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A crystal symmetry search is crucial for computational crystallography and

materials science. Although algorithms and implementations for the crystal

symmetry search have been developed, their extension to magnetic space groups

(MSGs) remains limited. In this paper, algorithms for determining magnetic

symmetry operations of magnetic crystal structures, identifying magnetic space-

group types of given MSGs, searching for transformations to a Belov–

Neronova–Smirnova (BNS) setting, and symmetrizing the magnetic crystal

structures using the MSGs are presented. The determination of magnetic

symmetry operations is numerically stable and is implemented with minimal

modifications from the existing crystal symmetry search. Magnetic space-group

types and transformations to the BNS setting are identified by a two-step

approach combining space-group-type identification and the use of affine

normalizers. Point coordinates and magnetic moments of the magnetic crystal

structures are symmetrized by projection operators for the MSGs. An

implementation is distributed with a permissive free software license in spglib

v2.0.2: https://github.com/spglib/spglib.

1. Introduction

A crystal symmetry search and the standardization of crystal

structures play crucial roles in computational materials

science. For example, symmetry operations are required in

irreducible representations of electronic states (Gao et al.,

2021), band paths (Hinuma et al., 2017), phonon calculations

(Togo & Tanaka, 2015; Togo et al., 2015), a random structure

search (Fredericks et al., 2021) and crystal structure descrip-

tion (Ganose & Jain, 2019). Moreover, the standardization of

crystal structures is indispensable for comparing crystal

structures in different settings and analyzing magnetic crystal

structures in high-throughput first-principles calculations

(Horton et al., 2019).

Owing to the development of a computer-friendly descrip-

tion of space groups (Hall, 1981; Shmueli et al., 2010) and

algorithms (Opgenorth et al., 1998; Grosse-Kunstleve, 1999;

Grosse-Kunstleve & Adams, 2002; Eick & Souvignier, 2006),

we can automatically perform the crystal symmetry search

nowadays. For example, spglib implements the symmetry-

search algorithm and an iterative method to robustly deter-

mine crystal symmetries (Togo & Tanaka, 2018), which one of

the authors has developed and maintained.

On the other hand, algorithms and implementations for

magnetic space groups (MSGs) (Litvin, 2016) are limited.

MSGs are essential when we consider time-reversal operations

or magnetic crystal structures. To the best of our knowledge,
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existing implementations only partly provide MSG function-

alities. AFLOW-SYM (Hicks et al., 2018) proposed and

implemented a robust space-group analysis algorithm;

however, it does not seem to support MSGs yet. IDENTIFY

MAGNETIC GROUP (Perez-Mato et al., 2015) in the

Bilbao Crystallographic Server (Aroyo et al., 2011) and

CrysFML2008 (Rodrı́guez-Carvajal, 1993; González-Platas et

al., 2021) can identify MSGs from magnetic symmetry

operations; however, the determination of magnetic symmetry

operations from magnetic crystal structures is not supported.

FINDSYM (Stokes & Hatch, 2005; Stokes et al., 2022)

supports the determination of magnetic symmetry operations

and the identification of MSGs; however, the source code is

not freely available.

Here, we present algorithms for determining magnetic

symmetry operations of given magnetic crystal structures,

identifying magnetic space-group types of given MSGs,

searching for transformations to a Belov–Neronova–Smirnova

(BNS) setting, and symmetrizing the magnetic crystal struc-

tures on the basis of the determined MSGs. Note that the

implementation of these algorithms is virtually unattainable

without recent developments in crystallography. Litvin (2014)

provided extensive tables for the 1651 MSGs. ISO-MAG

(https://iso.byu.edu/iso/magneticspacegroups.php) provides

tables of MSGs in both human- and computer-readable

formats. Magnetic Hall symbols (González-Platas et al., 2021)

and unified (UNI) MSG symbols (Campbell et al., 2022) have

been developed to represent MSGs or magnetic space-group

types unambiguously, which are based on BNS symbols (Belov

et al., 1957; Bradley & Cracknell, 2009). In this paper, we use

the magnetic Hall symbols and the MSG data sets tabulated by

González-Platas et al. (2021). The implementation is distrib-

uted under the BSD 3-clause license in spglib v2.0.2.

This paper is organized as follows. In Section 2, we recall the

mathematical structures of MSGs and present definitions and

terminology for describing MSGs. In Section 3, we provide an

algorithm for determining magnetic symmetry operations of a

given magnetic crystal structure on the basis of equivalence

relationships between sites in the magnetic crystal structure.

In Section 4, we provide an algorithm to identify a magnetic

space-group type of the determined MSG and to search for a

transformation from the determined MSG to one in the BNS

setting. In Section 5, we provide an algorithm to symmetrize

point coordinates and magnetic moments of the magnetic

crystal structure from the determined MSG.

2. Definitions

Before we discuss algorithms for MSGs and magnetic crystal

structures, we describe definitions and terminology for MSGs.

In Section 2.1, we define MSGs and derived space groups,

which are essential in identifying a magnetic space-group type

and searching for a transformation between MSGs. In Section

2.2, we define equivalence relationships between MSGs. In

Section 2.3, we mention BNS symbols and their settings, which

specify representatives of MSGs, and we use them to stan-

dardize given MSGs. Finally, in Section 2.4, we give examples

of actions of magnetic symmetry operations for magnetic

moments.

2.1. MSG and its construct type

We consider a time-reversal operation 10 and call an index-

two group generated from 10 a time-reversal group

f1; 10g ðffi Z2Þ, where 1 represents an identity operation. Let

M be a subgroup of a direct product of three-dimensional

Euclidean group E(3) and f1; 10g. An element ðW;wÞ� ofM is

called a magnetic symmetry operation, where we call W a

matrix part, w a translation part and � 2 f1; 10g a time-reversal

part of the magnetic symmetry operation. In particular,

ðW;wÞ10 is called an antisymmetry operation. A translation

subgroup ofM is defined as

T ðMÞ ¼ ðE; tÞ j ðE; tÞ1 2 M
� �

; ð1Þ

where E represents the identity matrix. The subgroup M

is called a MSG when T ðMÞ is generated from three inde-

pendent translations. We write a magnetic point group ofM

as

PðMÞ ¼ W� j 9w 2 R3; ðW;wÞ� 2 M
� �

: ð2Þ

We consider two derived space groups from M. A family

space group (FSG) of M is a space group obtained by

ignoring time-reversal parts in magnetic symmetry operations:

FðMÞ ¼ ðW;wÞ j 9� 2 f1; 10g; ðW;wÞ� 2 M
� �

: ð3Þ

A maximal space subgroup (XSG) of M is a space group

obtained by removing antisymmetry operations:

DðMÞ ¼ ðW;wÞ j ðW;wÞ1 2 M
� �

: ð4Þ

The MSGs are classified into the following four construct

types (Bradley & Cracknell, 2009; Campbell et al., 2022):

(Type I) M¼ FðMÞ1 ¼ DðMÞ1: the MSG M does not

have antisymmetry operations.

(Type II) M¼ FðMÞ1 t FðMÞ10;FðMÞ ¼ DðMÞ: the

MSG M has antisymmetry operations and corresponding

ordinary symmetry operations.

(Type III) M¼ DðMÞ1 t ðFðMÞ\DðMÞÞ10 and DðMÞ

is an index-two translationengleiche subgroup of FðMÞ.

[The notation FðMÞ\DðMÞ indicates a complement set,

FðMÞ\DðMÞ = fg� 2 FðMÞ j g� =2DðMÞg.] Thus, translation

subgroups of FðMÞ and DðMÞ are identical.

(Type IV) M¼ DðMÞ1 t ðFðMÞ\DðMÞÞ10 and DðMÞ is

an index-two klassengleiche subgroup of FðMÞ. Thus, point

groups of FðMÞ and DðMÞ are identical.

For a type-III MSG example, Fig. 1(a) shows an anti-

ferromagnetic (AFM) rutile structure whose MSG is

Mrutile ¼ P402=mn0m (BNS No. 136.498) in the BNS symbol.

The FSG and XSG of Mrutile are P42=mnm (No. 136) and

Pnnm (No. 58), respectively.

For a type-IV MSG example, Fig. 1(b) shows an AFM

body-centered cubic (b.c.c.) structure whose MSG is

Mb:c:c: ¼ PIm3m (BNS No. 221.97) in the BNS symbol. The

FSG and XSG ofMb:c:c: are Im3m (No. 229) and Pm3m (No.

221), respectively.
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2.2. Magnetic space-group type

We consider a transformation ðP; pÞ between two coordi-

nate systems specified with basis vectors A ¼ ða1; a2; a3Þ with

origin O and basis vectors AP with origin OþAp. A trans-

formation ðP; pÞ with det P> 0 is called orientation-preser-

ving. We assume that a magnetic symmetry operation ðW;wÞ�
is transformed into ðW0;w0Þ�0 by ðP; pÞ as

ðW0;w0Þ ¼ ðP; pÞ�1
ðW;wÞðP; pÞ ð5Þ

�0 ¼ �: ð6Þ

We refer to the criteria to choose a representative of each

space-group type as a setting. The standard ITA setting is one

of the conventional descriptions for each space-group type

used in the International Tables for Crystallography, Vol. A

(Aroyo, 2016): unique axis b setting, cell choice 1 for mono-

clinic groups, hexagonal axes for rhombohedral groups and

origin choice 2 for centrosymmetric groups. Similarly to space

groups, each equivalent class of MSGs up to orientation-

preserving transformations is called a magnetic space-

group type.

2.3. BNS setting

The BNS symbol represents each magnetic space-group

type (Belov et al., 1957). We refer to a setting of the BNS

symbol as a BNS setting: for types-I, -II and -III MSGs, it uses

the same setting as the standard ITA setting of the FSG. For a

type-IV MSG, it uses that of the XSG. In Section 4, we

consider standardizing a given magnetic crystal structure by

applying a transformation to an MSG in the BNS setting.

2.4. Action of magnetic symmetry operations

In general, we can arbitrarily choose how magnetic

symmetry operations act on objects as long as they satisfy the

definition of actions. For a magnetic moment m, a symmetry

operation ðW;wÞ acts on m as an axial vector, and the time-

reversal operation 10 reverses the sign of m. When we choose

the Cartesian coordinates for m, the matrix part of ðW;wÞ is

expressed as AWA�1 in Cartesian coordinates with basis

vectors A ¼ ða1; a2; a3Þ. Therefore, the magnetic symmetry

operations act on m as

ðW;wÞ�m ¼
ðdet WÞAWA�1m ð� ¼ 1Þ

�ðdet WÞAWA�1m ð� ¼ 10Þ

�
: ð7Þ

3. Magnetic symmetry operation search

We provide a procedure to search for magnetic symmetry

operations from a given magnetic crystal structure repre-

sented by basis vectors, point coordinates, atomic types and

magnetic moments within a unit cell. Formally, our input for

the magnetic symmetry operation search is the following four

objects: (1) basis vectors of its lattice A ¼ ða1; a2; a3Þ, (2) an

array of point coordinates of sites in its unit cell

X ¼ ðx1; . . . ; xNÞ, (3) an array of atomic types of sites in its

unit cell T ¼ ðt1; . . . ; tNÞ, and (4) an array of magnetic

moments of sites in its unit cell M ¼ ðm1; . . . ;mNÞ, where N is

the number of sites in the unit cell.

We search for a magnetic symmetry operation

g� 2 Eð3Þ � f1; 10g that preserves the magnetic crystal struc-

ture ðA;X;T;MÞ. Therefore, the symmetry operation g should

map point coordinates xi into x�gðiÞ
up to translations, where �g

is a permutation of N sites induced by g. Also, g� should

equate a magnetic moment mi with a mapped one m�gðiÞ
. Such

a magnetic symmetry operation forms an MSG of the

magnetic crystal structure as a stabilizer of Eð3Þ � f1; 10g,

MðA;X;T;MÞ

¼ StabEð3Þ�f1;10g ðA;X;T;MÞ

¼ g� 2 Eð3Þ � f1; 10g

9�g 2 SN; 8i;

gxi � x�gðiÞ
ðmod 1Þ

ti ¼ t�gðiÞ
;

g�mi ¼ m�gðiÞ

����������

8>>>><
>>>>:

9>>>>=
>>>>;
; ð8Þ

where SN is a symmetric group of degree N. [We recall that

the condition ofMðA;X;T;MÞ in equation (8) can be read as

there exists a permutation �g such that point coordinates,

atomic types and magnetic moments are preserved for every

site i.]

Because the domain of the symmetry operation g in equa-

tion (8) is not restricted, we cannot search thoroughly for g at

this point. To narrow down the candidates for g, we consider a

crystal structure ðA;X;TÞ obtained by ignoring the magnetic

moments of ðA;X;T;MÞ. A space group of ðA;X;TÞ is

written as a stabilizer of Eð3Þ that preserves ðA;X;TÞ:

SðA;X;TÞ ¼ StabEð3Þ ðA;X;TÞ

¼ g 2 Eð3Þ

9�g 2 SN; 8i;

gxi � x�gðiÞ
ðmod 1Þ

ti ¼ t�gðiÞ

�������

8><
>:

9>=
>;: ð9Þ

As shown in Fig. 2, SðA;X;TÞ may not be a subgroup of

MðA;X;T;MÞ in general because the former ignores

magnetic moments. Because time-reversal operations do not
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Figure 1
Examples of antiferromagnetic (AFM) crystal structures with (a) type-III
and (b) type-IV MSGs. The red arrows represent collinear spins with the
same magnitudes.



change point coordinates and atomic types, we can restrict the

domain of symmetry operations g to SðA;X;TÞ,

MðA;X;T;MÞ

¼ g� 2 SðA;X;TÞ � f1; 10g

9�g 2 SN; 8i;

gxi � x�gðiÞ
ðmod 1Þ

ti ¼ t�gðiÞ
;

g�mi ¼ m�gðiÞ

����������

8>>>><
>>>>:

9>>>>=
>>>>;
:

ð10Þ

The symmetry operations for ðA;X;TÞ can be obtained from

existing crystal symmetry search algorithms such as those of

Stokes & Hatch (2005), Togo & Tanaka (2018) and Hicks et al.

(2018).

Based on the formulation of the MSG in equation (10), we

can search for magnetic symmetry operations using the

following procedure:

(i) We compute SðA;X;TÞ by the existing crystal symmetry

search algorithms.

(ii) If all magnetic moments are zero, both g1 and g10 belong

to MðA;X;T;MÞ for all g 2 SðA;X;TÞ and we skip the

remaining steps (in this case, the MSG is type II). Otherwise,

we choose a site i� with a non-zero magnetic moment mi� ð6¼ 0Þ.

(iii) For each symmetry operation g 2 SðA;X;TÞ, we

search for the time-reversal part as follows:

(a) We compute a permutation �g and solve

g�mi� ¼ m�gði
�Þ ð11Þ

for � 2 f1; 10g. We denote the solution of equation (11) as �� if

it exists. If the solution does not exist, we skip the symmetry

operation g.

(b) We check if the condition g��mi ¼ m�gðiÞ
holds for

other sites. If the condition holds for all sites, g�� belongs to

MðA;X;T;MÞ.

Note that the comparison of point coordinates and

magnetic moments should be performed within tolerances in

practice (Grosse-Kunstleve et al., 2004). We use an absolute

tolerance parameter � for point coordinates (Togo & Tanaka,

2018) and another absolute tolerance �mag for magnetic

moments. Then, the comparisons in this section are replaced

with the following inequalities:

gxi � x�gðiÞ
ðmod 1Þ !

���A gxi � x�gðiÞ

h i
mod 1

���
2
<� ð12Þ

g�mi ¼ m�gðiÞ
!

���g�mi �m�gðiÞ

���
2
<�mag: ð13Þ

Here, �½ 	mod 1 takes a remainder with modulo one in the range

½�0:5; 0:5	.

4. Identification of magnetic space-group type and
transformation to BNS setting

For the detected MSG M¼MðA;X;T;MÞ in the previous

section, we provide an algorithm to identify its magnetic

space-group type and search for a transformation fromM to a

magnetic space-group representative MBNS in the BNS

setting. The algorithms presented in this section are applied to

a list of magnetic symmetry operations in the matrix form

either obtained through the magnetic symmetry operation

search in Section 3 or provided from outside the software

package as predetermined operations.

For all the 1651 magnetic space-group types, a magnetic

space-group representative MBNS in the BNS setting has

already been tabulated (González-Platas et al., 2021; Campbell

et al., 2022). Thus, we search forMBNS with the same magnetic

space-group type as M and an orientation-preserving trans-

formation ðP; pÞ while satisfying

ðP; pÞ�1
MðP; pÞ ¼ MBNS: ð14Þ

In Section 4.1, we identify a construct type ofM to choose a

candidate MBNS, which is one of the magnetic space-group

representatives in the BNS setting. In Section 4.2, we try to

obtain ðP; pÞ from affine normalizers of FðMBNSÞ or

DðMBNSÞ.

4.1. Identification of construct type of MSG

The construct type ofM can be determined from orders of

the magnetic point group and point groups of FSG and XSG.

We write a point group of space group S as

PðSÞ ¼ W j 9w 2 R3; ðW;wÞ 2 S
� �

: ð15Þ

When jPðFðMÞÞj=jPðDðMÞÞj ¼ 1, M is type I or II. Then,

when jPðMÞj=jPðFðMÞÞj ¼ 1, M is type I. When

jPðMÞj=jPðFðMÞÞj ¼ 2,M is type II.

When jPðFðMÞÞj=jPðDðMÞÞj ¼ 2,M is type III or IV. For

a type-III or type-IV MSG, we consider a coset decomposition

ofM by DðMÞ:

M¼ DðMÞ1 t DðMÞðW0;w0Þ1
0: ð16Þ

If the coset representative ðW0;w0Þ1
0 can be taken as an anti-

translation, DðMÞ is a klassengleiche subgroup of FðMÞ and

M is type IV. If not, DðMÞ is a translationengleiche subgroup

of FðMÞ andM is type III.
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Figure 2
Group–subgroup relationship of MSGs and related space groups. The
nodes represent space groups or MSGs. Each edge indicates that a lower
group is a subgroup of an upper group in the diagram. Although it is not
exploited in this study, the XSG DðMðA;X;T;MÞÞ is a subgroup of the
FSG FðMðA;X;T;MÞÞ because the latter simply ignores time-reversal
parts ofMðA;X;T;MÞ.



4.2. Transformation of MSG to BNS setting

For each magnetic space-group representative MBNS with

the same construct type as M, we consider searching for

ðP; pÞ from two consecutive transformations ðPtemp; ptempÞ and

ðPcorr; pcorrÞ with

ðP; pÞ ¼ ðPtemp; ptempÞðPcorr; pcorrÞ; ð17Þ

as described below. If such a transformation ðP; pÞ is found,M

belongs to the same magnetic space-group type asMBNS.

We rewrite equation (14) to an equivalent one in terms of

derived space groups because we would like to use an existing

transformation search algorithm to obtain a transformation

between space groups with the same space-group type

proposed by Grosse-Kunstleve (1999). As shown in Appendix

A, the condition of equation (14) is equivalent to satisfying the

following two conditions:

ðP; pÞ�1
FðMÞðP; pÞ ¼ FðMBNSÞ ð18aÞ

ðP; pÞ�1
DðMÞðP; pÞ ¼ DðMBNSÞ: ð18bÞ

Note that a transformation satisfying equation (18a) does not

necessarily satisfy equation (18b) in general, and vice versa.

The present algorithm, based on the new conditions, is

outlined as follows. First, we obtain a temporal transformation

ðPtemp; ptempÞ to match FSGs or XSGs ofM andMBNS by the

existing transformation search algorithm. Then, we search for

a correction transformation ðPcorr; pcorrÞ to match FSGs and

XSGs simultaneously.

We divide the transformation search into cases by the

construct type ofM in more detail.

4.2.1. When M is type I or II. When M is type I or II,

MBNS with the same construct type as M uses the standard

ITA setting of FðMBNSÞ. Thus, we need to obtain an

orientation-preserving transformation ðPtemp; ptempÞ such that

ðPtemp; ptempÞ
�1
FðMÞðPtemp; ptempÞ ¼ FðMBNSÞ. The temporal

transformation ðPtemp; ptempÞ can be obtained by the existing

transformation search algorithm. We write an MSG trans-

formed by ðPtemp; ptempÞ as

Mtemp ¼ ðPtemp; ptempÞ
�1
MðPtemp; ptempÞ: ð19Þ

By construction, FðMtempÞ and FðMBNSÞ are identical as sets,

FðMtempÞ ¼ FðMBNSÞ.

In this case, the XSGs are also identical to one another,

DðMtempÞ = FðMtempÞ = FðMBNSÞ = DðMBNSÞ. Thus, we do

not need to search for a correction transformation because

ðPtemp; ptempÞ also satisfies ðPtemp; ptempÞ
�1
DðMÞPtemp; ptempÞ =

DðMBNSÞ.

4.2.2. WhenM is type III. WhenM is type III,MBNS with

type III uses the standard ITA setting of FðMBNSÞ. Thus, we

need to obtain an orientation-preserving transformation

ðPtemp; ptempÞ such that ðPtemp; ptempÞ
�1
FðMÞðPtemp; ptempÞ =

FðMBNSÞ. Then, the FSG of the transformed MSG in equa-

tion (19), FðMtempÞ, is the space-group representative in the

standard ITA setting.

A correction transformation ðPcorr; pcorrÞ should satisfy the

following conditions to simultaneously satisfy equations (18a)

and (18b),

ðPcorr; pcorrÞ
�1
FðMBNSÞðPcorr; pcorrÞ ¼ FðMBNSÞ ð20aÞ

ðPcorr; pcorrÞ
�1
DðMtempÞðPcorr; pcorrÞ ¼ DðMBNSÞ: ð20bÞ

The condition of equation (20a) indicates that ðPcorr; pcorrÞ

belongs to an affine normalizer of FðMBNSÞ (Koch et al.,

2016). The situation is shown in Fig. 3(a), where we write the

affine normalizer of a space group S as

N Að3ÞðSÞ ¼ ðQ; qÞ 2 Að3Þ
�� ðQ; qÞ�1

SðQ; qÞ ¼ S
� �

ð21Þ

and the three-dimensional affine group as Að3Þ. If a correction

transformation ðPcorr; pcorrÞ 2 N Að3ÞðF ðMBNSÞÞ satisfies equa-

tion (20b), the combined transformation in equation (17)

transformsM toMBNS.

Finally, we describe how to prepare transformations in the

affine normalizer N Að3ÞðF ðMBNSÞÞ in practice. Because

DðMBNSÞ is a normal subgroup of FðMBNSÞ, an operation in

FðMBNSÞ does not give another conjugated subgroup of

DðMBNSÞ. Also, although the affine normalizer may

have continuous translations, the continuous translations do

not give another conjugated subgroup of DðMBNSÞ. Thus,

it is sufficient to consider coset representatives of

N Að3ÞðF ðMBNSÞÞ=FðMBNSÞ other than continuous transla-

tions. We divide the affine normalizer computation into cases

according to whether the number of coset representatives

other than continuous translations is finite or not.

When FðMBNSÞ is triclinic or monoclinic, the number of

coset representatives other than continuous translations is

infinite and we cannot check transformations thoroughly.

However, there are no such conjugate space groups with

DðMtempÞ 6¼ DðMBNSÞ because PðFðMBNSÞÞ does not have a

pair of proper conjugate subgroups in its affine normalizer.

Therefore, we do not need to compute the affine normalizer in

this case.

When FðMBNSÞ belongs to other crystal systems, the

number of coset representatives other than continuous

translations is finite. To simplify the present algorithm and

implementation, instead of using a list of affine normalizers as

given by Koch et al. (2016), we enumerate matrix parts and

origin shifts of orientation-preserving transformations in the

coset representatives other than continuous translations as

394 Kohei Shinohara et al. � Algorithms for deriving MSG information Acta Cryst. (2023). A79, 390–398
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follows. For matrix parts, we enumerate integer matrices Pcorr

whose elements are �1, 0 or 1, and their determinants are

equal to one. For origin shifts, we enumerate vectors pcorr by

restricting their vector components to one of f0; 1
4 ;

1
3 ;

1
2 ;

2
3 ;

3
4g.

These will be sufficient because they cover all orientation-

preserving coset representatives of N Að3ÞðF ðMBNSÞÞ=
FðMBNSÞ up to translations (Koch et al., 2016). Since

ðPcorr; pcorrÞ can be tabulated for each space-group repre-

sentative in the standard ITA setting, we can precompute

them before performing the transformation search in practice.

4.2.3. WhenM is type IV. WhenM is type IV,MBNS with

type IV uses the standard ITA setting of DðMBNSÞ. Thus, we

need to obtain an orientation-preserving transformation

ðPtemp; ptempÞ such that ðPtemp; ptempÞ
�1
DðMÞðPtemp; ptempÞ =

DðMBNSÞ. Then, the XSG of the transformed MSG in equa-

tion (19), DðMtempÞ, is the space-group representative in the

standard ITA setting.

Similarly to type-III MSGs, we need to search for

an orientation-preserving transformation ðPcorr; pcorrÞ 2

N Að3ÞðDðMBNSÞÞ such that

ðPcorr; pcorrÞ
�1
FðMtempÞðPcorr; pcorrÞ ¼ FðMBNSÞ: ð22Þ

The situation is shown in Fig. 3(b). [The FSG FðMBNSÞ is a

subgroup of N Að3ÞðDðMBNSÞÞ: because DðMBNSÞ is a normal

subgroup of FðMBNSÞ, every operation in FðMBNSÞ stabilizes

DðMBNSÞ and belongs to N Að3ÞðDðMBNSÞÞ. Similarly,

FðMtempÞ is a subgroup of N Að3ÞðDðMBNSÞÞ.]

When DðMBNSÞ is neither triclinic nor monoclinic, the

brute-force tabulation in Section 4.2.2 also works for

N Að3ÞðDðMBNSÞÞ. For triclinic and monoclinic cases, a factor

group N Að3ÞðDðMBNSÞÞ=DðMBNSÞ is not finite, and we cannot

prove the completeness in the same manner. Thus, we show

that the enumerated ðPcorr; pcorrÞ covers all conjugated type-IV

MSGs by explicitly listing ðPcorr; pcorrÞ and the conjugated

MSGs in Appendix B.

4.2.4. Examples of conjugated MSGs. We present examples

of conjugated MSGs for type III and type IV. For a type-III

MSG example, consider coset representatives of MBNS for

P220201 in the BNS setting (BNS No. 17.10) as follows:

x; y; z; 1; x;�y;�z; 1;

� x;�y; zþ 1=2; 10;�x; y;�zþ 1=2; 10:

There is another MSGMtemp with the same magnetic space-

group type asMBNS and identical FSG toMBNS:

x; y; z; 1;�x; y;�zþ 1=2; 1;

� x;�y; zþ 1=2; 10; x;�y;�z; 10:

Although DðMBNSÞ and DðMtempÞ belong to the same space-

group type (No. 3), these XSGs are different. The following

transformation mapsMtemp toMBNS while satisfying equation

(20b):

ðPcorr; pcorrÞ ¼

0 �1 0

�1 0 0

0 0 �1

0
@

1
A;

0

0
1
4

0
@

1
A

0
@

1
A:

For a type-IV MSG example, consider coset representatives

ofMBNS for Ccc in the BNS setting (BNS No. 9.40) as follows:

x; y; z; 1; x;�y; zþ 1=2; 1;

xþ 1=2; yþ 1=2; z; 1; xþ 1=2;�yþ 1=2; zþ 1=2; 1;

xþ 1=2;�yþ 1=2; z; 10; x;�y; z; 10;

x; y; zþ 1=2; 10; xþ 1=2; yþ 1=2; zþ 1=2; 10:

There is another MSGMtemp with the same magnetic space-

group type asMBNS and identical XSG toMBNS:

x; y; z; 1; xþ 1=2;�yþ 1=2; zþ 1=2; 1;

xþ 1=2; yþ 1=2; z; 1; x;�y; zþ 1=2; 1;

xþ 1=2;�y; z; 10; x;�yþ 1=2; z; 10;

xþ 1=2; y; zþ 1=2; 10; x; yþ 1=2; zþ 1=2; 10:

Although FðMBNSÞ and FðMtempÞ belong to the same space-

group type (No. 8), these FSGs are different. The following

transformation mapsMtemp toMBNS while satisfying equation

(22):

ðPcorr; pcorrÞ ¼

�1 0 �1

0 �1 0

0 0 1

0
@

1
A;

0
1
4

0

0
@

1
A

0
@

1
A:

5. Symmetrization of magnetic crystal structure

We symmetrize the magnetic crystal structure ðA;X;T;MÞ by

magnetic symmetry operations of the determined MSG

MðA;X;T;MÞ. For convenience, we consider its coset

decomposition with a finite index as follows. Let T A be a

translation group formed by basis vectors A, which may not be

primitive basis vectors. We write a coset decomposition of

MðA;X;T;MÞ by T A as

MðA;X;T;MÞ ¼
G
�

ðW�;w�Þ��T A: ð23Þ

We write the set of coset representatives as

M¼ fðW�;w�Þ��g�: ð24Þ

A centering operation ðE;wÞ1, where w 6� 0 ðmod 1Þ, may

belong toM.

A procedure to symmetrize the array of point coordinates

X by M is essentially the same as those used by Grosse-

Kunstleve & Adams (2002) and Togo & Tanaka (2018). For

the �th magnetic symmetry operation ðW�;w�Þ��, we denote

that its inverse maps the ��1
� ðiÞth point coordinates to the ith

point coordinates. Then, ðW�;w�Þx��1
� ðiÞ

should be close to xi up

to lattice translations in T A. With this observation, each of the

point coordinates xi can be symmetrized to ~xxi by a projection

operator:

~xxi ¼ xi þ
1

jMj

X
�

ðW�;w�Þx��1
� ðiÞ
� xi

h i
mod 1

: ð25Þ
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The modulo is required because the original and mapped

point coordinates in the unit cell may be displaced by lattice

translations.

A procedure to symmetrize the array of magnetic moments

M is similar to that to symmetrize the array of point coordi-

nates. Each magnetic moment mi can be symmetrized to ~mmi by

the following projection operator:

~mmi ¼
1

jMj

X
�

ðW�;w�Þ��m��1
� ðiÞ
: ð26Þ

6. Conclusion

We have presented the algorithms for determining magnetic

symmetry operations for a given magnetic crystal structure,

identifying a magnetic space-group type for a given MSG,

searching for a transformation to the BNS setting, and

symmetrizing the magnetic crystal structure on the basis of the

determined MSG. Matrix and translation parts of magnetic

symmetry operations are determined from the crystal struc-

ture by ignoring magnetic moments. A transformation

between the determined MSG and a BNS-setting MSG is

obtained by considering affine normalizers: that of the FSG

for type-III MSGs and that of the XSG for type-IV MSGs. In

particular, we provide exhaustive tables of conjugated MSGs

with triclinic or monoclinic type-IV MSGs in the BNS setting

and corresponding transformations. Projection operators of

the determined MSG symmetrize point coordinates and

magnetic moments of the magnetic crystal structure. These

algorithms are designed comprehensively and implemented in

spglib under the BSD 3-clause license. The present algorithms

and their implementations are expected to contribute to

computational crystallography and materials science,

including high-throughput first-principles calculations and

crystal structure predictions.

APPENDIX A
The condition that two MSGs are identical

For two MSGs M1 and M2, we write the FSG and XSG of

Mi ði ¼ 1; 2Þ as F i and Di, respectively. When M1 and M2

have the same construct types, they are identical if and only if

their FSGs and XSGs are also identical, that is, F 1 ¼ F 2 and

D1 ¼ D2. Although it is trivial, we give proof of this fact for

completeness.

WhenM1 andM2 are identical, their FSGs and XSGs are

also identical by definition. We check the converse for each

construct type. For type-I MSGs, M1 = F 11 = F 21 = M2.

For type-II MSGs, M1 = F 11 t F 110 = F 21 t F 210 = M2.

For type-III or type-IV MSGs, M1 = D11 t ðF 1\D1Þ1
0 =

D21 t ðF 2\D2Þ1
0 =M2. Thus, if FSGs and XSGs are identical,

the two MSGs are also identical.

APPENDIX B
Correction transformations for triclinic or monoclinic
type-IV MSGs

We give all anti-translations in conjugated MSGs and corre-

sponding transformations ðP; pÞ for a type-IV MSGMBNS in

the BNS setting, where DðMBNSÞ is triclinic or monoclinic.

Because an anti-translation ðE;wÞ10 in a type-IV MSG is

index-two up to translations, it is sufficient to consider the

following seven anti-translations:

10a ¼ E;
1

2
; 0; 0

� �� �
10 ð27Þ

10b ¼ E; 0;
1

2
; 0

� �� �
10 ð28Þ

10c ¼ E; 0; 0;
1

2

� �� �
10 ð29Þ

10bc ¼ E; 0;
1

2
;

1

2

� �� �
10 ð30Þ

10ac ¼ E;
1

2
; 0;

1

2

� �� �
10 ð31Þ

10ab ¼ E;
1

2
;

1

2
; 0

� �� �
10 ð32Þ

10abc ¼ E;
1

2
;

1

2
;

1

2

� �� �
10: ð33Þ
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Table 1
Transformations between type-IV MSG MBNS and conjugated MSGs,
where their XSGs are identical to space groups with type Nos. 1 and 2 in
the ITA standard setting.

BNS No. Transformation ðP; pÞ
Anti-translations in
ðP; pÞ�1

MBNSðP; pÞ

1.3, 2.7 ða; b; c; 0; 0; 0Þ 10c
ð�c; aþ bþ c; aþ c; 0; 0; 0Þ 10a
ðaþ bþ c; c; aþ c; 0; 0; 0Þ 10b
ðaþ bþ c;�a; aþ c; 0; 0; 0Þ 10bc

ðaþ b;�a� c; aþ bþ c; 0; 0; 0Þ 10ac

ðaþ bþ c; aþ b;�a� c; 0; 0; 0Þ 10ab

ðaþ bþ c; aþ c;�b� c; 0; 0; 0Þ 10abc

Table 2
Transformations between type-IV MSG MBNS and conjugated MSGs,
where their XSGs are identical to space groups with type Nos. 3, 4, 6, 10
and 11 in the ITA standard setting.

BNS No. Transformation ðP; pÞ
Anti-translations in
ðP; pÞ�1

MBNSðP; pÞ

3.4, 4.10, 6.21, 10.47, 11.55 ða; b; c; 0; 0; 0Þ 10a
ðaþ c; b;�a; 0; 0; 0Þ 10c
ðaþ c; b; c; 0; 0; 0Þ 10ac

3.5, 4.11, 6.22, 10.48, 11.56 ða; b; c; 0; 0; 0Þ 10b
3.6, 4.12, 6.23, 10.49, 11.57 ða; b; c; 0; 0; 0Þ 10ab

ðaþ c; b;�a; 0; 0; 0Þ 10bc

ðaþ c; b; c; 0; 0; 0Þ 10abc



When DðMBNSÞ is a triclinic or monoclinic P-centering

space group (Nos. 1, 2, 3, 4, 6, 7, 10, 11, 13 and 14), Tables

1, 2 and 4 show transformations forMBNS, which are obtained

by the brute force described in Section 4.2.2, and anti-

translations in the transformed MSGs. Because each table

contains the seven anti-translations, we confirm that these

transformations are sufficient to search for conjugated type-IV

MSGs.

For other cases,DðMBNSÞ is a monoclinic C-centering space

group (Nos. 5, 8, 9, 12 and 15). Tables 3, 5 and 6 show trans-

formations forMBNS and anti-translations in the transformed

MSGs. Note that the anti-translation 10ab should not be

contained in the conjugated MSGs becauseMBNS is not type

II and DðMBNSÞ is C-centering. Then, each table contains the

six anti-translations other than 10ab. Thus, we also confirm that

these transformations are sufficient.
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Table 4
Transformations between type-IV MSG MBNS and conjugated MSGs,
where their XSGs are identical to space groups with type Nos. 7, 13 and 14
in the ITA standard setting.

Note that BNS Nos. 7.30 and 7.31 are not listed in ascending order.

BNS No. Transformation ðP; pÞ
Anti-translations in
ðP; pÞ�1

MBNSðP; pÞ

7.27, 13.70, 14.80 ða; b; c; 0; 0; 0Þ 10a
ðaþ c; b; c; 0; 0; 0Þ 10ac

7.28, 13.71, 14.81 ða; b; c; 0; 0; 0Þ 10b
7.29, 13.72, 14.82 ða; b; c; 0; 0; 0Þ 10c
7.31, 13.73, 14.83 ða; b; c; 0; 0; 0Þ 10bc

7.30, 13.74, 14.84 ða; b; c; 0; 0; 0Þ 10ab

ðaþ c; b; c; 0; 0; 0Þ 10abc

Table 3
Transformations between type-IV MSG MBNS and conjugated MSGs,
where their XSGs are identical to space groups with type Nos. 5, 8 and 12
in the ITA standard setting.

BNS No. Transformation ðP; pÞ
Anti-translations in
ðP; pÞ�1

MBNSðP; pÞ

5.16, 8.35, 12.63 ða; b; c; 0; 0; 0Þ 10c, 10abc

ða; b;�aþ c; 0; 0; 0Þ 10ac, 10bc

5.17, 8.36, 12.64 ða; b; c; 0; 0; 0Þ 10a, 10b

Table 6
Transformations between type-IV MSG MBNS and conjugated MSGs,
where their XSGs are identical to a space group with type No. 15 in the
ITA standard setting.

BNS No. Transformation ðP; pÞ
Anti-translations in
ðP; pÞ�1

MBNSðP; pÞ

15.90 ða; b; c; 0; 0; 0Þ 10c, 10abc

a; b;�aþ c; 1
4 ;

1
4 ; 0

	 

10ac, 10bc

15.91 ða; b; c; 0; 0; 0Þ 10a, 10b

Table 5
Transformations between type-IV MSG MBNS and conjugated MSGs,
where their XSGs are identical to a space group with type No. 9 in the
ITA standard setting.

BNS No. Transformation ðP; pÞ
Anti-translations in
ðP; pÞ�1

MBNSðP; pÞ

9.40 ða; b; c; 0; 0; 0Þ 10c, 10abc

a; b;�aþ c; 0; 1
4 ; 0

	 

10ac, 10bc

9.41 ða; b; c; 0; 0; 0Þ 10a, 10b
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