that are projected

as a 3D volume by P.

5. Demonstration

To demonstrate the memory benefits that can be achieved

using equation (26) compared with assembling and storing the

sparse matrix, A, we consider a single-crystal diffraction

simulation case study. The simulation is described in detail in

Appendix A, together with illustrations of the reconstructions

achieved when exploiting the format of equation (26) during

regression (Appendices B and C). The supplementary code

used to generate the simulation data as well as the recon-
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Figure 1
Number of megabytes of computer RAM necessary to compute c ¼ As
using either an assembled sparse matrix (dashed line) or, alternatively,
the discussed factorization in conjunction with an on-the-fly projection
operator, P (solid line). Note that the benchmarks correspond to a single-
crystal grain slice and 500 diffraction peaks (projection views) as
described in Appendix A.



structions is openly available at https://github.com/

AxelHenningsson/flyxdm.

In Fig. 1 we present the number of megabytes of computer

RAM necessary to compute c ¼ As using either a fully

assembled sparse matrix A or, alternatively, the factorization

A ¼ SP, where P is represented using pre-existing, on-the-fly,

projection operators, available in the ASTRA-toolbox (van

Aarle et al., 2015). Considering that the results presented in

Fig. 1 represent the reconstruction of a single grain slice using

500 projection views (each corresponding to a diffraction

event), it is evident that parallel, high-resolution, full volume/

sample reconstructions are unfeasible using an assembled

format of A. For instance, reconstructing, in parallel, a single,

cubic-shaped grain volume, with a cross-sectional resolution of

256� 256 pixels from �300 unique (with respect to Miller

index) diffraction peaks would require �1 TB of computer

RAM storage.

6. Conclusion

We have presented a system matrix factorization for strain

tensor tomography in which the directional sampling of the

strain tensor field is separated from the tomographic projec-

tion operator. The proposed format allows for the exploitation

of standard tomographic ray-tracing libraries in the imple-

mentation of the forward operator. We have also shown how

our factorization method can be generalized for other

diffraction models, for example one in which strain and

orientation are coupled. We have provided an openly avail-

able GPU implementation of the approach and demonstrated

the computational efficiency of our factorization method

through application to a model example. By enabling RAM-

efficient, GPU-accelerated, on-the-fly strain/orientation

tensor reconstruction, our results facilitate higher spatial

resolution studies of intragranular deformation.

APPENDIX A
Demonstration example

To demonstrate the discussed matrix factorization in a prac-

tical application we have included a single-crystal X-ray

diffraction simulation case study. Diffraction data were

forward modelled from a 2D grain slice of �-quartz (SiO2)

subject to a spatially varying strain tensor field, """ðxÞ, as well as

a misorientation field, UðxÞ, where UðxÞ is the local crystal

orientation matrix. The synthetic strain tensor field can be

viewed in Fig. 2 together with the Bunge Euler angle variation,

which was defined as

�’1 ¼ ’1 � h’1i;

�� ¼ �� h�i;

�’2 ¼ ’2 � h’2i; ð30Þ

where h�i denotes volume average.

Using the space group of quartz (P3221) together with an

X-ray wavelength of � = 0.2846 Å, a total of 500 reflections

were randomly (uniformly) selected in the Bragg angle

interval � = [4�, 13�] to be included in the simulation. Using the

Laue equations,

G ¼ UBGhkl; ð31Þ

where the matrix B maps from the integer reciprocal-space

Miller indices, Ghkl ¼ ½h k l�T 2 Z3�1, to crystal coordinates,

diffraction vectors G ¼ ½G1 G2 G3�
T were formed. The theo-

retical diffraction vectors were then corrupted with zero mean

Gaussian noise as

G1j  G1j þ n1j; n1j � Nð0; �
2
1jÞ

G2j  G2j þ n2j; n2j � Nð0; �
2
2jÞ

G3j  G3j þ n3j; n3j � Nð0; �
2
3jÞ; ð32Þ

where �1j ¼ �2j ¼ �3j ¼ 10�3 for 90% of the measurements

while �1j ¼ �2j ¼ �3j ¼ 10�2 for the remaining 10%, emulating

the presence of outliers. The 10% selected for outlier noising

was selected randomly uniformly from the full diffraction

data set.

Using the ASTRA-toolbox we have implemented the matrix

factorization derived in this paper in operator format. This

means that we never need to form the explicit sparse matrices

involved in the forward model, but, instead, implement an

on-the-fly operator that operates on an input vector to

produce the system matrix vector dot product (and the

corresponding adjoint product). This operator implementa-

tion is only possible thanks to the algebraic results that

constitute the contribution of this paper. The code used to

implement our matrix factorization (on an NVIDIA GPU

architecture), produce the simulated data and reconstruct the

strain (and later orientation) field is openly available as a

demo Python library https://github.com/AxelHenningsson/

flyxdm. In the same supplementary demo code, we provide
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Figure 2
Strain (bottom) and mosaicity (top) in a simulated 2D grain slice of �-
quartz (SiO2). The Bunge Euler angles are displayed as variations around
their respective mean values.



detailed comments on the simulation and reconstruction setup

and provide the code used to generate all figures found in

these Appendices (including the generalizations to orientation

fields made in Appendix C).

APPENDIX B
Strain reconstruction

In this Appendix, we use the simulation data in conjunction

with the Taylor expansion described by Henningsson &

Hendriks (2021) and convert the diffraction vectors, G, into

measurements of directional strain with the aim of recon-

structing the intragranular strain field. In Appendix C we

describe how the diffraction vectors can be used without

transform to reconstruct strain and intragranular orientation

variations jointly, again exploiting our matrix factorization

method. Note that while the aim in Appendix B is to

demonstrate our matrix factorization method for the case of

strain reconstruction, the simulated data still originate from a

grain that features both intragranular strain and orientation

variation. As discussed elsewhere (Henningsson et al., 2020;

Henningsson & Hendriks, 2021), this is not a problem as long

as the mosaicity of the grain is moderate.

In Fig. 3, the result of strain tensor reconstruction can be

viewed. Here a radial basis expansion was used to construct N

[in equation (29)]. The true noise covariance of the diffraction

vectors was propagated through the Taylor expansion to

construct the directional strain covariance yielding W. The

small residuals and root-mean-squared errors (RMSEs) found

in the bottom row of Fig. 3 are expected as a consequence of

noise and model mismatch. For further details we refer the

reader to the supplementary code.

APPENDIX C
Generalization to coupled orientation–strain models

We shall now consider generalizing our matrix factorization

method to a diffraction model discussed by Henningsson et al.

(2020, Section 6 equation 10-16). Considering the Laue

equations (31) in integral form, we find

hGji ¼
1

Lj

Z
Rj

UBG
ðjÞ
hkl dx; ð33Þ

where h�i denotes volume average. The target intragranular

field of deformation is now generalized to include the local

rigid-body rotations as

UB ¼ UðxÞBðxÞ ¼ fðxÞ 2 R3�3: ð34Þ

In contrast to the small strain tensor, """, f is not symmetric and

the number of unknowns per point, x, in the grain is now

increased to 9 (compared with six strain tensor components).

To reach a similar factorization as that of (26), we start by

introducing a flattened format of (33) as

hGji ¼ Hj

R
Rj

�ffðxÞ dx; ð35Þ

where

�ff ¼

f11ðxÞ

f21ðxÞ

f31ðxÞ

f12ðxÞ

f22ðxÞ

f32ðxÞ

f13ðxÞ

f23ðxÞ

f33ðxÞ

2
6666666666664

3
7777777777775

ð36Þ
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Figure 3
Strain tensor reconstruction (REC) of a single-crystal �-quartz grain slice. The matrix factorization in equation (29) has been used to reconstruct the
strain field without the need to assemble the global system matrix. The top row ground-truth simulation input (GT) is to be compared with the middle
row reconstructed strain field (REC). The bottom row shows the residual between reconstructed and true strain fields (RES).



and

Hj ¼
1

Lj

Ihj Ikj Ilj

� �
; ð37Þ

and I is the 3� 3 identity matrix. Let us now decompose the

target field, �ffðxÞ, on a finite basis as

�ffðxÞ ¼
Pn
l¼1

b l’lðxÞ; ð38Þ

where ’l 2 R are the scalar (pixel/voxel) basis functions and

b l ¼

	1l

	2l

	3l

	4l

	5l

	6l

	7l

	8l

	9l

2
6666666666664

3
7777777777775

: ð39Þ

Insertion of equation (38) into equation (35) yields after

rearrangement that

hGji ¼ Hj

Pn
l¼1

b l

R
Rj

’lðxÞ dx; ð40Þ

where the linearity of the involved operators was used. We

now note that equation (40) is a higher-dimensional copy of

equation (10). Defining wj according to equation (11), we find

in analogy with equation (12) that

Qj ¼

wT
j 0 0 . . . 0

0 wT
j 0 . . . 0

..

. . .
. . .

. . .
. ..

.

0 . . . 0 0 wT
j

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
9�9n

: ð41Þ

We now introduce a set of coefficient vectors,

b1 ¼

	11

	12

..

.

	1n

2
6664

3
7775; b2 ¼

	21

	22

..

.

	2n

2
6664

3
7775; . . . ; b9 ¼

	91

	92

..

.

	9n

2
6664

3
7775; ð42Þ

and define a partitioned global coefficient vector as

s ¼

b1

b2

..

.

b9

2
6664

3
7775: ð43Þ

The ray integral equation (40) can now be cast as

hGji ¼ HjQjs: ð44Þ

We now note that each row in equation (44) has an identical

algebraic format compared with equation (15). Splitting the

diffraction vector measurements into three separate vectors as

d1 ¼

hG11i

hG12i

..

.

hG1mi

2
6664

3
7775; d2 ¼

hG21i

hG22i

..

.

hG2mi

2
6664

3
7775; d3 ¼

hG31i

hG32i

..

.

hG3mi

2
6664

3
7775; ð45Þ

we are free to use the same arguments of row and column

permutation as described in Section 3 to arrive at

d1 ¼ M1P0s; ð46Þ
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Figure 4
Coupled strain–orientation reconstruction (middle row) in a single slice of �-quartz. The simulated ground-truth (GT) field and corresponding data are
described in Appendix A. The residual field (RES) can be viewed in the bottom row. Note that the Bunge Euler angles (left) are displayed as a deviation
from their respective mean values, allowing for a shared colorbar.



where P0 now is a 9m� 9n block-diagonal projection matrix in

direct analogy to equation (21) and the block-diagonal matrix

M1 holds the Miller indices weighted by path length as

M1 ¼ h 0 0 k 0 0 l 0 0
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m�9m

; ð47Þ

with

h ¼ Diag
hj

Lj

� �
;

k ¼ Diag
kj

Lj

� �
;

l ¼ Diag
lj

Lj

� �
: ð48Þ

The global system of equations can now be written as

d1

d2

d3

2
4

3
5 ¼ M1

M2

M3

2
4

3
5P0s; ð49Þ

with

M2 ¼ 0 h 0 0 k 0 0 l 0
� �

;

M3 ¼ 0 0 h 0 0 k 0 0 l
� �

: ð50Þ

Alternatively, denoting the measurement vector as

d ¼

d1

d2

d3

2
4

3
5

|fflfflffl{zfflfflffl}
3m�1

ð51Þ

and the Miller sampling matrix as

M ¼

M1

M2

M3

2
4

3
5

|fflfflffl{zfflfflffl}
3m�9m

; ð52Þ

we arrive at our final factorized diffraction model,

d ¼ MP0s: ð53Þ

The forward pass in equation (53) is defined by nine separate

(scalar) projection operations followed by nine multiplications

with the diagonal blocks (h; k; l) of M. This factorization

therefore admits the same computational benefits that are

discussed for the decoupled strain model in the main paper.

The discussion on generalizations held in Section 4, introdu-

cing a weight matrix W and a change of basis matrix N, is

likewise applicable to equation (53). To verify that our deri-

vations are correct we dedicate the following section to

applying equation (53) to our demonstration example

presented in Appendix A.

C1. Application to demonstration example

For completeness we have implemented and solved equa-

tion (53) in our demo supplementary code for the same

demonstration example that was considered in Appendices A

and B. The same radial basis expansion as described in

Appendix B was used during regression. Likewise, the true

noise covariance matrix was used to solve for the unknown

radial basis coefficients in a weighted least-squares sense. The

resulting maximum likelihood reconstruction (REC) can be

viewed in the middle row of Fig. 4 together with the ground

truth (GT) and residual (RES).
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