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Patch frequencies in rhombic Penrose tilings
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This exposition presents an efficient algorithm for an exact calculation of patch

frequencies for rhombic Penrose tilings. A construction of Penrose tilings via

dualization is recalled and, by extending the known method for obtaining vertex

configurations, the desired algorithm is obtained. It is then used to determine the

frequencies of several particularly large patches which appear in the literature.

An analogous approach works for a particular class of tilings and this is also

explained in detail for the Ammann–Beenker tiling.

1. Introduction

The idea of a non-periodic tiling of a plane with fivefold

symmetry goes back to Kepler’s famous Figure Aa (Kepler,

1940). The (rhombic) tiling introduced by Roger Penrose

(1974) is an aperiodic fivefold symmetric tiling of a plane with

two prototiles – a thick and a thin rhombus. There are many

ways to generate this tiling. One can define local matching

rules, or one can think of it as an inflation tiling and define

inflation rules. A more algebraic approach is due to de Bruijn

(1981a,b). It relies on the dualization of a pentagrid, i.e. the

union of five rotated lattices. An overview of the methods can

be found in, for example, Baake & Grimm (2013). Here, we

are interested in another algebraic, yet different, approach. It

profits from the geometry of the root lattice A4 and the fact

that this lattice is a ‘minimal’ one with fivefold symmetry.

Again, this approach uses dualization, in this scenario the

duality relation between Voronoi and Delone cells (and their

complexes).

Recently, the rhombic Penrose tiling was considered as an

infinite graph and it has been studied using tools from graph

theory. One can consider its graph-theoretic properties like

Hamiltonicity, Eulericity or (perfect) matchings (Flicker et al.,

2020; Lloyd et al., 2022), but one can also assign an operator

acting on this graph and study its spectral properties. Damanik

et al. (2022) studied the properties of a Laplacian on various

tilings, among them the rhombic Penrose one. They studied a

tile model for the Laplacian and they were able to show some

examples of locally supported eigenfunctions, which are also

known from other reports (Fujiwara et al., 1988). Recently,

Oktel published several papers dealing with a similar problem

for the vertex model for different tilings (Oktel, 2021, 2022;

Keskiner & Oktel, 2022). For all these models, one can further

study the integrated density of states (IDS), which is a func-

tion that counts the number of states (different eigenfunc-

tions) up to a given energy. It is known that this function is

discontinuous. More precisely, if one can find a locally

supported eigenfunction with energy E of the Laplacian, the

IDS has a discontinuity jump at point E. The size of this gap is

at least as big as the frequency of the eigenfunction’s support,

i.e. the frequency of the corresponding patch (Damanik et al.,
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2022). Thus, knowing the frequency, one obtains a lower

bound on the size of the gap. Damanik and co-workers used a

direct approach to calculate the frequencies, namely, they

counted the number of occurrences of the support of a given

eigenfunction in growing approximants of the entire tiling.

The same method was employed earlier by Fujiwara et al.

(1988). There is an obvious disadvantage to this method in

that one has to deal with the boundary of the approximants,

which may include parts of the studied patch. Another

problem constitutes the way of choosing the approximants.

Lastly, the resulting frequency is always given as a numerical

approximation. Therefore, we aim to fill this gap by showing

an algebraic way of obtaining the frequencies of arbitrary

finite patches in (not only) Penrose rhombic tilings exactly,

without any need for the inflation method. For Penrose

rhombic tilings, there already exists a method introduced by

Zobetz & Preislinger (1990) using de Bruijn’s approach, which

enables a calculation of the frequencies of vertex configura-

tions in generalized Penrose tilings. Still, our approach

provides a more general framework as it allows us effectively

to calculate an exact frequency of arbitrary large patches for a

wider class of tilings. As far as we are aware, no algorithm yet

exists that would actually enable the calculation of exact

frequencies for arbitrary finite patches.

This paper is structured as follows. In Section 2, we recall

the geometry of the A4 lattice and its Voronoi complex and of

their dual objects. Further, in Section 3, we recall a repre-

sentation of a cyclic group of order 5 (which acts naturally on

the lattice A4), which exhibits fivefold symmetry in a plane.

Section 4 evokes the dualization method and its benefits.

These sections are almost fully based on the work of Baake et

al. (1990). We recall these concepts as they are necessary for

the algorithm. The crucial point is that it describes tilings

rather than point sets by a variant of the projection method

known as dualization. In particular, the standard model set

approach via the intersection of translated windows (Baake &

Grimm, 2013, Cor. 7.3) is in practice unable to give the

frequencies of large patches. The algorithm for determining

the frequencies is presented in Section 5. In Appendix A, we

apply it to several patches coming from the work of Damanik

et al. (2022). Appendix B is devoted to a brief summary of the

patch frequencies in Ammann–Beenker tilings.

2. The root lattice A4, its dual and their properties

The lattice A4 can be understood in different ways. Perhaps

the most natural one (explaining its name) is that A4 is the

root lattice of the semisimple Lie algebra sl5ðCÞ. On the other

hand, its explicit description as an intersection of the primitive

five-dimensional cubic lattice with a four-dimensional (4D)

hyperplane allows us to simplify some calculations. Thus, let

e1, . . . , e5 be the standard basis vectors of R5 and set

s ¼ e1 þ . . .þ e5. Further, let S ¼ fx 2 R5 : s � x ¼ 0g ’ R4

be a four-dimensional hyperplane in R5. Then, one has

A4 ¼ S \ Z
5: ð1Þ

The resulting lattice is generated by four vectors, namely

A4 ¼ he1 � e2; e2 � e3; e3 � e4; e4 � e5iZ: ð2Þ

Alternatively, we can depict the root lattice A4 as a Dynkin

diagram (Fig. 1).

Note that the generating vectors ei � ei+1 are fundamental

(or simple) roots of the root system of sl5ðCÞ. This system

consists of 20 root vectors, namely ei � ej with 1 � i, j � 5 and

i 6¼ j. For our further analysis, we need to describe the

maximal point symmetry group HA4
at the origin of the lattice

A4. It is isomorphic with the automorphism group of the

generating root system. The root system is, by definition,

invariant under the action of the Weyl group W(A4), which is

the permutation group S5 in this case. Moreover, central

inversion is an additional symmetry generating the group Z2.

Thus, the group HA4
is isomorphic to

HA4
’ WðA4Þ � Z2 ’ S5 � Z2: ð3Þ

The 20 root vectors also determine the Voronoi cell VA4
ð0Þ

around the origin, i.e. all vectors in the underlying hyperplane

S which are not further away (with respect to the Euclidean

distance) from the origin than from any other lattice point, so

VA4
ð0Þ ¼ x 2 S : 8 v 2 A4 : jjx� vjj � jjvjj

� �
: ð4Þ

The Voronoi cell can also be understood as an intersection of

closed half-spaces Hþv corresponding to v 2 A4 defined as

Hþv :¼ fx 2 S : jjx� vjj � jjvjjg. Here, the Voronoi cell

VA4
ð0Þ is fully determined by the 20 root vectors, i.e. one has

VA4
ð0Þ ¼

\
i6¼j

Hþei�ej
: ð5Þ

To obtain a more explicit description of the Voronoi cell

VA4
ð0Þ, we have to employ the dual lattice A�4 and its funda-

mental domain. The dual lattice can be obtained in many ways.

Following Conway’s approach via glue vectors (Conway &

Sloane, 1999), one has

A�4 ¼
[4

i¼0

½i� þ A4; ð6Þ

with the glue vectors
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Figure 1
The Dynkin diagram A4. Every node represents a basis vector and their
geometry is encoded via the lines. If two vertices are connected, their
scalar product is �1. Otherwise, they are orthogonal.
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1

5

4

�1
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�1

�1

0
BBBBBB@

1
CCCCCCA
: ð7Þ

This description allows one immediately to recognize A4 as

a proper sublattice in its dual lattice A�4. Moreover, the

quotient group A�4=A4 ’ C5 is of order 5 and the repre-

sentatives can be chosen as the glue vectors. On the other

hand, for upcoming calculations, it is convenient to write down

the generators of the lattice. Here, A�4 is spanned by the

vectors

ai ¼ ei �
1

5
s; ð8Þ

with 1 � i � 5 and s as above. Note that the generating vectors

are not linearly independent since
P5

i¼1 ai ¼ 0. Finally, one

can use them to describe the Voronoi cell,

VA4
ð0Þ ¼ x 2 S : x ¼

1

2

X5

i¼1

�iai; j�ij � 1

( )
: ð9Þ

This object is a regular four-dimensional convex polytope,

sometimes considered as a dual polytope to the runcinated

5-cell. It has full symmetry W(A4) � Z2. The polytope

possesses 30 vertices, 70 bounding edges and 60 bounding

polygons (i.e. polytopes of dimension two), and 20 bounding

polytopes of dimension three. Henceforth, we refer to them as

k-boundaries, with 0 � k � 3. Baake et al. (1990) provided a

careful analysis of all k-boundaries and their explicit

description, together with one of their corresponding duals in

the sense of Kramer & Schlottmann (1989). Important to us

here are the 2-boundaries, the vertices and the corresponding

dual objects as follows.

The 2-boundary polygons are given by

Pðþ þ �

Þ ¼
1

2
a1 þ a2 � a3 þ �4a4 þ �5a5ð Þ : j�ij � 1

� �
;

ð10Þ

together with all polygons obtained via vertex permutations

and sign flips. There is an explicit action of the group HA4
on

the set of 2-boundaries. This action can be encoded on the

level of the signature ðþ þ �

Þ as well. In particular, a

permutation just permutes the indices, a sign flip affects the

signs and
 remains unchanged. From the geometric point of

view, Pðþ þ �

Þ is a rhombus, and therefore it will play a

crucial role in constructing the Penrose rhombus tiling. The

2-boundary dual to Pðþ þ �

Þ is the triangle

P�ðþ þ �

Þ defined as

P�ðþ þ �

Þ

¼ �1ða1 � a3Þ þ �2ða2 � a3Þ : �i � 0; �1 þ �2 � 1
� �

:

ð11Þ

The correspondence between P and P* is one to one and the

boundaries intersect with their duals at precisely one point.

The 30 vertex points of the Voronoi cell VA4
ð0Þ are exactly

those points of S with the largest distance to the lattice A4. In

terms of the theory of root lattices, they are called holes

(Conway & Sloane, 1999). Points with the maximum possible

distance to A4 are called deep holes and the remaining ones

are shallow holes. In our case, the vertex

Pðþ þ þþ�Þ ¼
1

2
a1 þ a2 þ a3 þ a4 � a5ð Þ

¼ a1 þ a2 þ a3 þ a4 ð12Þ

and all its images under W(A4) � Z2 are the shallow holes,

whereas the 20 points of type

Pðþ þ þ ��Þ ¼
1

2
a1 þ a2 þ a3 � a4 � a5ð Þ ¼ a1 þ a2 þ a3

ð13Þ

are the deep holes.

The dual objects to deep and shallow holes are four-

dimensional cells. Namely, one obtains a four-dimensional

simplex

P�ðþ þ þ þ�Þ ¼
X4

i¼1

�iðai � a5Þ : �i � 0;
X4

i¼1

�i � 1

( )

ð14Þ

and a four-dimensional Archimedean polytope

P�ðþ þ þ ��Þ ¼

(X3

i¼1

�iðai � a4Þ þ
X3

i¼1

�iþ3ðai � a5Þ :

�i � 0;
X3

i¼1

�i � 1;
X6

i¼4

�i � 1;

�i þ �iþ3 � 1 for all 1 � i � 3

)
; ð15Þ

and all their images under the symmetry operations HA4
:

Since A4 is a lattice, one has the same vertex configuration

around any of its points up to translation. Thus, the Voronoi

cell VA4
ðvÞ around v is a translation VA4

ð0Þ þ v. Further, one

can collect all k-boundaries and think of them in terms of

complexes. In particular, one can define the Voronoi complex

V :¼ P � S : P is a boundary of some VA4
ðvÞ with v 2 A4

� �
ð16Þ

and for 0 � k � 4 its k-skeleton

V
ðkÞ :¼ P 2 V : P is a k-boundary

� �
: ð17Þ

The properties of the duality lead to the dual Voronoi

complex and its dual k-skeleton as, respectively,

V
� :¼ P� : P 2 Vf g; ð18Þ
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V
�ðkÞ :¼ P� 2 V

� : P is a ð4� kÞ-boundary
� �

: ð19Þ

Taking any vertex v* of the Voronoi cell VA4
ðvÞ for some v 2

A4, i.e. v� 2 V
ð0Þ, the associated dual object, which is a full 4D

polytope, will be denoted by V*(v*) as it plays a similar role to

the Voronoi cell.

As mentioned above, different points appear within the

point sets studied. We have to deal with points of the lattice A4

and with the vertices of its Voronoi cells. The latter are split

into two categories, deep and shallow holes. In order to

distinguish them, one can introduce a modulo function r

defined for any point v� ¼
P4

i¼1 niai 2 A�4 as

rðv�Þ :¼
X4

i¼1

ni

 !
mod 5: ð20Þ

It is clear that r : A�4 ! Z=5Z. Since the generating vectors

ei � ei+1 of the lattice A4 fulfil

ei � eiþ1 ¼ ai � aiþ1; ð21Þ

one immediately has

A4 ¼ kerðrÞ: ð22Þ

Further, one obtains the characterization of shallow and deep

holes in terms of r(v*). In particular,

v� is a shallow hole , rðv�Þ ¼ �1 mod 5; ð23Þ

v� is a deep hole , rðv�Þ ¼ �2 mod 5: ð24Þ

Remark 2.1. The function r corresponds to the index function

in de Bruijn’s construction (de Bruijn, 1981a,b). This is not

surprising because de Bruijn’s construction implicitly uses the

root lattice as a Minkowski embedding of fifth roots of unity,

as explained by Baake & Grimm (2013, Section 7.5.2).

3. Representation with fivefold symmetry

We have already mentioned that W(A4) acts on the generators

of A4 via permutations of the basis vectors ei . This action has

two invariant subspaces, namely Cs and S. The linear repre-

sentation of S5 ’ W(A4) is irreducible on S, and to find a real

irreducible representation capturing the fivefold symmetry in

plane one has to restrict oneself to a suitable subgroup.

Therefore, consider the cyclic group C5, a subgroup of W(A4).

Its generating element g = (12345) acts on the basis

(e1, . . . , e5) via the matrix

DðgÞ ¼

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0
BBBB@

1
CCCCA: ð25Þ

To find the possible representations means to find the real

Jordan form of D(g) via an orthogonal matrix J. The real

Jordan form reads

JDðgÞJ�1 ¼

cos 2�
5 � sin 2�

5 0 0 0

sin 2�
5 cos 2�

5 0 0 0

0 0 cos 4�
5 � sin 4�

5 0

0 0 sin 2�
5 cos 2�

5 0

0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

¼DkðgÞ D?ðgÞ D0
ðgÞ ð26Þ

and provides three irreducible real representations DkðgÞ,

D?ðgÞ and D0ðgÞ. The matrix J read columnwise provides a

new basis, as one can directly read from

JDðgÞ ¼ DkðgÞ D?ðgÞ D0
ðgÞ

� �
J: ð27Þ

In particular, one has

J ¼

ffiffiffi
2

5

r 1 cos 2�
5 cos 4�

5 cos 4�
5 cos 2�

5

0 sin 2�
5 sin 4�

5 � sin 4�
5 � sin 2�

5

1 cos 4�
5 cos 2�

5 cos 2�
5 cos 4�

5

0 sin 4�
5 � sin 2�

5 sin 2�
5 � sin 4�

5ffiffi
1
2

p ffiffi
1
2

p ffiffi
1
2

p ffiffi
1
2

p ffiffi
1
2

p

0
BBBB@

1
CCCCA: ð28Þ

Since the trivial representation D(0)(g) is carried by the

subspace Cs, it follows that Dk(g) and D?(g) are contained in

S. Thus, one has to decompose S as a direct sum of two

subspaces, Sk and S?. The representations of g in Sk and S?

are rotations about 2�
5 and 4�

5 , respectively.
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Figure 2
Projections of the standard basis e1, . . . , e5 into the two subspaces Sk and
S
?.

Figure 3
Images of the 2-boundary Pð� þ

þÞ and its dual P�ð� þ

þÞ
under the projections �k and �?. The solid blue rhombi correspond to
projections of the 2-boundary, whereas the dashed line indicates the
projection of its dual. The grey points are the 20th roots of unity scaled byffiffiffiffiffiffiffi

2=5
p

.



Denote by �k and �? the projections from S onto Sk and

S
?, respectively. The projections of basis vectors �k(ei) are

given by the first and second rows of the ith column of J, and

those of �?(ei) are given by the third and fourth rows of the

same column. Fig. 2 depicts the projections of the basis vectors

ei , which exhibit the desired fivefold symmetry. SinceP5
i¼1 �kðeiÞ =

P5
i¼1 �?ðeiÞ = 0, one immediately has �k(ai) =

�k(ei) and �?(ai) = �?(ei) for all 1 � i � 5.

Projecting the 2-boundary P and its dual 2-boundary P* in

both spaces results in a set of triangles and rhombi, which we

use later for the construction of the Penrose tiling. Fig. 3 shows

the projections of Pð� þ

þÞ and P�ð� þ

þÞ. Note

that the rhombus vertices always consist of one projection of a

shallow hole and three projections of deep holes. The position

of the shallow hole will be needed later to distinguish different

patterns.

4. Dualization method

One can obtain a space tiling via the dualization method. This

method was described in detail by Kramer & Schlottmann

(1989), and Baake & Grimm (2013) provided an illustrative

overview. To employ this method, one needs a Voronoi

complex V , its dual (Delone) complex V
� and a suitable

cutting plane, which carries the desired tiling. To obtain a non-

periodic tiling, one has to choose the cutting plane so that it

contains at most one lattice point.

The construction works in general as follows. Whenever the

cutting plane intersects a k-boundary of the Voronoi complex,

the dual (4 � k)-boundary is projected onto the cutting plane.

In our case, we wish to obtain the rhombic Penrose tiling.

Therefore, we restrict ourselves to the skeletons V
ð2Þ and

V
�ð2Þ. Fig. 4 shows the projections of the different (modulo

translation) 2-boundaries onto the Sk, which are the thick

Penrose rhombi.

We choose as the cutting plane a translation of Sk by a

vector c? 2 S
?. To ensure aperiodicity, we have to choose c?

such that it is not contained in any �? projection of any

1-boundary of P� 2 V
�ð2Þ; see Baake et al. (1990) for further

details. The vector c? restricts the elements of V
�ð2Þ which one

projects onto Sk, since the cutting plane c? þ S
k intersects a

2-boundary P if and only if �?(P*) contains c?. The resulting

tiling (which depends on the choice of c?) can be described as

T Penðc?Þ ¼ �kðPÞ : P 2 V
ð2Þ; c? 2 �?ðP

�
Þ

� �
: ð29Þ

The vertices of T Penðc?Þ are projections of the vertex points

of certain Voronoi domains V(v) for some v 2 A4. As already

discussed above, these vertices are elements of A�4 \A4 and are

of four translation types, as characterized by the function r.

The vertex points v* are split into four orbits with respect to

the translation action of A4. For each orbit, one can choose a

representative v�i , for example

v�1 :¼ a1; v�2 :¼ a1 þ a3; v�3 :¼ �a1 � a3; v�4 :¼ �a1:

ð30Þ

From the construction of T Penðc?Þ, we see that a point

v� 2 A�4 \A4 is a pre-image of a vertex point in T Penðc?Þ if and

only if v* 2 P with c? 2 �?(P*) for some P 2 V
ð2Þ. Note that if

a point is an element of a k-boundary, the dual (4 � k)-
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Figure 4
Projections of the different (modulo translation) 2-boundaries P in Sk which result in a thick rhombus. The solid rhombi correspond to the labels,
whereas the dashed rhombi are their space inversions. The red point attached to a given rhombus indicates the shallow hole. The grey points are the 20th
roots of unity scaled by a factor

ffiffiffiffiffiffiffi
2=5
p

.



boundary lies in the dual cell of that point and vice versa. So

v* 2 P if and only if P� � V�ðv�Þ, with V*(v*) being a trans-

lation of a dual four-dimensional cell of the form (14) or (15).

Thus, �k(v*) is a vertex in T Penðc?Þ if and only if c? 2

�?(V*(v*)). Two points v�1 and v�2 with rðv�1Þ = rðv�2Þ can only

differ by a lattice vector. The choice of representatives (30)

allows us to relate any point v* with one of them. Define

qðv�Þ :¼ v� � v�rðv�Þ 2 A4 for any v*. Since

V�ðv�Þ ¼ V�ðv� � v�rðv�Þ þ v�rðv�ÞÞ ¼ qðv�Þ þ V�ðv�rðv�ÞÞ; ð31Þ

one has

c? 2 �?ðV
�ðv�ÞÞ () c? � �?ðqðv

�ÞÞ 2 �? V�ðv�rðv�ÞÞ
	 


: ð32Þ

This allows us to rewrite the set of vertex points of T Penðc?Þ as

�kðv
�Þ : v� 2 A�4 \A4; c? � �?ðqðv

�ÞÞ 2 �? V�ðv�rðv�ÞÞ
	 
� �

:

ð33Þ

This description shows that the set of vertices can be

understood as four cut-and-project sets with lattices

v�i þ A4 � S and windows �?ðV
�ðv�i ÞÞ � S

?, 1 � i � 4. Fig. 5

shows all four windows �?ðV
�ðv�i ÞÞ in S?; for more detail see

Example 7.11 and Remark 7.8 in Baake & Grimm (2013).

Once we have established the description of all vertices of

T Penðc?Þ, we can further determine a vertex configuration of

each vertex, i.e. all tiles in T Penðc?Þ surrounding the vertex

�k(v*). The description (29) provides us with a characteriza-

tion of the tiles surrounding �k(v*). Indeed, a tile �k(P)

belongs to a vertex configuration of �k(v*) if and only if

P 2 V
ð2Þ, v* 2 P and c? 2 �?(P*). The problem of finding a

vertex configuration around an arbitrary vertex point can be

reduced using translation symmetry. We can restrict ourselves

to finding all vertex configurations around a representative of

each translation class, i.e. around the points v�i . We can then

rewrite the conditions above as P� � qðv�Þ � V�ðv�rðv�ÞÞ and

c? � �?(q(v*)) 2 �?(P*) � �?(q(v*)). So P belongs to a

vertex configuration of a point v* if and only if the translation

of its dual P* by q(v*) is a 2-boundary of the dual cell

V�ðv�rðv�ÞÞ. This gives an algorithm for obtaining the complete

vertex configuration around the vertex �k(v*) as follows.

(1) Find all w� 2 A�4 \A4 such that c? � �?ðqðw
�ÞÞ

2 �?ðV
�ðv�rðv�ÞÞ.

(2) For all w* found in Step (1), take the 2-boundary P* of

the dual cell V�ðv�rðv�ÞÞ with c? � �?(q(w*)) 2 �?(P*). Then,

�k(w*) + �k(P) is a tile around �k(v*).

We choose c? so that c? � �?(q(w*)) lies in the interior of

�?(P*). This is a crucial observation. It forces all tiles �k(w*) +

�k(P) belonging to a particular vertex configuration to have, at

the level of �?(P*), an overlap in the �?ðV
�ðv�rðv�ÞÞ. We can use

this property to determine and characterize all possible vertex

configurations with respect to translations in S? as follows: a

set W � V
ð2Þ of 2-boundaries is a valid vertex configuration of

a vertex of type i if and only if W is maximal with respect to

the property that \P2W �?ðP
�Þ is non-empty. The projection of

2-boundaries of the dual cells V�ðv�i Þ divides the �?ðV
�ðv�i ÞÞ

into convex polygons, called elementary polygons (Baake et al.,

1990). They have pairwise distinct interiors, each representing

a distinct vertex configuration (and vice versa). Fig. 6 shows

the elementary polygons for �?ðV
�ðv�1ÞÞ and �?ðV

�ðv�3ÞÞ. The

corresponding vertex configurations are shown in Fig. 7.
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Figure 5
Projections �?ðV

�ðv�i ÞÞ � S
? corresponding to the windows. The blue

pentagons carry the �?-projections of shallow holes, whereas the black
ones comprise the projections of deep holes. Note that for every window
there exists its own lattice. Thus, even though there is a non-trivial
intersection of windows, the resulting points must differ, as one expects.
The grey points are the 20th roots of unity scaled by a factor

ffiffiffiffiffiffiffi
2=5
p

.

Figure 6
Subdivision of �?ðV

�ðv�1ÞÞ (blue) and �?ðV
�ðv�3ÞÞ (black) into elementary

polygons. The eight possible vertex configurations (modulo rotation by
2�/5 and space inversion) correspond to eight distinct elementary
polygons.

Figure 7
All possible vertex configurations (up to rotation by 2�/5 and space
inversion) which are in one-to-one correspondence with the elementary
polygons in Fig. 6. The black points indicate the positions of shallow
holes.



The choice of the cutting plane ensures that the projections

of the vertices of a valid infinite Penrose tiling onto S? are

dense and uniformly distributed. Thus, we can use them to

determine the frequencies of the vertex configurations via the

areas of the elementary polygons. Denote by E an elementary

polygon. The relative frequency �C ðEÞ of vertex configuration

C ðEÞ corresponding to the elementary polygon E is then given

by

�C ðEÞ ¼
AreaðEÞP4

i¼1 Areað�?ðV
�ðv�i ÞÞÞ

¼
AreaðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5 5þ 2
ffiffiffi
5
p	 
q ; ð34Þ

i.e. by exactly the fraction of the total area of windows it

occupies. We list the frequencies of all vertex configurations in

Table 1. We include the frequency of the given patch as well as

the cumulative frequency of all patches of the same type, i.e.

all patches that lie in the same orbit under the rotation and

space inversion.

The sum of all total frequencies equals one, and thus we

have a consistency check. Since Penrose tiling defines a strictly

ergodic dynamic system (in the usual way) (Robinson, 1996),

we conclude that there are no other vertex configurations. If

there were any others, they would come with a strictly positive

measure, which is the patch frequency.

Recall that the frequency module of a tiling space X (in our

case, the tiling space generated by rhombic Penrose tilings) is

the minimal Z-module MX that contains all frequencies of

finite patches of the tiling. Here, we obtain the following

specific result.

Proposition 4.1. The frequency moduleMT Pen
of the Penrose

tiling is

MT Pen
¼

1

10
Z½��: ð35Þ

Proof. Consider any patch of the Penrose tiling. We can always

find an n 2 N such that this given patch is contained in a level-

n supertile of some vertex configuration C . Since the Penrose

tiling is an inflation/deflation tiling, its level-n supertiles

around a given vertex configuration are equivalent to the

original vertex configuration scaled by a factor �n. Therefore,

the supertile itself has a frequency given by ð1=�2nÞ � �C . The

factor ð1=�2nÞ comes from the observation that the frequency

is inversely proportional to the area. Since � is a unit in Z½��, so

is �2n. Thus, to determine the frequency module, it suffices to

consider the Z-module generated by �C ðEÞi
, 1 � i � 8, i.e.

MT Pen
¼ h�C ðEiÞ

: 1 � i � 8iZ: ð36Þ

Since �C ðE1Þ
þ 2�C ðE5Þ

þ �C ðE4Þ
= 1/10 and �C ðE4Þ

þ �C ðE5Þ
=

ð� � 1Þ=10, one has

MT Pen
¼ h�C ðEiÞ

: 1 � i � 8iZ ¼
1

10
h1; �iZ ¼

1

10
Z½��: ð37Þ

&

5. General patch frequencies and their calculation

The idea behind the above construction can be extended to

any patch in Penrose rhombic tilings. Choose a vertex of a tile

and relate all tiles of the patch to this vertex. One has to be

careful and distinguish consistently between deep and shallow

holes. One then obtains a list of all tiles and their relative

positions with respect to the chosen central tile. By transi-

tioning into S?, one obtains a list of all dual triangles and their

relative distance. Their intersection determines the frequency

of the patch in the same way as in the case of vertex config-

uration. This intersection is always a convex polygon (since

one intersects a finite number of triangles) and its area can be

computed easily. Note that some minimal subset of the

triangles entirely determines this intersection and working

only with them can increase the computational speed

considerably.

Let us list, in Fig. 8, all possible tiles together with the

shallow holes attached to each of them. We place them so that

the shallow hole indicates the ‘origin’ relative to the given tile.

More precisely, we depict them in coordinates which are

translated by the shallow vertex of a given tile. We also include

the dual tile and its projection in S?. The projection is also

centred on the relative origin. There is an extra advantage to

such a choice, namely, the vertices of dual triangles in S? are

placed at the 20th roots of unity scaled by the factor
ffiffiffiffiffiffiffi
2=5
p

.

Since the frequency is given by a ratio of two areas, the scaling

factor does not play a role. This allows a precise calculation,

simply by employing a suitable subfield of Q½exp ð�i=10Þ�. In

fact, one can work with integer coefficients.

We can now describe the algorithm that allows us to

determine the frequency of a given patch. We start with an

arbitrary finite patch of the Penrose tiling.

(1) Detect all shallow holes in the patch. This can be done

via the allowed vertex configurations.

(2) Identify the type of each tile in the patch as Ri, Si or their

space inversions (RIi, SIi) from the list given in Fig. 8.
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Table 1
Frequencies of vertex configurations in Penrose tilings, all belonging to
Qð�Þ with � being the golden ratio.

The second column shows the frequencies of particular patches, those in Fig. 7.
The last column gives the total frequencies of a patch of a given type, i.e. a
patch and all its images under the allowed rotations and space inversion.

Vertex
configuration

Frequency
�C ðEiÞ

Total frequency �i

1 1
10 ð5� 3�Þ 5 � 3� = ��4

2 1
10 ð5� � 8Þ 5� � 8 = ��5

3 1
10 ð18� 11�Þ 1

5 ð18� 11�Þ ¼ 2��1
5 ��5

4 1
10 ð2� �Þ 2 � � = ��2

5 1
10 ð2� � 3Þ 2� � 3 = ��3

6 1
10 ð13� 8�Þ 13 � 8� = ��6

7 1
10 ð13� � 21Þ 13� � 21 = ��7

8 1
10 ð47� 29�Þ 1

5 ð47� 29�Þ ¼ 2��1
5 ��7



(3) Choose any shallow hole, the ‘origin’, from the vertices

of the patch and fix it.

(4) Make a list of all positions of all tiles (their shallow

holes) relative to the origin. Since the edges of the rhombi are

projections �k(ai), the resulting position vector can always be

written as
P

i2I �i�kðaiÞ, where I parametrizes the path on the

edges from the origin to the desired point and �i 2 {�1}

denotes the orientation of the vectors �k(ai) in the path.

(5) Apply the dual correspondence, i.e. to each translated

tile T þ
P

i2I �i�kðaiÞ assign the dual T� þ
P

i2I �i�?ðaiÞ, with

T 2 {Ri, Si, RIi, SIi}.

(6) Find an intersection of all T� þ
P

i2I �i�?ðaiÞ from the

list. This can be done via any clipping algorithm, for example

the Sutherland–Hodgman algorithm (Sutherland & Hodgman,

1974).

(7) Calculate the area of the intersection.

(8) Divide the area of the intersection by the total area of

the windows, i.e. by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð5þ 2

ffiffiffi
5
p
Þ

q
. This yields the relative

frequency.

Note that one can choose any clipping algorithm since one

has to deal with triangles only (for different lattices one

obtains general convex polygons). Under this condition, most
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Figure 8
A list of all possible tiles (with respect to their orientations and placement of a shallow hole) in rhombic Penrose tilings and their duals in S?. Tiles are
depicted relative to the shallow hole. The exact correspondence between a tile in the list and a projection of a 2-boundary is, for example, the following. If
a tile of type R1 corresponds to �kðPð� þ

þÞÞ, the dual triangle R�1 is equal to �?ðP

�ð� þ

þÞÞ þ �?ða1Þ, i.e. we capture its actual position in
?-space. Fixing the positions of the duals allows us to work in coordinates relative to a given point, the ‘origin’. Everything is then shifted by a suitable
vector representing the relative distances of objects from the origin.



clipping algorithms are sufficiently robust. Moreover, at least

the Sutherland–Hodgman algorithm ensures that the resulting

coordinates of the vertices of the intersection are contained in

the same field as the coordinates of the polygons, since each

step of the algorithm relies on solving systems of two linear

equations with the coefficients being the coordinates of the

vertices of the polygons.

Finally, computing the area of a polygon determined by its

vertices can be done via the shoelace formula (or Gauss’s area

formula) (Koecher & Krieg, 2007), which is also within the

field.

Let us demonstrate the procedure on the following patch

[this patch, called a diamond ring, supports an eigenfunction

of a discrete Laplacian on the Penrose tiling; see Damanik et

al. (2022) for further details]. Fig. 9(a) shows the initial data of

the algorithm. Fig. 9(b) shows the results of Step 2 (deter-

mining the shallow holes) and Step 3 (labelling the tiles).

Table 2 summarizes the paths from the origin (red point A) to

the (black) shallow holes (labelled with letters B to J), i.e. the

relative translation vectors, i.e. the result of Step 4. Finally,

Fig. 10 shows the result of the correspondence described in

Step 5, i.e. it depicts the corresponding dual triangles in Sk and

their intersection (Step 6), which is, in this particular case, a

triangle. Its area (Step 7) is 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1165þ 521

ffiffiffi
5
p
Þ

q
. Thus, the

frequency of the diamond ring patch reads �diam = 1
10 ð34� 21�Þ

= 1
10 �
�8 2 MT Pen

. The total frequency of this patch (i.e. of all

its possible rotations and space inversions) is �tot
diam = 34� 21�.

We include other patches mentioned by Damanik et al. (2022)

in Appendix A.

The algorithm for obtaining patch frequencies can also be

used for an entire class of tilings, namely, for those tilings

obtained via the dualization method. Usually, there is no need

to distinguish between deep and shallow holes, which makes

the procedure slightly easier. On the other hand, another

restriction may occur, but the idea and the basic scheme

remain the same. By interchanging the roles of triangles and

rhombi, one can obtain the Tübingen Triangle Tiling (TTT)

(Baake et al., 1990). Using a different root lattice, one can also

obtain patch frequencies for a plethora of quasiperiodic tilings

with eight- and 12-fold symmetry, including the Ammann–

Beenker tiling (Baake & Joseph, 1990; Baake et al., 1991).

Further details are given in Appendix B.

APPENDIX A
Exact results for patches in Penrose tilings

In Figs. 11 to 17, we depict other patches that appear in

Damanik et al. (2022) and the corresponding dual triangles in

S
?. We also give the frequencies of these patches.

APPENDIX B
Ammann–Beenker tiling

Here, we briefly describe the setting for the Ammann–

Beenker octagonal tiling. This tiling can be obtained via the

dualization of the four-dimensional cubic lattice

Z4
¼ he1; e2; e3; e4iZ which is self-dual. Recall that the

Voronoi cell around the origin is the 4-cube given as

VZ4 ð0Þ ¼ x 2 R4 : jxij �
1

2
for all 1 � i � 4

� �
: ð38Þ
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Table 2
The positions of shallow holes of the diamond ring patch relative to the
origin A; in particular, this is the result of Step 4 of the algorithm.

For better readability, we abbreviate �?(ai) to a?i .

Shallow hole Translation vector

B a?2 þ a?3 þ a?4
C �a?1 þ a?2 þ 2a?3 þ a?4
D �a?1 þ 2a?3 þ 2a?4
E �a?1 þ a?3 þ 2a?4 þ a?5
F a?3 þ a?4 þ a?5
G �a?1 þ a?2 þ a?3 � a?5
H �2a?1 þ 2a?3 þ a?4 � a?5
I �2a?1 � a?2 þ a?3 þ 2a?4
J �a?1 � a?2 þ a?4 þ a?5

Figure 9
(a) The original plain diamond ring patch with 18 tiles. (b) The same
patch after the identification process with indicated shallow holes (dots)
and with a chosen origin (red dot). The tiles are labelled with respect to
the shallow hole they contain and the picture shows the situation after
Step 3 of the algorithm.

Figure 10
The intersection of dual tiles of the diamond ring patch. They possess a
common intersection, the small violet triangle.



The dual cells of the corresponding Voronoi complex are of

the form

V�
Z4ð0

�Þ ¼a; x 2 R4 : 0 � xi � 1 for all 1 � i � 4
� �

¼VZ4 ð0Þ þ
1

2
ð1; 1; 1; 1ÞT: ð39Þ

The symmetry group of the Voronoi cell is the hyper-

octahedral group �(4) (Baake et al., 1982). All 2-boundaries of

VZ4 ð0Þ are squares of the form

Qðþ þ

Þ ¼
1

2
fe1 þ e2 þ �1e3 þ �2e4 : �1 � �1; �2 � 1g;

ð40Þ

and all its possible images under the action of �(4), which acts

via permutations and sign flips. Altogether we obtain 24

congruent 2-boundaries. The dual boundaries are squares as

well,

Q�ðþ þ

Þ ¼ �1e1 þ �2e2 : 0 � �1; �2 � 1
� �

; ð41Þ

and the pairing of boundaries Q and their dual boundaries Q*

is one to one.

As in the case of the Penrose tiling, we need to find a

suitable subgroup of the holohedry �(4) which possesses an

(irreducible) representation in a plane. One can consider the

dihedral group D8 which is a proper subgroup of �(4). This

subgroup is generated by two elements g8, s satisfying
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Figure 11
The two star patch with 15 tiles. Its frequency is �two = 1

5 ð34� 21�Þ = 1
5 �
�8.

Figure 12
The filled circle patch with 25 tiles. Its frequency is �filled = 1

10 ð123� 76�Þ =
2��1

10 �
�9.

Figure 13
The big star patch with 50 tiles. Its frequency is �big = 1

10 ð123� 76�Þ =
2��1

10 �
�9.

Figure 14
A 200-tile patch.

Figure 15
The dual image of the patch from Fig. 14. The frequency of this patch is
�huge1 = 1

10 ð2207� 1364�Þ = 2��1
10 �

�15.



g8
8 ¼ s2 ¼ e and (g8s)2 = e. The generators act on the basis

vectors ei via the matrices

Dðg8Þ ¼

0 0 0 �1

1 0 0 0

0 1 0 0

0 0 1 0

0
BB@

1
CCA; DðsÞ ¼

1 0 0 0

0 0 0 �1

0 0 �1 0

0 �1 0 0

0
BB@

1
CCA:
ð42Þ

These matrices can be simultaneously brought to the real

Jordan form, namely

Dðg8Þ ’

cos �4 � sin �
4 0 0

sin �
4 cos �4 0 0

0 0 cos 3�
4 � sin 3�

4

0 0 sin 3�
4 cos 3�

4

0
BBB@

1
CCCA;

DðsÞ ’

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

0
BBB@

1
CCCA;

ð43Þ

using the matrix

J ¼

ffiffiffi
1

2

r 1
ffiffi
1
2

p
0 �

ffiffi
1
2

p
0

ffiffi
1
2

p
1

ffiffi
1
2

p
1 �

ffiffi
1
2

p
0

ffiffi
1
2

p
0

ffiffi
1
2

p
�1

ffiffi
1
2

p

0
BBB@

1
CCCA: ð44Þ

Taking the first two entries of each column of J, one gains the

projections of the basis vectors into the k-space, whereas

taking the third and fourth ones gives their ?-projection. The

projections are shown in Fig. 18 and they already reveal the

two shapes of tiles, namely a square, and a rhombus with acute

angle �
4.

The projections of the basis exhibit the desired octagonal

symmetry. As above, we can project the 2-boundaries and

obtain the Ammann–Beenker tiling as
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Figure 16
A 245-tile patch.

Figure 17
The dual image of the patch from Fig. 16. The frequency of this patch is
�huge2 = 1

10 ð2207� 1364�Þ = 2��1
10 �

�15.

Figure 18
Projections of the standard basis e1, . . . , e4 onto the two subspaces.

Figure 19
A projection of the Voronoi cell VZ4 ð0Þ into the ?-space with two
2-boundaries indicated. The yellow rhombus corresponds to
�?ðQð� þ

ÞÞ and the red square to �?ðQðþ
þ
ÞÞ. In contrast
with the Penrose tiling, the centre of the window is placed at the origin.



T ABðc?Þ ¼ �kðQ
�
Þ : Q� is a 2-boundary; c? 2 �?ðQÞ

� �
:

ð45Þ

We choose the vector c? so that it does not belong to any

1-boundary of any Voronoi cell, similar to the Penrose case. In

contrast with the Penrose tiling, we project the dual bound-

aries into the k-space, but this does not cause any difficulties.

The ?-projection of the Voronoi cell with projections of two

particular 2-boundaries is shown in Fig. 19. The area of the

projection (which is an octagon) is 1þ
ffiffiffi
2
p

. Up to a translation,

we have twelve different tiles – four rhombi and eight

squares(!). This, perhaps surprising, fact follows from the

decorations of the Ammann–Beenker tiles [see Baake &

Grimm (2013) for further details]. Fig. 20 shows the tiles and

their decorations.

As in the case of the Penrose tiling, we can determine all

elementary polygons and obtain all possible vertex config-

urations as shown in Fig. 21.

Since there are no holes in this setting (as Z4 is self-dual as a

lattice), the algorithm for determining the patch frequencies

has to be modified as follows. One has to replace ‘distin-

guishing between deep and shallow holes’ in Step 1 with

‘decorating the tiles’, and in Step 3 one has to replace ‘any

shallow hole’ with ‘any vertex point’, since there is only a

single translation class. And, of course, in the last step, one has

to divide by the accurate area of the window, in this case by
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Figure 20
The decorated tiles for the Ammann–Beenker tiling. There are four
different translation-equivalent rhombus tiles and eight different square
tiles. They differ by a rotation by an integer multiple of �=4. In the case of
the rhombus tiles, one has to decide on suitable representatives since the
decorated tile possesses a rotation symmetry by �. We decided to pick up
as the representatives the rhombus in the picture and its rotations by �=4,
�=2 and 3�=4.

Figure 21
All allowed vertex configurations (up to rotations) within the Ammann–
Beenker tiling displayed with decorations.

Figure 23
A 104-tile patch. Its frequency is �104 = 985 � 408� = ��8.

Figure 22
A 64-tile patch. Its frequency is �64 = 29� � 70 = ��5.

Figure 24
The intersection of dual tiles of the patch from Fig. 23.



1þ
ffiffiffi
2
p

. No other changes are needed. The patch frequencies

are contained in the frequency module MT AB
which reads

MT AB
¼ 1

2Z½�� with � = 1þ
ffiffiffi
2
p

, the silver mean (Baake &

Grimm, 2013, Example 7.9).

Figs. 22 to 26 show several patches of the Ammann–

Beenker tiling which appear in Damanik et al. (2022), with

their frequencies.
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Figure 25
A 328-tile patch. Its frequency is �328 = 985 � 408� = ��8.

Figure 26
The intersection of dual tiles of the patch from Fig. 25.
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