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Wyckoff sequences are a way of encoding combinatorial information about

crystal structures of a given symmetry. In particular, they offer an easy access to

the calculation of a crystal structure’s combinatorial, coordinational and

configurational complexity, taking into account the individual multiplicities

(combinatorial degrees of freedom) and arities (coordinational degrees of

freedom) associated with each Wyckoff position. However, distinct Wyckoff

sequences can yield the same total numbers of combinatorial and coordinational

degrees of freedom. In this case, they share the same value for their Shannon

entropy based subdivision complexity. The enumeration of Wyckoff sequences

with this property is a combinatorial problem solved in this work, first in the

general case of fixed subdivision complexity but non-specified Wyckoff

sequence length, and second for the restricted case of Wyckoff sequences of

both fixed subdivision complexity and fixed Wyckoff sequence length. The

combinatorial results are accompanied by calculations of the combinatorial,

coordinational, configurational and subdivision complexities, performed on

Wyckoff sequences representing actual crystal structures.

1. Introduction

Any standardized crystal structure can be conveniently related

to a descriptor uniquely encoding its combinatorial properties,

namely its Wyckoff sequence: a string composed of the space

group type number (sometimes the Hermann–Mauguin

symbol is used instead) and followed by all the Wyckoff letters

for each partially or fully occupied Wyckoff position in the

crystal structure; the letters are put in reverse alphabetic order

and augmented by their superscripted frequency of occur-

rence, in case a certain non-fixed Wyckoff position is occupied

multiple times.

Standardization is necessary because many crystal struc-

tures do have equivalent descriptions in terms of their unit cell

and atomic coordinates, depending either on matters of

possible unit-cell choices or the symmetry properties of space

groups [keywords: symmetry of symmetry, Cheshire groups,

Euclidean normalizers; see Müller (2013), ch. 8]. A compre-

hensive scheme for crystal structure standardization has been

theoretically developed by Parthé and coworkers (TYPIX)

and implemented into the software STRUCTURE TIDY

(Parthé & Gelato, 1984, 1985; Gelato & Parthé, 1987; Parthé

et al., 1993a,b). The uniqueness of the Wyckoff sequence

thus depends on and follows from the uniqueness of the

standardization.

The Wyckoff positions of a space group encompass all

possible distinct sets of symmetry-equivalent sites within a

unit cell. Or, to put it in rigorous mathematical terms: a

Wyckoff position of a space group G consists of all points X for
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which the site-symmetry groups SðXÞ are conjugate subgroups

of G (see Hahn, 2005, ch. 8.3.2, p. 733; Aroyo, 2016, ch. 1.4.4.2,

p. 62).

It is important to distinguish the notions of space group and

space-group type. A space group encompasses all of the

symmetry of an actual crystal structure, including its transla-

tion symmetry, specified by its lattice parameters. A space-

group type is an abstract notion comprising all those, other-

wise distinct, space groups which share the same representa-

tion by matrix-column pairs of symmetry operations (Nespolo

et al., 2018). This is of special importance in the study of

group–subgroup relations, in which a group and one of its

proper subgroups can be of the same space-group type, but

not of the same space group. Another consequence is that the

number of space groups is infinite, whereas the number of

space-group types is finite: 230 distinct ones in three dimen-

sions, including 11 enantiomorphous types. In particular, the

Hermann–Mauguin symbol represents the space-group type,

while concepts related to the Wyckoff positions, such as the

Wyckoff sequences studied in this work, are related to the

space group, in the sense that they are inseparably connected

with the coordinate description of crystal structures. However,

the number of distinct Wyckoff positions is considered to be

finite, with a total of 1731 positions for all space groups, thus

allowing for the combinatorial analysis to follow.

The Wyckoff positions are labelled by up to 27 possible

Wyckoff letters (a to z and �), being devoid of any further

meaning, but depending on the choice of space group. Since

the Wyckoff sequence composed of these letters does not

include any specific information about either the unit-cell

parameters or the atomic coordinates, it is a more abstract

notion as well, and useful as such for purposes of crystal

structure classification and systematics (see, e.g., Allmann &

Hinek, 2007). Note that this abstraction means that actual

crystal structures can share the same Wyckoff sequence, while

being distinct with respect to the specific values of the free

parameter(s) of their non-fixed Wyckoff position(s). Such

crystal structures are called isopointal (Lima-de-Faria et al.,

1990).

Yet, Wyckoff sequences can be studied without referring to

specific geometric crystal structures. Thus, any Wyckoff

sequence really describes an infinite family of crystal struc-

tures, sharing a common parametrization in terms of their

geometric degrees of freedom, according to the observed

partial or full occupancy of their general position(s) and, if

present, special position(s) of their corresponding space-group

type. Indeed, the Wyckoff sequence has been used in the

aforementioned sense, as a coordinate-free representation of

crystal structures in modern machine learning approaches to

materials discovery (Goodall et al., 2022).

One particular advantage of this abstract, combinatorial

point of view is due to the fact that the number of Wyckoff

sequences of given length k is finite (Hornfeck, 2022a), making

an exhaustive study possible for small values of k. In fact, most

of the actual crystal structures found so far in nature have

Wyckoff sequences of length below k = 50. For the space-

group type Pmmm (No. 47) with � = 19 non-fixed sites and ’ =

8 fixed ones, constituting the case with the highest number of

possible sequences, this would correspond to about 3:5� 1018

distinct sequences to consider in total, up to the length of k =

50 inclusive (see Appendix A for the computation and the

exact result).

Another advantage, and one focus of this work, is due to the

fact that the Wyckoff sequence translates into the information

about a crystal structure’s combinatorial (M) and coordina-

tional (A) collective degrees of freedom, associated with a

weighted sum of each Wyckoff position’s individual multi-

plicity (Mi) and arity (Ai), respectively, the latter being the

number of independent coordinate parameters required to be

specified in a standardized description of an actual crystal

structure.

Both the combinatorial and coordinational degrees of

freedom can be used to assess a crystal structure’s combina-

torial and coordinational complexity by means of an approach

pioneered by Krivovichev (2012, 2014) and extended by

Hornfeck (2020, 2022b) based on the utilization of the

Shannon entropy as a complexity measure.

Taking a general point of view, the collective degrees of

freedom represent a certain system (a macrostate), while the

individual degrees of freedom each represent a certain

subsystem (a microstate). This is true on different levels of

hierarchy. For instance, on the crystal structure level, the

collective configurational degrees of freedom, M þ A, result

as the sum of the individual combinatorial (M) and coordi-

national (A) degrees of freedom. In a similar way, on the

Wyckoff position level, the collective combinatorial and

coordinational degrees of freedom, M or A, result as the sum

of the individual combinatorial and coordinational degrees of

freedom, Mi or Ai, respectively.

In combinatorial terms this splitting of a system into

subsystems corresponds to an integer partition. However, in

their crystallographic application, the number of partitions

is not simply given by the number-theoretic partition

function, yet restricted by crystallographic symmetry and

the coupling of combinatorial and coordinational degrees

of freedoms as found within each Wyckoff position. In parti-

cular, the possible values of the Wyckoff multiplicities

considering all space-group types are restricted to the set

Mi 2 f1; 2; 3; 4; 6; 8; 12; 16; 24; 48g (assuming primitive unit

cells, i.e. modulo centring translations, which, in the following,

will be the preferred choice of description), while the possible

values of the Wyckoff arities are restricted to the set

Ai 2 f0; 1; 2; 3g. Moreover, for a given choice of space-group

type, the values of either set that can occur are restricted

further (although not their frequencies of occurrence, except

for fixed positions, which can occur only once), in accordance

with the existing Wyckoff positions. A final restriction is

imposed by each Wyckoff position introducing a coupling of

values from both sets. The combinatorial problem under

consideration thus is one of counting the number of restricted,

coupled partitions.

Thus, due to these particular restrictions, it is a non-trivial

task to describe a macrostate defined by the collective degrees

of freedom ðM;AÞ by the composition from or the subdivision

crystal lattices
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into its associated microstates ðMi;AiÞ. Foremost, it is a

natural question to ask, given one macrostate, what is the

number of microstates corresponding to it?

The following section will give the answer to this question,

with the main results being a generating polynomial approach

(Section 2.4, theory; Section 2.7, algorithm) and a dynamic

programming approach (Section 2.8, theory and algorithm).

2. Combinatorics of Wyckoff sequences

To state the problem succinctly: how many distinct Wyckoff

sequences (of optionally fixed length k) exist, given a pair of

combinatorial and coordinational degrees of freedom ðM;AÞ

together with a choice of space group? (Note that a space

group has to be fixed, since this determines the alphabet of

Wyckoff letters which can appear in the Wyckoff sequence.)

2.1. A problem of crystals – exposition

The problem statement can be translated rather straight-

forwardly into some algebraic form. Note that two integer

values exist for each individual Wyckoff position i, its multi-

plicity Mi and its arity Ai (coordinational degree of freedom).

Both have to be considered in a coupled way, which will be

done in the notation by the use of column vectors. Then, the

total multiplicity and arity, M and A, respectively, corre-

sponding to a certain set of Wyckoff sequences of crystal

structures, are given as

M

A

� �
¼
Xn

i¼1

�i

Mi

Ai

� �
: ð1Þ

Here, the sum index i runs over all the n existing Wyckoff

positions for a given space group, with the integer multipliers

�i denoting the frequency of occurrence of a given site in the

sum of individual multiplicities Mi and arities Ai of the

combined sites. In one general point of view, as mentioned in

the Introduction, one can call the pair ðM;AÞ the system

variables (describing the macrostate), while the Mi and

arities Ai would be the subsystem variables (describing the

microstates).

Information about the Wyckoff positions of the 230 three-

dimensional space-group types is compiled in Vol. A of the

International Tables for Crystallography (Aroyo, 2016), which

is the authoritative source. Alternatively, it can also be

retrieved online from the Bilbao Crystallographic Server

(https://www.cryst.ehu.es/) using the routine WYCKPOS

(Aroyo et al., 2006a,b, 2011).

The values of the Wyckoff multiplicities Mi are explicitly

stated as the numeral part of the Wyckoff symbol assigned to

each Wyckoff position (the non-numeral part is given by the

Wyckoff letter). Note, however, that these values are given for

the centred unit cells, in which case M should also be specified

with respect to the unit-cell content of the centred unit cell, in

order to maintain the correct correspondence. Alternatively,

the values of the Wyckoff multiplicities can be reduced by the

division of an integer factor depending on the centring type (2

for C, A and I centring; 3 for R centring; 4 for F centring), if

the primitive unit cell, and the number of atoms it contains, is

taken as a reference. Indeed, choosing the primitive unit cell

as a reference is strongly recommended in the context of

crystallographic complexity calculations (cf. Section 3), in

order to make the results of these calculations comparable for

crystal structures differing in their centring type, since any

existing centring translation just repeats parts of a crystal

structure inside a unit cell, thereby contributing no additional

information to its description, and, accordingly, its complexity.

The values of the Wyckoff arities Ai, although not explicitly

stated in the aforementioned sources, can be deduced from

them, namely by means of visual inspection with respect to the

number of positional variables x, y and z occurring in the

listing of the general coordinates as provided for each Wyckoff

position.

In general, this information can be obtained for any crys-

tallographic space group, including higher-dimensional ones,

namely by inspecting the number of symmetry-equivalent

positions modulo translations, to obtain the multiplicities, as

well as by elucidating the dependency of their general coor-

dinates with respect to symmetry, to obtain the arities. In fact,

all this information can be obtained in a purely algorithmic

manner [see Brown et al. (1978) for the case of four dimen-

sions].
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Figure 1
Geometric interpretation for the problem of finding the number of ways
of combining individual Wyckoff positions of given multiplicities and
arities, ðMi;AiÞ, adding up to a given total multiplicity and arity ðM;AÞ. In
the illustration, the target vector ðM;AÞ ¼ ð12; 3Þ, here written in row
form, is denoting a point in the two-dimensional integer lattice Z2 (square
lattice) in the upper-right corner. On the top, the individual vectors
ðMi;AiÞ corresponding to each Wyckoff position are shown: a (2,0) red, b
(2,0) green, c (2,1) blue, d (4,1) dark red, e (4,2) dark green, f (8,3) dark
blue. On the bottom, their combinations adding up to ðM;AÞ ¼ ð12; 3Þ
are shown, with vectors composed in reverse lexicographic order. Other
possible combinations, in which only the order of the vectors are changed,
are not shown. However, all lattice points which can be reached by any
possible combinations of vectors are highlighted as open circles instead of
filled ones. To see the full graph one has to invert the depicted half of it in
the point (6, 1.5). In this interpretation the problem becomes a special
case of a lattice path enumeration problem with the set of steps governed
by the Wyckoff multiplicities and arities for a given choice of space-group
symmetry.



It should be noted that the problem at hand can be given

different mathematical interpretations and representations.

Equation (1) already suggests a geometrical interpretation as

two-dimensional vectors, which happen to live on the two-

dimensional integer lattice Z2 (square lattice). The problem

then appears as a special case of a lattice path problem (Fig. 1),

in which the vectors associated with the Wyckoff positions of a

space group define the set of steps.

Alternatively, the two-dimensional plane can be identified

with the complex plane of Wessel, Argand and Gauß

suggesting a change of notation, in which i is the imaginary

unit (i2 ¼ �1):

M þ A i ¼
Pn
j¼1

�j Mj þ Aj i
� �

: ð2Þ

While these interpretations and representations are math-

ematically equivalent, and thus do not seem to make any

difference per se, the knowledge of these alternatives can be of

importance when it comes to searching for subfields of

mathematics discussing already existing solutions to a given

problem, or general methods to find them, and also in the case

of implementation into computer code.

2.2. Conditions on the multipliers

For any given site the multipliers �i are restricted to

discrete intervals

f�i;min; �i;min þ 1; . . . ; �i;max � 1; �i;maxg ð3Þ

of potential integer values, which are denoted in shorthand as

½½�i;min; �i;max�� in the following. Naturally, by definition, the

frequencies of occurrence are bounded from below, likewise

for all sites, by all minimal multipliers �i;min ¼ 0, meaning that

a site is absent in this case. The variable upper bounds, the

maximal multipliers, are determined according to the case

distinction

�i;max ¼
ri for Ai ¼ 1; 2; 3 ¼ Aþi
1 for Ai ¼ 0

�
; ð4Þ

differentiating between non-fixed and fixed sites. Collecting

the terms for the non-fixed and fixed sites separately, the

summation of equation (1) can be split into separate parts,

M

A

� �
¼
X�
i¼1

ri

Mi

Aþi

� �
þ
X’
i¼1

Mi

0

� �
; ð5Þ

in which � and ’ now denote the total number of non-fixed

and fixed sites, respectively (compare Hornfeck, 2022a).

In any case, the repetition ri is given as

ri ¼ min
M

Mi

� �
;

A

Ai

� �� 	
; ð6Þ

with b�c denoting the floor function, and the smaller ratio

restricting the number of possible occurrences of the corre-

sponding site from above. Stated in a different way, each

multiplier for any non-fixed site has to fulfil both of the

conditions

�iMi � M and �iAi � A ð7Þ

simultaneously, with �i;max being defined as the largest integer

doing so.

These conditions originate from the fact that the Wyckoff

multiplicities and arities are non-negative integers; thus any

surpassing of either one of the limits M or A cannot be

balanced by the addition of another Wyckoff position, hence

cannot be a part of the solution, and thus signifies an end to

the Wyckoff sequence construction process. This guarantees

the existence of maximal values �i;max and fixes the size of the

search space of which the solution space is a subspace.

While the determination of the size of the solution space,

the number of Wyckoff sequences existing for a given choice

of ðM;AÞ, is our main task, the determination of the size of the

search space appears as a first step towards a result, in that it

gives a numerical upper bound for the size of the solution

space, a combinatorial overview about the Wyckoff sequences

to expect, with respect to their length, as well as an estimate

regarding the computational tractability of their actual

construction based on an exhaustive exploration of the search

space.

2.3. Size of the search space

For non-fixed sites the multiplier intervals are given as

½½0; ri�� ¼ f0; 1; . . . ; rig, with variable ri, while for the fixed sites

the multiplier intervals are given as ½½0; 1�� ¼ f0; 1g, invariably.

The Cartesian product over all interval sets of multipliers of

either type determines the search space:

S ¼ ½½0; �1;max�� � ½½0; �2;max�� � . . .� ½½0; �n;max��: ð8Þ

This corresponds to the set of all possible Wyckoff letter

sequences, being Wyckoff sequences without the space-group

type symbol/number prefix explicitly stated, as constructed

from the multiset ½�1;max�1; �2;max�2; . . . ; �n;max�n�, in which

the �i denote a general Wyckoff letter out of n possible letters

for a given space group. Note that the choice of space group,

while defining the alphabet of Wyckoff letters and limiting the

number of terms to consider in the Cartesian product, does

not determine the size of the search space by itself. This size,

the cardinality

jSj ¼
Qn
i¼1

�i;max þ 1
� �

ð9Þ

of the search space, in which individual solutions have to be

found, if they exist, is determined by the values of the maximal

multipliers. Thus, the size of the search space is determined

only if both the space group and the total numbers of degrees

of freedom M and A are fixed. Then, the search space size

gives an absolute upper bound on the potential number of

solutions, yet usually, and in anticipation of our following

results, the actual number of solutions will be much lower or

even zero. This difference in the number of solutions is due to

the construction of the search space by means of the Cartesian

product, namely because the restrictions imposed by the �i;max

values for individual Wyckoff positions do not take into

account their cumulative, conditional interactions.

crystal lattices
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As is often the case in combinatorial problems, the same

cardinality jSj can be obtained by an alternative counting

method, namely as the result of the summation of all coeffi-

cients in the expansion of the univariate polynomial defined

by

PðxÞ ¼
Qn
i¼1

P�i;max

k¼0

xk: ð10Þ

This is the generating polynomial for a multiset with finite

multiplicities [compare its description and, in particular,

equation (4) in Hornfeck (2022a)]. Upon its expansion the

coefficients ck for each term xk of this polynomial count the

number of sequences of length k, thereby representing a more

differentiated view of the search space’s contents. Eventually,

jSj ¼
P�
k¼0

ck; ð11Þ

in which � ¼ �1;max þ �2;max þ . . .þ �n;max is the multiset’s

cardinality.

The size of the search space gains some importance due to

the fact that the combinatorial approach we will describe in

the remainder of this work is non-constructive, as is commonly

the case for such combinatorial questions, since it gives only

the number of potential Wyckoff sequences matching with a

given parameter pair ðM;AÞ, but does not reveal the Wyckoff

sequences themselves; these can be discovered by an

exhaustive check of all admissible multiplier combinations

existing within the combined multiplier intervals.

We envision that the search space size can be reduced to

some degree by applying effective intermediate checks for

multiplier combinations already violating the upper limit as

imposed by the choice of the parameters ðM;AÞ, overshooting

either one parameter at a time or both simultaneously,

possibly in combination with the use of a clever data structure

such as pruned trees. However, search space sizes below

jSj< 106 are easily tractable on a standard desktop personal

computer, which should encompass most tasks related to the

comparison of the potential combinatorial solutions with

Wyckoff sequences representing actual crystal structures.

2.4. A generating polynomial approach to find solutions

Our combinatorial problem stated above is solved in two

steps: first, by reducing it, conceptually, to an analogous clas-

sical problem of combinatorics, the coin change problem, as

can be found in many textbooks on the topic (for instance,

Marcus, 1998, p. 89), and second, by adapting the classical

problem to the crystallographic one.

The classical coin change problem is stated in Appendix B,

and can be seen as an illustration of the use of generating

polynomials, defined in some abstract variable. Notably, the

variable is an indeterminate symbol only, entailing no specific

meaning other than to allow algebraic operations performed

on it; hence it merely acts as a placeholder and bookkeeping

device, yet is the decisive one, in order to systematically find a

solution.

This use of generating polynomials has already been

described in the first entry of this series (Hornfeck, 2022a) to

which the reader, interested in more detailed information, is

referred. An introduction to the wider field of generating

functions is given by Graham et al. (1994), and a more detailed

exposition of the main ideas involved is given by Wilf (2006).

Now, adapting the classical coin change problem to our

crystallographic one is carried out in three steps: (i) matching

the number of distinct types of coins with the number of

distinct Wyckoff positions; (ii) identifying the values of

distinct types of coins with the pair of values of the Wyckoff

position’s multiplicity Mi and arity Ai; and (iii) treating the

pair of values (Mi, Ai) in a coupled way, by introducing two

abstract variables ðx; yÞ in the generating polynomials, instead

of one.

Thus, in some way, the crystallographic problem is a coin

change problem with a twist, based on imaginary coins with

denominations on both their front and back sides and a pair of

target values to reach upon summation. Similar combinatorial

problems arise for the case of real cards, coupling values

denoted by digits or letters with symbolic ones such as

diamonds, hearts, spades and clubs.

In particular, the third adaptation step is crucial for the

correct enumeration. As a consequence of it, generating

polynomials of the kind

Piðx; yÞ ¼
P�i;max

j¼0

xj Mi yj Ai ð12Þ

are assigned to each Wyckoff position, with their product over

all n Wyckoff positions,

Pðx; yÞ ¼
Qn
i¼1

Piðx; yÞ; ð13Þ

yielding the solution, namely by the value of the coefficient of

xMyA in the expanded form of the polynomial Pðx; yÞ.

As an aside, one can note that the product over all n sites

can be split,

Pðx; yÞ ¼
Q�
i¼1

Pri

j¼0

xj Mi yj Ai

" # Q’
i¼1

1þ xMið Þ

" #
; ð14Þ

according to the contributions of � non-fixed and ’ fixed sites

[compare equation (5)]. This splitting reduces the problem for

the fixed sites to a univariate one.

It should be noted that this approach can be further

generalized, in principle, by taking into account chemical

degrees of freedom [as introduced by Hornfeck (2020)] in

terms of atomic numbers of atoms occupying a given Wyckoff

position as well. Then, one would have to introduce a

third variable z into the respective polynomials with all

other procedures considered to be analogously performed.

However, there is a difference, in that the atomic numbers are

not restricted in any way, that is to say there exists no natural

coupling between them and the Wyckoff multiplicities and

arities – they are a pure matter of choice. In contrast, the

Wyckoff multiplicities and arities are coupled in their values

for each Wyckoff position of a space group. Thus, regarding
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this relative arbitrariness of choice and the relative unim-

portance of this general case, we refrain from expanding in this

direction for the moment. However, our opinion on this topic

might change in the future, if there should be an interesting

application for fixing the total chemical degrees of freedom,

that is the total electron count within a reduced unit cell, to a

set value, together with the other degrees of freedom, and

asking for the number of crystal structures fulfilling this

condition. In this case, any generalization required can be

obtained in a straightforward manner by following the same

extension procedure as described in the following.

2.5. A generalization including the Wyckoff sequence length

Another and considerably more useful generalization is

made by taking into account the length k of the Wyckoff

sequence as a further restriction, which can be seen as an

extension and a refinement to a previous result in the

combinatorics of Wyckoff sequences (Hornfeck, 2022a). This

can be achieved by adjusting equation (1) according to

M

A

k

2
4

3
5 ¼Xn

i¼1

�i

Mi

Ai

ki

2
4

3
5 ð15Þ

in addition to

ri ¼ min
M

Mi

� �
;

A

Ai

� �
; k

� 	
; ð16Þ

used for the determination of the �i;max for each individual site

i. Trivially, each site itself is of length ki ¼ 1 (thus, bk=kic ¼ k),

which gives the total length of the Wyckoff sequence as the

sum of the multipliers �i: k ¼ �1 þ �2 þ . . .þ �n. Again, the

final result is given as the value of the coefficient of xMyAzk in

the expanded polynomial

Pðx; y; zÞ ¼
Qn
i¼1

Piðx; y; zÞ; ð17Þ

in which

Piðx; y; zÞ ¼
P�i;max

j¼0

xj Mi yj Ai zj ð18Þ

defines the individual terms.

As was the case before, the product over all n sites

Pðx; y; zÞ ¼
Q�
i¼1

Pri

j¼0

xj Mi yj Ai zj

" # Q’
i¼1

1þ xMi zð Þ

" #
ð19Þ

can be split according to the contributions of � non-fixed and ’
fixed sites.

Finally, it should be noted that there exist general methods

for obtaining explicit formulas for the coefficients of gener-

ating functions, for instance for the powers of bivariate

generating functions (Kruchinin et al., 2021), as this is an

active field of mathematical research.

2.6. A problem of crystals – exemplification

In the following, an illustrative example is discussed in full

calculational detail.

The tetragonal space-group type P421m (No. 113) encom-

passes a total of six distinct Wyckoff positions,

W iðMi;AiÞ ¼
Mi

Ai

� �
; ð20Þ

here written in a more convenient in-line notation, indexed

according to their Wyckoff letters, and with their corre-

sponding multiplicities and arities stated:

W
113
¼
Wað2; 0Þ; Wbð2; 0Þ; Wcð2; 1Þ;
Wdð4; 1Þ; Weð4; 2Þ; W f ð8; 3Þ:

�
ð21Þ

The chosen space group is the one with the smallest number of

Wyckoff positions for which all possible arity values

Ai ¼ 0; 1; 2; 3 are present. The six Wyckoff positions comprise

a total of three and four distinct values for the Wyckoff

multiplicity and arity, respectively, thereby allowing us to

illustrate the combinatorial calculation in some detail.

Now, with some arbitrary chosen M ¼ 12 and A ¼ 3 given

for this particular example, this results in the following

maximal multipliers:

�a;max ¼ 1; �b;max ¼ 1; �c;max ¼ 3;

�d;max ¼ 3; �e;max ¼ 1; �f ;max ¼ 1; ð22Þ

for each Wyckoff position, and consequently in the following

generating polynomials:

PaðxÞ ¼ 1þ x2;

PbðxÞ ¼ 1þ x2;

Pcðx; yÞ ¼ 1þ x2yþ x4y2 þ x6y3;

Pdðx; yÞ ¼ 1þ x4yþ x8y2
þ x12y3;

Peðx; yÞ ¼ 1þ x4y2;

Pf ðx; yÞ ¼ 1þ x8y3: ð23Þ

Note how the two fixed sites with Wyckoff letters a and b give

rise to exactly the same polynomial factor in one variable x

only (namely the one used for the Wyckoff multiplicities), and

how the polynomials corresponding to the non-fixed sites are

restricted in terms of the monomials of highest degree in

either x or y by the given values of either M or A or both.

Note also that the number of variables in each polynomial

corresponds to the splitting of all n sites into � contributions

from the non-fixed sites (bivariate case) and ’ contributions

from the fixed ones (univariate case) [compare equation (5)].

The expanded polynomial Pðx; yÞ consisting of a total of 60

terms is given by
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1þ 2x2 þ x4 þ x2yþ 3x4y

þ 3x6yþ x8yþ 2x4y2
þ 5x6y2

þ 5x8y2

þ 3x10y2
þ x12y2

þ 2x6y3
þ 7x8y3

þ 9x10y3

þ 6x12y3 þ 3x14y3 þ x16y3 þ x8y4 þ 5x10y4

þ 10x12y4
þ 10x14y4

þ 5x16y4
þ x18y4

þ x10y5

þ 5x12y5
þ 10x14y5

þ 12x16y5
þ 9x18y5

þ 3x20y5

þ 3x14y6 þ 9x16y6 þ 12x18y6 þ 10x20y6 þ 5x22y6

þ x24y6
þ x16y7

þ 5x18y7
þ 10x20y7

þ 10x22y7

þ 5x24y7 þ x26y7 þ x18y8 þ 3x20y8 þ 6x22y8

þ 9x24y8
þ 7x26y8

þ 2x28y8
þ x22y9

þ 3x24y9

þ 5x26y9
þ 5x28y9

þ 2x30y9
þ x26y10

þ 3x28y10

þ 3x30y10 þ x32y10 þ x30y11 þ 2x32y11 þ x34y11: ð24Þ

The decisive term xMyA ¼ x12y3 has 6 as its coefficient, which

thus corresponds to the six existing solutions, looked for in the

search space; they can be stated in terms of their Wyckoff

letter sequence, with multiple occurrences of the same letter

marked by superscripts:

fba; edba; d3; d2cb; d2ca; dc2ba: ð25Þ

Note, in particular, the cases d2cb and d2ca which differ only in

the exact choice of the fixed site, being otherwise degenerate

in their column vector summation [compare equation (1)].

In fact, the bivariate polynomial given in equation (24)

contains the information about all possible solutions ðM;AÞ

which can be constructed from the multiset of Wyckoff letters

½a; b; 3c; 3d; e; f � with restricted multiset multiplicities, as

determined by the maximal multipliers. Since the multiplier

intervals are ½½0; 3�� for both the Wyckoff positions c and d, as

well as ½½0; 1�� for all other sites, the search space has a size of

42 � 24 ¼ 256 cases, whose distribution according to the

length k of the sequence can be read off from the expansion

(11 terms; not shown) of the generating polynomial

ð1þ xÞ
4
ð1þ xþ x2

þ x3
Þ

2
ð26Þ

since �i;max ¼ 1 for four out of the six Wyckoff sites and

�i;max ¼ 3 for the remaining two. The observed six solutions

with the property ðM;AÞ ¼ ð12; 3Þ constitute only a tiny

fraction of the search space, which is generally true, the size of

the search space typically being overwhelmingly larger than

the number of solutions.

In particular, the full set of solutions contains the singular

occurrence of the empty sequence, f g, corresponding to the

trivial monomial x0y0 ¼ 1, as well as that of the maximal

length sequence, abcccdddef, corresponding to the monomial

x34y11 of highest degree, for which M ¼ 34 and A ¼ 11. Note

how one can instantly check that there exists no solution for,

say, the case M ¼ 7 and A ¼ 1, because no monomial of the

form x7y appears in Pðx; yÞ, or, to put it another way, the

coefficient of this monomial in the expansion of Pðx; yÞ is

equal to zero. Note also how one specific solution, namely

solution d3, corresponds to the occurrence of the monomial

x12y3, the j ¼ 3 case of the basic monomial xj 4yj 1 representing

the Wdð4; 1Þ Wyckoff position, in the generating polynomial

Pdðx; yÞ of equation (23).

Taking into account the length k as an additional parameter,

one has to adjust the individual polynomial terms according to

Paðx; zÞ ¼ 1þ x2z;

Pbðx; zÞ ¼ 1þ x2z;

Pcðx; y; zÞ ¼ 1þ x2yzþ x4y2z2 þ x6y3z3;

Pdðx; y; zÞ ¼ 1þ x4yzþ x8y2z2 þ x12y3z3;

Peðx; y; zÞ ¼ 1þ x4y2z;

Pf ðx; y; zÞ ¼ 1þ x8y3z: ð27Þ

Expansion of their product yields a polynomial in 142 terms

(not shown), with, for instance, the value of the coefficient for

xMyAzk ¼ x12y3z4 being equal to 3, corresponding to the

Wyckoff letter sequences

edba; d2cb; d2ca; ð28Þ

which form a subset of the six aforementioned solutions.

2.7. Summary of the generation function approach

To summarize the aforementioned results in an algorithmic

form, using the generating polynomial approach one has to

perform the following steps to obtain a solution (with the first

two items in the enumeration defining the input to the algo-

rithm and the last one its output):

(i) Fix a space group and thereby the set of Wyckoff posi-

tions and the potential alphabet of Wyckoff letters from which

a Wyckoff sequence can be formed.

(ii) Fix the values for the total Wyckoff multiplicity M and

the total Wyckoff arity A and (optionally) the Wyckoff

sequence length k, all of which are expected to be integers.

(iii) Retrieve all the individual values for the Wyckoff

multiplicities and arities W iðMi;AiÞ.

(iv) From the individual Wyckoff multiplicities and arities

compute the individual maximal multipliers �i;max.

(v) From the individual maximal multipliers construct the

individual generating polynomials, Piðx; yÞ or Piðx; y; zÞ.

(vi) From the individual generating polynomials build their

product, Pðx; yÞ or Pðx; y; zÞ, and expand it.

(vii) From the expansion read off the coefficient for the

monomial of the form xMyA or xMyAzk; this is the solution.

2.8. A dynamic programming approach to find solutions

Finally, after illustrating the aforementioned combinatorial

method on an explicit example, we want to highlight the

possibility of an alternative algorithmic way of calculation

which turns out to be very efficient, by making optimal use of

the recursive nature and overlapping substructure of the

problem, in such a way that subsolutions are only ever

computed once and retrieved as needed for the calculation of

the solution. This algorithmic way is known under the name

dynamic programming. A simple example for the classical
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univariate and infinite coin change problem is given in

Appendix B. In the following, we show the adapted pseudo-

code for the bivariate and finite coin change problem in its

crystallographic application, thus taking into account the case

distinction for the multipliers of non-fixed and fixed Wyckoff

sites (Fig. 2). The adaptation to the trivariate and finite case

including the length k as a parameter follows a straightforward

procedure (Fig. 3), as would be the case for any future

multivariate generalization, for instance also taking into

account chemical degrees of freedom.

In either case, the approach starts with the trivial base case

(there is always one possibility for the null tuple), from which

it proceeds bottom-up making use of a tabulation imple-

mentation of subsolution values cached into either a matrix

(bivariate case) or a tensor (trivariate case), which is updated

iteratively until the target case is reached and the solution is

returned. Equation (29) shows the solution matrix T for the

case defined by the target tuple ðM;AÞ ¼ ð12; 3Þ and the

multiset of tuplesW ¼ ½ð2; 0Þ; ð2; 0Þ; ð2; 1Þ; ð4; 1Þ; ð4; 2Þ; ð8; 3Þ�

in which the values for Mi and Ai increase along the rows and

the columns, respectively. Note that for a more economic

display, the matrix is shown in its transposed form, with

columns and rows interchanged, such that its upper-left corner

represents the matrix element T 0;0 and the lower-right corner

represents the matrix element T 12;3, from which the solution,

T 12;3 ¼ 6, can be read off:

1 0 2 0 1 0 0 0 0 0 0 0 0

0 0 1 0 3 0 3 0 1 0 0 0 0

0 0 0 0 2 0 5 0 5 0 3 0 1

0 0 0 0 0 0 2 0 7 0 9 0 6

2
664

3
775: ð29Þ

A direct comparison shows that all non-zero entries represent

the non-vanishing coefficients as occurring in the polynomial

expansion given in equation (24), yet with terms only up to the

solution x12y3 monomial inclusive. Note that the algebraic

structure of the Wyckoff positions is reflected in the matrix as

well, since the reachable positions are determined by the

smallest increments and their parity as observed for the

Wyckoff multiplicities and arities. For instance, since all the

Wyckoff multiplicities are even numbers, all odd columns of

the above matrix are given by the null vector.

A Python implementation of the algorithm for the bivariate

case is given in Appendix C, which also contains a Mathe-

matica implementation of the generating polynomial

approach.
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Figure 3
Dynamic programming algorithm (given in pseudocode) for the
determination of the number of Wyckoff sequences of a given space
group, subdivision complexity and length as determined by the total
number of degrees of freedom for the Wyckoff multiplicity, Wyckoff arity
and length (trivariate case). Note that ki ¼ 1 for all Wyckoff sites – this
does not have to be specified for each Wyckoff position independently.
However, possible simplifications due to this fact have not been included
in the pseudocode in order to highlight its similarity with the bivariate
case shown in Fig. 2.

Figure 2
Dynamic programming algorithm (given in pseudocode) for the
determination of the number of Wyckoff sequences of a given space
group and subdivision complexity as determined by the total number of
degrees of freedom for the Wyckoff multiplicity and arity (bivariate case).



3. Complexity of Wyckoff sequences

The aforementioned problem of crystals arose in the context

of calculating Shannon entropy based complexity measures

for crystal structures, taking into account a crystal structure’s

fundamental chemical, combinatorial and coordinational

degrees of freedom (Hornfeck, 2020). Apart from its chemical

degrees of freedom – its decoration (colouring) of Wyckoff

sites with atoms – a crystal structure is geometrically defined

by its combined combinatorial and coordinational degrees of

freedom, the collective multiplicities M and arities A of its

occupied Wyckoff positions.

3.1. Shannon entropy based complexity measures

In general, a given multiset ½X1;X2; . . . ;Xn� of n individual

degrees of freedom Xi defines a discrete probability distri-

bution

X ¼ X1=X;X2=X; . . . ;Xn=X

 �

¼ x1; x2; . . . ; xn


 �
; ð30Þ

where X ¼ X1 þ X2 þ . . .þ Xn denotes the collective

number of degrees of freedom as obtained from the partition

of the individual numbers of degrees of freedom. From this a

Shannon entropy

HðXÞ ¼
Pn
i¼1

LðxiÞ ¼
Pn
i¼1

�xi log2 xi ð31Þ

can be obtained. Note that Lð0Þ ¼ 0, by definition.

As mentioned before, the general interpretation is that of a

system with X degrees of freedom on a higher level of struc-

tural hierarchy being subdivided into n subsystems of Xi

degrees of freedom, each on a lower level of structural hier-

archy. For more details of the general theory, the reader is

referred to previous work done by the author (Hornfeck, 2020,

2022b).

In particular, a crystal structure’s M collective combina-

torial degrees of freedom are associated with the multiset

½M1;M2; . . . ;Mn� of individual Wyckoff multiplicities Mi,

thereby yielding a fundamental combinatorial Shannon

entropy:

Hcomb ¼ HðMÞ ¼
Pn
i¼1

LðMi=MÞ: ð32Þ

Note that in order to ensure the comparability of

combinatorial complexity values between different crystal

structures, the values of the Wyckoff multiplicities Mi

have to refer to a primitive unit cell [although this is

really important only for derived complexity values

such as the maximal complexity, Hcomb;max ¼ log2 M, the

normal complexity, Hcomb; norm ¼ Hcomb=Hcomb;max, or the

total complexity, Hcomb; total ¼ M �Hcomb, which have been

described by Hornfeck (2020)].

Now, in the same way, a crystal structure’s A collective

coordinational degrees of freedom are associated with the

multiset ½A1;A2; . . . ;An� of individual Wyckoff arities Ai,

thereby yielding a fundamental coordinational Shannon

entropy

Hcoor ¼ HðAÞ ¼
Pn
i¼1

LðAi=AÞ: ð33Þ

Now, proceeding in a completely analogous manner, a crystal

structure’s F ¼ M þ A collective configurational degrees of

freedom are associated with the combined multiset

M1;M2; . . . ;Mn;A1;A2; . . . ;An


 �
¼ F1;F2; . . . ;F2n


 �
ð34Þ

of individual Wyckoff multiplicities Mi and individual Wyckoff

arities Ai, corresponding to the individual configurational

degrees of freedom Fi, thereby yielding a composite config-

urational Shannon entropy

Hconf ¼ HðFÞ ¼
P2n

i¼1

LðFi=FÞ: ð35Þ

While the association with the combined multiset is natural, it

is noteworthy to mention that this does not mean that the

corresponding entropies are (simply) additive; on the contrary

Hconf 6¼ Hcomb þHcoor: ð36Þ

Most importantly, however, by means of the strong additivity

property of the Shannon entropy, the configurational entropy

is equivalent to the general expression

Hconf ¼ Hsubdiv þ wMHcomb þ wAHcoor; ð37Þ

including appropriate weighting factors wM ¼ M=ðM þ AÞ

and wA ¼ A=ðM þ AÞ and an additional subdivision (mixing)

complexity based on them,

Hsubdiv ¼ L wMð Þ þ L wAð Þ: ð38Þ

This equivalence now allows an assessment of the relative

complexity related to the splitting of a given collective number
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Figure 4
Schematic representation of the relation between the configurational
complexity Hconf, calculated for M þ A degrees of freedom, and the
combinatorial and coordinational complexities, Hcomb and Hcoor, calcu-
lated for M and A degrees of freedom, respectively. Shown also are the
weighting factors M=ðM þ AÞ and A=ðM þ AÞ as well as the unit weight
contribution of the invariant subdivision complexity HsubdivðM;AÞ which
taken all together sum to the configurational complexity Hconf. For a given
choice of M and A the subdivision complexity HsubdivðM;AÞ is a constant,
while the combinatorial and coordinational complexities, Hcomb and Hcoor,
depend on the respective partitions of M and A possible for a given space-
group type.



of degrees of freedom, M þ A, for the composite system, into

individual numbers of degrees of freedom, M and A, for the

fundamental (sub)systems.

The subdivision complexity Hsubdiv is a Shannon entropy of

the weighting factors occurring in equation (37) and for all the

combinatorially enumerated cases it is an invariant char-

acterizing the subdivision step ðM þ AÞ ! ðM;AÞ on the

higher crystal structure level of hierarchy. It can be seen as

connecting the collective treatment of degrees of freedom,

within the combined configurational complexity Hconf, with the

individual treatment of degrees of freedom, within the sepa-

rated combinatorial and coordinational complexities, Hcomb

and Hcoor, respectively. This allows for a complexity partition

analysis (Hornfeck, 2022b). This central importance of the

subdivision complexity Hsubdiv and its relationship to the other

complexity measures is graphically depicted in Fig. 4.

In the same manner, other subdivision complexities

exist on the lower Wyckoff position level of hierarchy,

characterizing the subdivision steps ðX1 þ X2 þ . . .þ XnÞ

! ðX1;X2; . . . ;XnÞ, with X denoting either M or A.

Furthermore, it should be noted that the strong additivity

property also holds for the case of maximal Shannon entropies

Hconf;max ¼ Hsubdiv þ wMHcomb;max þ wAHcoor;max; ð39Þ

where Hsubdiv takes on the same value as in equation (37). The

maximal entropies are reached in the case of maximal sub-

division and thus perfect equidistribution of degrees of

freedom (corresponding to maximally expanded partitions

1þ 1þ . . .þ 1 of variable length equal to the number of

degrees of freedom). This makes their calculation particularly

simple, resulting eventually in Hcomb;max ¼ log2 M, Hcoor;max =

log2 A and Hconf;max ¼ log2ðM þ AÞ ¼ log2 F.

Each maximal entropy can also be used in turn to define its

corresponding non-maximal entropy, for instance

Hconf ¼ log2 F �
P2n

i¼1

ðFi=FÞ log2 Fi ð40Þ

by means of taking the difference between the maximal

entropies for the collective (here, F) and individual (here, Fi)

degrees of freedom, the latter ones attributed with their

appropriate weighting factors Fi=F.

All the aforementioned interrelations are depicted in Fig. 5.

4. Combining the combinatorics and complexity of
Wyckoff sequences

Some elementary statistical results shall be stated about the

magnitude of the collective degrees of freedom to expect, in

extreme and on average, and with respect to actual crystal

structure data as retrieved from the 20 040 unique Wyckoff

sequences compiled in the Pearson’s Crystal Data Crystal

Structure Database for Inorganic Compounds (Villars &

Cenzual, 2020).

The minimal observed combinatorial and coordinational

degrees of freedom are, as determined for the individual,

independent distributions, Mmin ¼ 1, Amin ¼ 0, the maximal

are Mmax ¼ 5926, Amax ¼ 1476, the mean values are Mmean =

94:3, Amean ¼ 53:1, the median values are Mmedian ¼ 48,

Amedian ¼ 20, and the mode values are Mmode ¼ 24, Amode ¼ 6,

respectively.

Our combinatorial result now tells us how many of these

partitions, being solutions to a combinatorial problem

restricted by crystallographic symmetry, can be realized for a

given space group, given the fixed number of degrees of

freedom ðM;AÞ and, potentially, the length k of the Wyckoff

sequence. In the following we will illustrate this by performing

explicit calculations for three examples.

It should be noted that the examples given here were

chosen such that the discussion of the results could be made

explicit, with the full set of potential Wyckoff sequence solu-

tions being listed, and with some actual representatives being

found among the known crystal structures. In general, the

number of potential solutions might exhibit a rapid growth
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Figure 5
Schematic representation of the interrelation between various maximal
and non-maximal entropies (combinatorial, coordinational, configura-
tional) and the subdivision entropy on different levels of structural
hierarchy. On the Wyckoff position level of hierarchy the difference of
(maximal) entropies defines the conventional non-maximal entropies
(from left to right), while on the crystal structure level of hierarchy the
(partially weighted) sum of entropies defines the maximal and non-
maximal configurational entropy (from bottom to top). Note that the
distinction between differences and sums of entropies depends on a
deliberate choice of how to distribute terms on either side of the equals
sign. In the scheme as presented here, the case for differences of entropies
is based on the choice of collecting all maximal entropies together, while
distributing collective and individual contributions on opposite sides of
the equation could highlight the fact that the non-maximal entropies fulfil
the same role as a subdivision complexity on the Wyckoff position level as
the subdivision complexity Hsubdiv does on the crystal structure level, thus
highlighting the applicability of the strong additivity property on both
levels of hierarchy (in this case the common weighting factors wM or wA

can be omitted on the Wyckoff position level of hierarchy).



(combinatorial explosion), while the number of actual repre-

sentatives lags behind greatly.

4.1. Example 1: space-group type P421m (No. 113) revisited

As our first example, we revisit the case of space-group

type P421m (No. 113). Table 1 compiles some values of

specific Shannon entropies for the Wyckoff sequences

given in this example, taking into account the combinatorial,

coordinational and configurational degrees of freedom,

highlighting the constant term Hsubdiv, with the other

Shannon entropies related according to their strong additive

sum:

Hconf ¼ Hsubdiv þ ð12=15ÞHcomb þ ð3=15ÞHcoor: ð41Þ

A search in the Pearson’s Crystal Data Crystal Structure

Database for Inorganic Compounds (Villars & Cenzual, 2020)

for the space-group type P421m (No. 113) reveals a total of 759

Wyckoff sequences for which crystal structure prototypes have

been assigned. Reducing for multiple entries arising from

multiple crystal structure determinations sharing the same

prototype yields 79 entries with a unique Wyckoff sequence/

prototype combination. (Notably, 538 entries share the same

Wyckoff sequence 113 fe3ca, with seven distinct prototypes

associated to it, of which the tP24–Ca2MgSi2O7 prototype

alone occurs 307 times, thereby explaining the heavy degree of

reduction observed.) Reducing again for distinct prototypes

sharing the same Wyckoff sequence yields 63 unique Wyckoff

sequences.

Of these, 55 correspond to a unique pair ðM;AÞ of combi-

natorial and coordinational degrees of freedom, with six pairs

occurring two times, and one pair, ð28; 12Þ, occurring three

times. The associated Wyckoff sequences and prototypes

are: fe4cb (Th2Se5 prototype), fe4ca [(Ca0.25La0.75)2Ga3O7.25

prototype] and e4dc3a (Ce2CoAl7Ge4/LiSmTiO4 prototypes).

On the basis of this work, one obtains a larger number

of 44 possible Wyckoff letter sequence solutions [based

on the Wyckoff multiplicities and arities, compare equation

(21)], which can be constructed from an exhaustive explora-

tion of a search space of much larger size of 11 648

multiplier choices (representatives with prototypes marked by

an asterisk):

f 2e3; fe4d; e5d2; f 2e2c2; fe3dc2; e4d2c2; f 2ec4; fe2dc4;

e3d2c4; f 2c6; fedc6; e2d2c6; fdc8; ed2c8; d2c10; � fe4cb;

e5dcb; fe3c3b; e4dc3b; fe2c5b; e3dc5b; fec7b; e2dc7b; fc9b;

edc9b; dc11b; � fe4ca; e5dca; fe3c3a; � e4dc3a; fe2c5a; e3dc5a;

fec7a; e2dc7a; fc9a; edc9a; dc11a; e6ba; e5c2ba; e4c4ba;

e3c6ba; e2c8ba; ec10ba; c12ba: ð42Þ

While the combinatorial approach is non-constructive, it might

often suffice to only know the number of possible solutions.

4.2. Example 2: space-group type Fm3m (No. 225)

As another example, we consider the cubic space-group

type Fm3m (No. 225) encompassing a total of 12 distinct

Wyckoff positions of the following multiplicities and arities:

W
225
¼

Wað1; 0Þ; Wbð1; 0Þ; Wcð2; 0Þ;
Wdð6; 0Þ; Weð6; 1Þ; W f ð8; 1Þ;
Wgð12; 1Þ; Whð12; 1Þ; W ið12; 1Þ;
W jð24; 2Þ; Wkð24; 2Þ; W lð48; 3Þ:

8>><
>>: ð43Þ

Note that the multiplicities stated here are those for a reduced

(primitive) unit cell, while the multiplicities for an F-centred

unit cell would be four times larger. Again, all of the four

possible values for the Wyckoff arity are present in this

example, in addition to seven distinct values for the Wyckoff

multiplicity. This example was chosen because it partly

corresponds to actual crystal structures.

Now, for the given choice of ðM;AÞ ¼ ð28; 3Þ degrees of

freedom one finds 17 matching Wyckoff letter sequences:

if 2; hf 2; � gf 2; f 2ed; � ifec; � hfec;

gfec; � fe2dc; � ifeba; hfeba; gfeba; fe2dba;

f 3cba; ie2cba; he2cba; � ge2cba; � e3dcba: ð44Þ

Here, the seven sequences preceded by an asterisk are

realized as crystal structures. A compilation of their

complexity values, which are interrelated according to

Hconf ¼ Hsubdiv þ ð28=31ÞHcomb þ ð3=31ÞHcoor; ð45Þ

is given in Table 2. Here, only the combinatorial contribution

Hcomb is responsible for the variable amount of configurational

complexity Hconf, the other terms, in particular the value for

Hsubdiv, being constant.
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Table 1
Configurational complexities for the six possible Wyckoff sequences (of length k) with 12 combinatorial and three coordinational degrees of freedom of
space group type number 113.

Shannon entropies are stated in units of bit per freedom.

Wyckoff sequence k ðM;AÞ ¼ ð12; 3Þ Hsubdiv Hcomb Hcoor Hconf

113 fba 3 ð8þ 2þ 2; 3þ 0þ 0Þ 0.722 1.252 0.000 1.723
113 d3 3 ð4þ 4þ 4; 1þ 1þ 1Þ 0.722 1.585 1.585 2.307
113 edba 4 ð4þ 4þ 2þ 2; 2þ 1þ 0þ 0Þ 0.722 1.918 0.918 2.440
113 d2cb 4 ð4þ 4þ 2þ 2; 1þ 1þ 1þ 0Þ 0.722 1.918 1.585 2.574
113 d2ca 4 ð4þ 4þ 2þ 2; 1þ 1þ 1þ 0Þ 0.722 1.918 1.585 2.574
113 dc2ba 5 ð4þ 2þ 2þ 2þ 2; 1þ 1þ 1þ 0þ 0Þ 0.722 2.252 1.585 2.840



If one performs the same calculation with the additional

restriction of the Wyckoff sequence length to the value k ¼ 5

one obtains the number of four solutions, which the reader can

easily check on the list given above.

4.3. Example 3: space-group type Cmcm (No. 63)

As a final example, we consider the orthorhombic space-

group type Cmcm (No. 63) encompassing a total of eight

distinct Wyckoff positions of the following multiplicities and

arities:

W
63
¼

Wað2; 0Þ; Wbð2; 0Þ; Wcð2; 1Þ;
Wdð4; 0Þ; Weð4; 1Þ; W f ð4; 2Þ;
Wgð4; 2Þ; Whð8; 3Þ:

8<
: ð46Þ

Note that the multiplicities stated here are those for a reduced

(primitive) unit cell, while the multiplicities for a C-centred

unit cell would be two times larger. Again, all of the four

possible values for the Wyckoff arity are present in this

example, in addition to three distinct values for the Wyckoff

multiplicity.

Now, for the given choice of ðM;AÞ ¼ ð22; 10Þ degrees of

freedom, one finds 67 matching Wyckoff letter sequences:

hg3c; hg2fc; hgf 2c; � hf 3c; g4ec; g3fec; � g2f 2ec;

gf 3ec; f 4ec; hg2c3; hgfc3; hf 2c3; g3ec3; � g2fec3;

gf 2ec3; f 3ec3; hgc5; � hfc5; g2ec5; gfec5; f 2ec5;

� hc7; gec7; fec7; ec9; g5b; g4fb; g3f 2b;

g2f 3b; gf 4b; f 5b; g4c2b; g3fc2b; g2f 2c2b; gf 3c2b;

� f 4c2b; g3c4b; g2fc4b; gf 2c4b; f 3c4b; g2c6b; gfc6b;

f 2c6b; gc8b; fc8b; c10b; g5a; g4fa; g3f 2a;

g2f 3a; gf 4a; f 5a; g4c2a; g3fc2a; g2f 2c2a; � gf 3c2a;

� f 4c2a; g3c4a; � g2fc4a; gf 2c4a; � f 3c4a; g2c6a; gfc6a;

� f 2c6a; gc8a; fc8a; c10a: ð47Þ

Here, the 11 sequences preceded by an asterisk are realized as

crystal structures. A compilation of their complexity values,

which are interrelated according to

Hconf ¼ Hsubdiv þ ð22=32ÞHcomb þ ð10=32ÞHcoor; ð48Þ

is given in Table 3. Here, both the combinatorial and coordi-

national degrees of freedom are responsible for the variable

amount of configurational complexity Hconf.

crystal lattices
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Table 2
Configurational complexities for the seven possible Wyckoff sequences (of length k) with 28 combinatorial and three coordinational degrees of freedom
of space group type number 225 which have realizations as crystal structures in nature.

Shannon entropies are stated in units of bit per freedom. Information regarding the structure type for which the Wyckoff sequence is realized is taken from
Pearson’s Crystal Data Crystal Structure Database for Inorganic Compounds (Villars & Cenzual, 2020). If more than one structure type is associated with the same
Wyckoff sequence a selection has been made.

Wyckoff sequence k ðM;AÞ ¼ ð28; 3Þ Hsubdiv Hcomb Hcoor Hconf Structure type

225 gf 2 3 ð12þ 8þ 8; 1þ 1þ 1Þ 0.459 1.557 1.585 2.018 Y0.25Bi0.75O1.5

225 ifec 4 ð12þ 8þ 6þ 2; 1þ 1þ 1þ 0Þ 0.459 1.788 1.585 2.227 KY3F10, Zr3PbO4F6

225 hfec 4 ð12þ 8þ 6þ 2; 1þ 1þ 1þ 0Þ 0.459 1.788 1.585 2.227 Y0.27Bi0.73O1.5

225 fe2dc 5 ð8þ 6þ 6þ 6þ 2; 1þ 1þ 1þ 0þ 0Þ 0.459 2.217 1.585 2.615 Cs3Re3S4I4

225 ifeba 5 ð12þ 8þ 6þ 1þ 1; 1þ 1þ 1þ 0þ 0Þ 0.459 1.860 1.585 2.292 (Ag0.5Pd0.5)11Se3

225 ge2cba 6 ð12þ 6þ 6þ 2þ 1þ 1; 1þ 1þ 1þ 0þ 0þ 0Þ 0.459 2.092 1.585 2.501 Cr0.8Mn0.2Mn(CN)6(H2O)4

225 e3dcba 7 ð6þ 6þ 6þ 6þ 2þ 1þ 1; 1þ 1þ 1þ 0þ 0þ 0þ 0Þ 0.459 2.520 1.585 2.888 K0.04(VO)Co0.88(CN)3.8(H2O)1.1

Table 3
Configurational complexities for the 11 possible Wyckoff sequences (of length k) with 22 combinatorial and ten coordinational degrees of freedom of
space group type number 63 which have realizations as crystal structures in nature.

Shannon entropies are stated in units of bit per freedom. Information regarding the structure type for which the Wyckoff sequence is realized is taken from
Pearson’s Crystal Data Crystal Structure Database for Inorganic Compounds (Villars & Cenzual, 2020). If more than one structure type is associated with the same
Wyckoff sequence a selection has been made.

Wyckoff sequence k ðM;AÞ ¼ ð22; 10Þ Hsubdiv Hcomb Hcoor Hconf Structure type

63 hf 3c 5 ð8þ 4þ 4þ 4þ 2; 3þ 2þ 2þ 2þ 1Þ 0.896 2.187 2.246 3.101 SrGe5.5

63 g2f 2ec 6 ð4þ 4þ 4þ 4þ 4þ 2; 2þ 2þ 2þ 2þ 1þ 1Þ 0.896 2.550 2.522 3.438 K2Zn5As4

63 g2fec3 7 ð4þ 4þ 4þ 4þ 2þ 2þ 2; 2þ 2þ 2þ 1þ 1þ 1þ 1Þ 0.896 2.732 2.722 3.625 [UO2]Cl2[NH3]6

63 hfc5 7 ð8þ 4þ 2þ 2þ 2þ 2þ 2; 3þ 2þ 1þ 1þ 1þ 1þ 1Þ 0.896 2.550 2.646 3.476 Yb2Mn0.33Si3.67

63 f 4c2b 7 ð4þ 4þ 4þ 4þ 2þ 2þ 2; 2þ 2þ 2þ 2þ 1þ 1þ 0Þ 0.896 2.732 2.522 3.562 K2Cu3US5

63 gf 3c2a 7 ð4þ 4þ 4þ 4þ 2þ 2þ 2; 2þ 2þ 2þ 2þ 1þ 1þ 0Þ 0.896 2.732 2.522 3.562 Zn(Zn0.45Co0.55)Co3Sn4

63 f 4c2a 7 ð4þ 4þ 4þ 4þ 2þ 2þ 2; 2þ 2þ 2þ 2þ 1þ 1þ 0Þ 0.896 2.732 2.522 3.562 CaFe4O6

63 hc7 8 ð8þ 2þ 2þ 2þ 2þ 2þ 2þ 2,
3þ 1þ 1þ 1þ 1þ 1þ 1þ 1Þ

0.896 2.732 2.846 3.664 KNaOs[NO][F5][H2O]

63 g2fc4a 8 ð4þ 4þ 4þ 2þ 2þ 2þ 2þ 2,
2þ 2þ 2þ 1þ 1þ 1þ 1þ 0Þ

0.896 2.914 2.722 3.750 �-U3O8

63 f 3c4a 8 ð4þ 4þ 4þ 2þ 2þ 2þ 2þ 2,
2þ 2þ 2þ 1þ 1þ 1þ 1þ 0Þ

0.896 2.914 2.722 3.750 Cs2Cu5Se4

63 f 2c6a 9 ð4þ 4þ 2þ 2þ 2þ 2þ 2þ 2þ 2,
2þ 2þ 1þ 1þ 1þ 1þ 1þ 1þ 0Þ

0.896 3.096 2.922 3.938 Sr2Ta2O7



5. Conclusion

As a contribution to the combinatorics of Wyckoff sequences,

we have presented two methods to calculate their number for

a fixed space group, given a pair of combinatorial and coor-

dinational total degrees of freedom, and, optionally, their

length. The first method is based on a generating polynomial

approach (see Sections 2.4 and 2.7 for the key results), while

the second makes use of a dynamic programming algorithm

(Section 2.8). While the generating polynomial approach

appears to be conceptually easier to understand, the dynamic

programming algorithm is considerably better in its compu-

tational performance. The methods have been exemplified on

cases of ideal and actual crystal structures with invariant

subdivision complexity and variable configurational

complexity in the sense of Hornfeck (2020), thus relating the

combinatorics of Wyckoff sequences to the complexities of

crystal structures.

APPENDIX A
Number of Wyckoff sequences of length k

The number of Wyckoff sequences of length k is given as

Wð�; ’; kÞ ¼
Xk

i¼0

�þ i� 1

i

� 
’

k� i

� �
ð49Þ

in which � and ’, respectively, denote the number of non-fixed

and fixed Wyckoff positions of a given space group [equation

(7) in Hornfeck (2022a)]. In the worst case � ¼ 19 and ’ ¼ 8,

thus

P50

k¼1

Wð19; 8; kÞ ¼ 3 519 297 892 616 574 305 ð50Þ

gives the number of distinct Wyckoff sequences up to k ¼ 50

inclusive.

APPENDIX B
The classical coin change problem

Assume you are in the possession of the following multiset of

coins: three coins of value v ¼ 1, four coins of value v ¼ 2, two

coins of value v ¼ 5. How many ways exist to pay a total price

of value V ¼ 12?

Let Sv denote the individual sum of coins of value v, hence

V ¼ S1 þ S2 þ S5 ¼ 12: ð51Þ

The values which each individual sum may take are deter-

mined and limited in number by the number of available coins

of each nominal value. Thus, one gets

S1 2 f0; 1; 2; 3g;

S2 2 f0; 2; 4; 6; 8g;

S5 2 f0; 5; 10g ð52Þ

as all possible values. Now, the trick is that one identifies these

values with the exponents of a couple of generating poly-

nomials, one for each type of coin, namely

P1ðxÞ ¼ 1þ xþ x2 þ x3;

P2ðxÞ ¼ 1þ x2
þ x4
þ x6
þ x8

P5ðxÞ ¼ 1þ x5
þ x10

ð53Þ

in which x0 ¼ 1 by definition. From these individual poly-

nomials one forms their product

PðxÞ ¼ P1ðxÞP2ðxÞP5ðxÞ ð54Þ

and analyses its expansion

1þ xþ 2x2 þ 2x3 þ 2x4 þ 3x5 þ 3x6 þ 4x7

þ 4x8
þ 4x9

þ 4x10
þ 4x11

þ 4x12
þ 4x13

þ 4x14

þ 3x15
þ 3x16

þ 2x17
þ 2x18

þ 2x19
þ x20

þ x21: ð55Þ

The coefficient of x12 in PðxÞ gives the desired solution, here

it is equal to four, describing the four cases (i) 2� 1þ 2� 5,

(ii) 1� 2þ 2� 5, (iii) 3� 1þ 2� 2þ 1� 5 and (iv)

1� 1þ 3� 2þ 1� 5, all amounting to 12.

A generalization is possible, in case the number of coins

available for all given values v is assumed to be infinite. Then,

the generating polynomials are replaced by the respective

generating functions of a geometric series,

FvðxÞ ¼ 1þ xv
þ x2v

þ x3v
þ � � � ¼

1

1� xv
; ð56Þ

and the solution to the problem is given by their product

FðxÞ ¼ F1ðxÞF2ðxÞF5ðxÞ ¼
1

1� xð Þ 1� x2ð Þ 1� x5ð Þ
ð57Þ

in the same way as before, namely as the value of the coeffi-

cient ½xV � in FðxÞ, in which V denotes the total price. In the

infinite case the result is ½x12�F ðxÞ ¼ 13, necessarily containing

at least as many or even more solutions than were found in the

finite case. In this general form the problem has been

addressed by Pólya (1956). A closed form solution for the

univariate infinite case has been described by Graham et al.

(1994, pp. 327–330 and pp. 344–346).

Note that

Y1
i¼1

1

1� xi
ð58Þ

is the generating function of the number-theoretic integer

partition function (Alfonsı́n, 2005, p. 71), and our problem

asks for the number of restricted partitions into specified,

possibly repeated parts (a finite or infinite number of coins

with a finite set of distinct denominations). In this context the

number of non-negative integer solutions is known as

Sylvester’s denumerant (Sylvester, 1857) which has a rich

history in number theory, partly due to the difficulty of

obtaining exact results (Alfonsı́n, 2005, ch. 4).

Finally, it should be emphasized that an elegant method of

solving this problem in practice is given by the concept of

dynamical programming. Since the problem again and again

reduces to simpler subproblems of the same kind, the solu-
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tions of these subproblems can be stored whenever they occur

for the first time. Moreover, using a bottom-up approach (top-

down would be equally feasible), the solutions for sub-

problems can be systematically generated from the already

known solutions. For this purpose the function

here given in a Python implementation is initialized with a

result vector of length nþ 1 of the form ð1; 0; 0; . . . ; 0Þ. This

result vector is subsequently updated in a separate loop for

every coin value. The final value at position n of the result

vector then is the solution to the (infinite) coin problem

described before (for n ¼ 12 the result is equal to 13).

APPENDIX C
Code examples

Figs. 6 and 7 give working examples for the calculation of the

number of Wyckoff sequences with the same subdivision

complexity by means of the generating polynomial and

dynamic programming approaches. The input values are taken

from the example described in Section 2.6, with the output

being equal to six.
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