short communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733

A note on the wedge reversion antisymmetry operation and 51 types of physical qu­antities in arbitrary dimensions

crossmark logo

aInstitute of Crystallography, RWTH Aachen University, Jägerstraße 17–19, D-52066 Aachen, Germany, bJülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, D-85747 Garching, Germany, and cFaculty of Physics, University of Warsaw, Pasteura 5, PL 02-093 Warsaw, Poland
*Correspondence e-mail: piotr.fabrykiewicz@frm2.tum.de

Edited by S. J. L. Billinge, Columbia University, USA (Received 6 February 2023; accepted 11 April 2023; online 5 June 2023)

The paper by Gopalan [(2020). Acta Cryst. A76, 318–327] presented an enumeration of the 41 physical quantity types in non-relativistic physics, in arbitrary dimensions, based on the formalism of Clifford algebra. Gopalan considered three antisymmetries: spatial inversion, 1, time reversal, 1′, and wedge reversion, 1. A consideration of the set of all seven antisymmetries (1, 1′, 1, 1′, 1, 1′, 1) leads to an extension of the results obtained by Gopalan. It is shown that there are 51 types of physical quantities with distinct symmetry properties in total.

The paper by Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]) presented an enumeration of the 41 types of physical quantities in non-relativistic physics in arbitrary dimensions within the formalism of Clifford algebra (Lounesto, 2009[Lounesto, P. (2009). Clifford Algebras and Spinors, 2nd ed. Cambridge University Press.]). This classification is based on three antisymmetries: spatial inversion, [{\overline 1}], time reversal, [1^{\prime}], and wedge reversion, [1^{\dagger}]. [Note that, in Clifford algebra, spatial inversion [{\overline 1}] is termed (main) grade involution (Lounesto, 2009[Lounesto, P. (2009). Clifford Algebras and Spinors, 2nd ed. Cambridge University Press.]).] The 41 types of multivectors representing physical quantities were derived and presented in Table 1 of Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]). Gopalan's classification is an extension of the classification of three-dimensional vector-like physical quantities (Hlinka, 2014[Hlinka, J. (2014). Phys. Rev. Lett. 113, 165502.]) to arbitrary dimensions.

The transformation of the physical properties represented by the principal multivectors S′, S, V′, V, B′, B, T′, T, or their combinations, under the antisymmetries [{\overline 1}], [1^{\prime}], [1^{\dagger}] were considered by Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]). S, V, B and T denote scalar, vector, bivector and trivector, respectively. The prime symbol ′ means invariance to time reversal, [1^{\prime}]. There are three different outcomes of the operation, even (e), odd (o) or mixed (m). Mixed means that it is neither even nor odd, as explained in the short example in Table 1[link].

Table 1
An example of the action of [{\overline 1}], [1^{\prime}] and 1′ antisymmetries on several multivectors

The action of antisymmetries [{\overline 1}] and [1^{\prime}] on S+V′ and S+V′+V gives mixed results, while the action of the product antisymmetry 1′ can be odd or mixed.

  [{\overline 1}] [1^{\prime}] 1
S +
Even Odd Odd
       
V′ +
Odd Even Odd
       
V +
Odd Odd Even
       
S+V′ +− −+ −−
Mixed Mixed Odd
       
S+V′+V +−− −+− −−+
Mixed Mixed Mixed

These outcomes for all physical properties are shown for each multivector type in Table 1 of Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]) in columns titled `Action of [{\overline 1}], [1^{\prime}], [1^{\dagger}]'. The actions of the remaining antisymmetries 1′, [{\overline 1}^{\dagger}], [1^{\prime \dagger}] and 1 were not given in Table 1 of Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]). [In Clifford algebra, the product of spatial inversion and wedge reversion, [{\overline 1}^{\dagger}], is termed Clifford conjugation (Lounesto, 2009[Lounesto, P. (2009). Clifford Algebras and Spinors, 2nd ed. Cambridge University Press.]).] The consideration of all seven operations leads to new results, which are given here.

When a physical quantity is represented by a sum of two or more different principal multivector types then the action of at least four antisymmetries on this quantity gives mixed results. The analysis of the action of only three antisymmetries by Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]) does not provide a unique solution.

Let I1 and I2 be two different antisymmetries (any out of the seven). If the action of both I1 and I2 on some multivector is mixed then the action of I1 · I2 on this multivector can be even, odd or mixed. Specifying the action of only three antisymmetries (especially [{\overline 1}], [1^{\prime}] and [1^{\dagger}]) on a multivector, as was considered by Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]), is not sufficient to obtain the result of the action of the remaining four antisymmetries; see a simplified example with three antisymmetries in Table 1[link]. This has led to a clustering of different multivector types into one type in Table 1 of Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]): the types numbered 16, 19, 22, 25, 28 and 31 should be separated into two types each and type 38 into five types. This gives in total ten new multivector types which were not given by Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]), as shown in Table 2[link] for all seven antisymmetries. New labels for the X, Y, Z multivectors are proposed in Table 2[link] in a coherent notation, which uses four out of the eight principal multivectors. An extended version of Table 2[link] with grades and examples of multivectors is given in Table 3[link], which is the final table for these new results, with all 51 multivector types describing the action of all seven antisymmetries, given in the same layout as Table 1 of Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]).

Table 2
Splitting of multivector types, with the left-hand side displaying the number, stabilizer subgroup, label and action of [{\overline 1}], [1^{\prime}] and [1^{\dagger}] antisymmetries as given by Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.]), and the right-hand side displaying the number, stabilizer subgroup, label and action of all antisymmetries as presented in this work

Considering the action of all antisymetries leads to splitting of multivector types. The last three rows describe the new labels of the X, Y and Z multivector types, without splitting. An extended version of this table with grades and examples of multivectors is available in the supporting information.

Work of Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.])   This paper
      Action of         Action of
No. SS Label [{\overline 1}] [1^{\prime}] [1^{\dagger}]   No. SS Label [{\overline 1}] [1^{\prime}] [1^{\dagger}] [1^{\prime \dagger}] 1 [{\overline 1}^{\dagger}] 1
16 [{\overline 1}] SB′(S′, B) e m m [\Big \{] 16a [{\overline 1}] SB′ e m m o m m o
16b S′SB′B e m m m m m m
                                 
19 [1^{\prime}] V′B′(S′, T′) m e m [\Big \{] 19a [1^{\prime}] V′B′ m e m m m o o
19b S′V′B′T′ m e m m m m m
                                 
22 [1^{\dagger}] SV′(S′, V) m m e [\Big \{] 22a [1^{\dagger}] SV′ m m e m o m o
22b S′SV′V m m e m m m m
                                 
25 [1^{\prime \dagger}] V′B(S′, T) m m m [\Big \{] 25a [1^{\prime \dagger}] V′B m m m e o o m
25b S′V′BT m m m e m m m
                                 
28 1 VB′(S′, T) m m m [\Big \{] 28a 1 VB′ m m m o e o m
28b S′VB′T m m m m e m m
                                 
31 [{\overline 1}^{\dagger}] ST′(S′, T) m m m [\Big \{] 31a [{\overline 1}^{\dagger}] ST′ m m m o o e m
31b S′ST′T m m m m m e m
                                 
38 1 W m m m [\Bigg \{] 38a 1 SVB′T′ m m m o m m m
38b SV′BT′ m m m m o m m
38c V′VB′B m m m m m o m
38d SV′B′T m m m m m m o
38e S′SV′VB′BT′T m m m m m m m
                                 
39 1 X m m o 39 1 B′BT′T m m o m m m m
                                 
40 1 Y m o m 40 1 SVBT m o m m m m m
                                 
41 1 Z o m m 41 1 V′VT′T o m m m m m m

Table 3
Classification of extended multivector types for physical properties using the same notation as in Table 1 of Gopalan (2020[Gopalan, V. (2020). Acta Cryst. A76, 318-327.])

The actions of all seven generalized inversions and grades are given explicitly. Entries in bold in columns 1 and 2 are the eight principal multivector types. Note that the last column contains sums (not products) of principal multivectors, but the `+' signs are omitted.

        Action of    
New No. Old No. SS Label [{\overline 1}] [1^{\prime}] [1^{\dagger}] [1^{\prime \dagger}] 1 [{\overline 1}^{\dagger}] 1 Grades Multivectors (omitting `+' signs)
1 1 [{\overline 1} 1^{\prime} 1^{\dagger}] S′ e e e e e e e 4g S′
                         
2 2 [1^{\prime} 1^{\dagger}] V′ o e e e o o o 4g+1 V′
3 3 S′V′ m e e e m m m 4g, 4g′+1 S′V′
                         
4 4 [{\overline 1} 1^{\prime}] B′ e e o o e o o 4g+2 B′
5 5 S′B′ e e m m e m m 4g, 4g′+2 S′B′
                         
6 6 [{\overline 1}^{\dagger} 1^{\prime}] T′ o e o o o e e 4g+3 T′
7 7 S′T′ m e m m m e e 4g, 4g′+3 S′T′
                         
8 8 [{\overline 1} 1^{\dagger}] S e o e o o e o 4g S
9 9 S′S e m e m m e m 4g, 4g S′S
                         
10 10 1[1^{\dagger}] V o o e o e o e 4g+1 V
11 11 S′V m m e m e m e 4g, 4g′+1 S′V
                         
12 12 [{\overline 1} 1^{\prime\dagger}] B e o o e o o e 4g+2 B
13 13 S′B e m m e m m e 4g, 4g′+2 S′B
                         
14 14 [{\overline 1}^{\dagger} 1^{\prime \dagger}] T o o o e e e o 4g+3 T
15 15 S′T m m m e e e m 4g, 4g′+3 S′T
                         
16 16a [{\overline 1}] SB′ e m m o m m o 4g, 4g′+2 SB′
17 17 SB e o m m o m m 4g, 4g′+2 SB
18 18 B′B e m o m m o m 4g+2, 4g′+2 B′B
19 16b S′SB′B e m m m m m m Three or four out of: 4g, 4g′, 4g′′+2, 4g′′′+2 SB′B, S′B′B, S′SB, S′SB′, S′SB′B
                         
20 19a [1^{\prime}] V′B′ m e m m m o o 4g+1, 4g′+2 V′B′
21 20 V′T′ o e m m o m m 4g+1, 4g′+3 V′T′
22 21 B′T′ m e o o m m m 4g+2, 4g′+3 B′T′
23 19b S′V′B′T′ m e m m m m m Three or four out of: 4g, 4g′+1, 4g′′+2, 4g′′′+3 V′B′T′, S′B′T′, S′V′T′, S′V′B′, S′V′B′T′
                         
24 22a [1^{\dagger}] SV′ m m e m o m o 4g, 4g′+1 SV′
25 23 V′V o m e m m o m 4g+1, 4g′+1 V′V
26 24 SV m o e o m m m 4g, 4g′+1 SV
27 22b S′SV′V m m e m m m m Three or four out of: 4g, 4g′, 4g′′+1, 4g′′′+1 SV′V, S′V′V, S′SV, S′SV′, S′SV′V
                         
28 25a [1^{\prime \dagger}] V′B m m m e o o m 4g+1, 4g′+2 V′B
29 26 BT m o o e m m m 4g+2, 4g′+3 BT
30 27 V′T o m m e m m o 4g+1, 4g′+3 V′T
31 25b S′V′BT m m m e m m m Three or four out of: 4g, 4g′+1, 4g′′+2, 4g′′′+3 V′BT, S′BT, S′V′T, S′V′B, S′V′BT
                         
32 28a 1 VB′ m m m o e o m 4g+1, 4g′+2 VB′
33 29 VT o o m m e m m 4g+1, 4g′+3 VT
34 30 B′T m m o m e m o 4g+2, 4g′+3 B′T
35 28b S′VB′T m m m m e m m Three or four out of: 4g, 4g′+1, 4g′′+2, 4g′′′+3 VB′T, S′B′T, S′VT, S′VB′, S′VB′T
                         
36 31a [{\overline 1}^{\dagger}] ST′ m m m o o e m 4g, 4g′+3 ST′
37 32 T′T o m o m m e m 4g+3, 4g′+3 T′T
38 33 ST m o m m m e o 4g, 4g′+3 ST
39 31b S′ST′T m m m m m e m Three or four out of: 4g, 4g′, 4g′′+3, 4g′′′+3 ST′T, S′T′T, S′ST, S′ST′, S′ST′T
                         
40 34 1 VB m o m m m o e 4g+1, 4g′+2 VB
41 35 BT′ m m o m o m e 4g+2, 4g′+3 BT′
42 36 VT′ o m m o m m e 4g+1, 4g′+3 VT′
43 37 S′VBT′ m m m m m m e Three or four out of: 4g, 4g′+1, 4g′′+2, 4g′′′+3 VBT′, S′BT′, S′VT′, S′VB, S′VBT′
                         
44 38a 1 SVB′T′ m m m o m m m Three or four out of: 4g, 4g′+1, 4g′′+2, 4g′′′+3 VB′T′, SB′T′, SVT′, SVB′, SVB′T′
45 38b SV′BT′ m m m m o m m Three or four out of: 4g, 4g′+1, 4g′′+2, 4g′′′+3 V′BT′, SBT′, SV′T′, SV′B, SV′BT′
46 38c V′VB′B m m m m m o m Three or four out of: 4g+1, 4g′+1, 4g′′+2, 4g′′′+2 VB′B, V′B′B, V′VB, V′VB′, V′VB′B
47 38d SV′B′T m m m m m m o Three or four out of: 4g, 4g′+1, 4g′′+2, 4g′′′+3 V′B′T, SB′T, SV′T, SV′B′, SV′B′T
48 39 B′BT′T m m o m m m m Three or four out of: 4g+2, 4g′+2, 4g′′+3, 4g′′′+3 BT′T, B′T′T, B′BT, B′BT′, B′BT′T
49 40 SVBT m o m m m m m Three or four out of: 4g, 4g′+1, 4g′′+2, 4g′′′+3 VBT, SBT, SVT, SVB, SVBT
50 41 V′VT′T o m m m m m m Three or four out of: 4g+1, 4g′+1, 4g′′+3, 4g′′′+3 VT′T, V′T′T, V′VT, V′VT′, V′VT′T
                       
51 38e S′SV′VB′BT′T m m m m m m m Varied All other sums of: S′SV′VB′BT′T

Supporting information


Acknowledgements

Thanks are due to Radosław Przeniosło and Izabela Sosnowska (University of Warsaw) for inspiring discussions. Open access funding enabled and organized by Projekt DEAL.

References

First citationGopalan, V. (2020). Acta Cryst. A76, 318–327.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHlinka, J. (2014). Phys. Rev. Lett. 113, 165502.  Web of Science CrossRef PubMed Google Scholar
First citationLounesto, P. (2009). Clifford Algebras and Spinors, 2nd ed. Cambridge University Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds