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In a pilot study, electron-density (ED) and ED Laplacian distributions were

reconstructed for the challenging case of CaB6 (Pearson symbol cP7) with

conceptually fractional B—B bonds from quantum-chemically calculated

structure-factor sets with resolutions 0.5 Å–1
� [sin(�)/�]max � 5.0 Å–1 by means

of Fourier-synthesis techniques. Convergence of norm deviations of the

distributions obtained with respect to the reference ones was obtained in the

valence region of the unit cell. The QTAIM (quantum theory of atoms in

molecules) atomic charges, and the ED and ED Laplacian values at the

characteristic critical points of the Fourier-synthesized distributions have been

analysed for each resolution and found to display a convergent behaviour with

increasing resolution. The presented method(exponent) (ME) type of Fourier-

synthesis approach can qualitatively reconstruct all characteristic chemical

bonding features of the ED from valence-electron structure-factor sets with

resolutions of about 1.2 Å–1 and beyond, and from all-electron structure-factor

sets with resolutions of about 2.0 Å–1 and beyond. Application of the ME type of

Fourier-synthesis approach for reconstruction of ED and ED Laplacian

distributions at experimental resolution is proposed to complement the usual

extrapolation to infinite resolution in Hansen–Coppens multipole model derived

static ED distributions.

1. Introduction

As a consequence of the Hohenberg–Kohn theorems

(Hohenberg & Kohn, 1964), the electron density (ED) of a

chemical system is known to constitute its most fundamental

observable property. Historically, in early X-ray diffraction

experiments, only the locations of the atoms were identified

from the dominating local maxima of the ED, which can be

successfully modelled in the independent atom model (IAM),

i.e. using a superposition of free atom form factors to model

the structure factor for each reflection. With the improvement

of experimental setups, the reconstruction of ED distributions

from diffraction experiments came into reach, and methodo-

logical developments were devised for reliable extraction of

this information from the observed diffraction intensities of

elastic X-ray scattering experiments. Two fundamentally

different strategies were followed for this purpose (Waser &

Schomaker, 1953). One possibility consists of setting up a

position-space model for the ED distribution and fitting it to

the experimentally observed intensities. This was realized by

replacing the superposition of spherically symmetric ED

distributions in the IAM by a multipolar expansion, with the

multipoles at each atomic site being consistent with the

corresponding site symmetry. The most prominent of these

methods used nowadays is the Hansen–Coppens (HC) multi-

pole model (Hansen & Coppens, 1978). On the other hand, it
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was recognized early on that, in principle, the ED distribution

can be reconstructed by ‘Fourier inversion’ of structure factors

(Bragg & West, 1930). If this procedure is terminated before

the remaining members of the Fourier series display negligibly

small structure-factor amplitudes, series truncation artefacts

like spurious local ED maxima and minima can occur, which

adversely affect chemical interpretation. In the following, the

process of Fourier inversion using a limited number of struc-

ture factors eventually multiplied by a weighting function will

be called Fourier synthesis. It has long been known that

multiplication of the static structure factors by the Debye–

Waller factor helps to avoid series termination artefacts

(Bragg & West, 1930). However, this turns the static ED

distribution into a physically different, temperature-depen-

dent dynamically smeared one. In pioneering experimental

studies on Fourier synthesis of ED distributions in prototype

ionic, polar covalent and covalent bonding situations in NaCl,

MgO and diamond, the introduction of artificially enhanced

temperature factors was found necessary in vibrationally hard

compounds in order to eliminate series truncation artefacts

within experimental resolution (Brill et al., 1939, 1948).

Avoiding artificial temperature factors, a recent study

reported on Fourier-synthesized dynamically smeared all-ED

(all-electron density) distributions for two amino acids free

from series truncation effects (Mondal et al., 2012). They were

calculated from static structure factors and atomic displace-

ment parameters obtained by HC multipole model fits of

temperature-dependent X-ray diffraction data with resolu-

tions [sin(�)/�]max � 1.2 Å–1. Good convergence of the

synthesized dynamical all-ED and all-ED Laplacian distribu-

tions was shown to require usage of extrapolated structure

factors from the fitted multipole model up to cut-offs at

[sin(�)/�]max � 6 Å–1. Note that this extrapolation to high

resolution was necessary because of a combination of very

strict numerical convergence conditions with comparably

small physical vibrational smearing working against series

termination effects. In order to perform Fourier synthesis

using only HC dynamical structure factors within experi-

mental resolution, a suitable mathematical weighting function

may be invoked.

Notably, even the practice in standard HC studies on

experimental EDs to calculate the static ED distributions from

fitted atomic multipoles in real space (avoiding Fourier

synthesis) corresponds to an implicit extrapolation of the HC

model structure factors to infinite resolution (Coppens &

Stevens, 1977). An alternative route more consistent with the

experimental conditions would be the Fourier synthesis of the

ED using only those static structure factors of the HC model

that correspond to the experiment resolution. To the best of

our knowledge, this has not yet been done.

In the present methodological study, the focus lies on

mathematical weighting functions in order to keep the

physical interpretation of the original data set, i.e. Fourier

synthesis using static ED structure factors and mathematical

weighting functions still yields (smoothed) static ED distri-

butions. The effectiveness of a number of mathematical

weighting functions on convergence of Fourier synthesis of

static valence (val)-EDs and all-EDs and their Laplacians is

investigated. One reason for selection of static ED Fourier

synthesis is that there is a theoretical foundation for a QTAIM

(quantum theory of atoms in molecules) (Bader, 1990) topo-

logical study for static EDs. Moreover, the focus on static ED

synthesis represents a more challenging task compared with

the dynamic one, because series termination effects and

artefacts are more prominent there. By converging the Fourier

synthesis of static EDs already at experimental resolution with

suitable mathematical weighting functions, the extrapolation

of structure factors or usage of artificially enhanced Debye–

Waller factors can be avoided. The same technique may also

work for Fourier synthesis of dynamic EDs, thus avoiding

extrapolation of experimental data sets (see above).
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Figure 1
(a) Crystal structure of CaB6 (space group Pm�33m); unit-cell box is shown
by black lines, B—B bonds by grey lines. (b) Reference ED and (c)
reference ED Laplacian distributions of CaB6 in the (200) and (110)
planes with molecular graph; �i (rank, signature) enumerates and
classifies the crystallographically independent ED critical points; ED
isoline steps at 0.01 e� bohr�3, ED Laplacian isoline steps of
0.05 e� bohr�5.



Finally, the HC model fitting is not free from difficulties and

biases (Michael & Koritsanszky, 2017), such that the fitted

structure factors {FHC} may be different from the initially

given ones {F0}. It is conceivable that, in certain cases, signif-

icantly different ED or ED Laplacian distributions may be

obtained compared with those obtained from Fourier synth-

esis using the initial structure-factor set {F0}.

On the methodological side, static EDs in general are

available only from a model. In the present case, a quantum-

chemical DFT (density functional theory) calculation on a

crystalline system was employed, and the ED Fourier coeffi-

cients (structure factors) can be obtained up to arbitrary

resolution. The static ED and its Laplacian calculated from the

model correspond to the reference distributions in the

subsequent investigations, and the various Fourier-synthesized

distributions were evaluated with respect to these references

not only at critical points, but also in the whole unit cell and

parts of it using norm deviations.

As an example test case, the non-molecular crystal structure

of CaB6 has been chosen (employed experimental structure

data in Table 1). The proper reconstruction of its ED features,

which are related to a rather evolved chemical bonding

scenario, is considered to be methodologically more challen-

ging than for a molecular crystal of a classical organic mole-

cule like, e.g., glycine or urea. The cubic structure [space group

Pm�33m, Fig. 1(a)] of binary hexaborides MB6 (M = Na, K, Rb,

Ca, Sr, Ba, Sc, Y, La) is based on a CsCl-like arrangement of

metal atoms and barycentres of sixfold interconnected B6

octahedra. The octahedral B6 clusters display six short inter-

octahedral (exohedral) and 12 longer intra-octahedral (endo-

endohedral) B–B contacts with substantially different bonding

character. Conceptually, the exohedral contacts represent

single two-centre (2c) bonds, while the endohedral ones are

described by a mixture of 2c and three-centre (3c) bonding

character (Longuet-Higgins & Roberts, 1954). A recent

theoretical study focuses on the description of chemical

bonding for binary hexaboride compounds using position-

space bonding indicators, namely the ED distribution �(r), the

ED Laplacian r2�(r), as well as the pair density based elec-

tron localizability indicator distribution (ELI-D), and 2c and

3c delocalization indices (DIs) between atomic regions

(Börrnert et al., 2013) (the first author of the present paper, Dr

Carina Bergner, was previously known as Dr Carina Börr-

nert). The resulting QTAIM effective charge Ca1.52+ is

consistent with formal charge assignment Ca2+ obtained on

the basis of ELIBON (ELI-D-based oxidation number). This

is in accordance with the saturation of electronic demand of

the boron framework composed of 6-connected closo B6
2�

clusters by charge transfer of two electrons from Ca according

to the Lipscomb–Wade rules (Lipscomb, 1979; Wade, 1971).

Two- and three-centre DI analysis reveals a 2c–2-electron

character of the exohedral B—B bonds, and – in agreement

with ELI-D topology – a mixed 2c + 3c character of endohe-

dral B—B bonding. Endohedral 2c DIs of about 0.60, and 3c

ones of about 0.20 are found for electronically saturated

hexaborides of the alkaline-earth metals. These values are

related to the total amount of seven endohedral bonds

expected according to Lipscomb–Wade rules (Börrnert et al.,

2013).

The pair density based bonding indicators ELI-D and DIs

are still not accessible in purely experimental studies of all

types of crystalline compounds. The very useful X-ray

constrained wavefunction calculation method, which delivers

this information at a semi-experimental level, is nowadays still

technically limited to molecular crystals (Genoni & Jayatilaka,

2021). Using diffraction experiments, the ED distribution can

be reliably reconstructed from structure factors. Certain

specific features of chemical bonding in hexaborides can

already be obtained from ED-based quantities, e.g. QTAIM

atomic charges and charge-density concentrations [r2�(rc)

< 0] at bond and ring critical points rc. They fit the generally

accepted bonding picture. In the quantum-chemical calcula-

tions on CaB6, comparably high ED is found within the B6

skeleton, i.e. edges and faces (Mebs et al., 2011), and lower

values in the octahedron centre and interstitial regions [Fig.

1(b)]. The topological features of the ED distribution, namely

the critical points rc obeying r�(rc) = 0, have been determined

within the unit cell and characterized by their curvatures

(Börrnert et al., 2013; Börrnert, 2013). The set of all critical

points of types (rank, signature) within the unit cell [Fig. 1(b)]

satisfies the Poincaré–Hopf relationship (Zou & Bader, 1994).

The distribution of the ED Laplacian [Fig. 1(c)] contains

additional information about particular chemical bonding

features in CaB6. Values of r2� < 0 at the bond critical points

(b.c.p.) �4 [d(B—B)endo = 1.751 Å] and �5 [d(B—B)exo =

1.676 Å] between the boron atoms indicate a charge concen-

tration which is characteristic for covalent bonding within the

boron framework. Apart from the Ca-atom locations, the

inter-octahedral region of the CaB6 structure is characterized

by low values of �. A b.c.p. �3 is found between the octahedral

face and the Ca atom [Fig. 1(b)]. The positive value of r2� at

and close to this b.c.p. represents charge depletion and indi-

cates a predominantly ionic interaction between the metal

atoms and the boron framework. Negative values of r2� not

only along the endohedral B—B bond path and b.c.p. �4, but

also around the B6 clusters, and especially at the ring critical

points (r.c.p.) �6 slightly above the octahedral triangular face

midpoints (Bader & Legare, 1992), mark the whole endohe-

dral boron skeleton (i.e. B—B bonds and B—B—B triangles)

as a region of charge-density concentration (r2� < 0). Charge-

density depletion is found for the interior part of the octa-

hedron, with the highest depletion found at the cage critical

point (c.c.p.) �8 at the octahedron centre. Summarizing, it is

evident that for CaB6 ED characteristics qualitatively feature

certain results of pair density based bonding indicators

important for chemical understanding of this type of

compound.
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Table 1
Structure parameters of CaB6 employed for calculations (Börrnert, 2013).

Space group Pm�33m (No. 221)
Lattice parameter a 4.152 Å
Ca (1a) 0 0 0
B (6f) 0.2018 1

2
1
2



The purpose of this work is to investigate, on the basis of the

calculated ED and ED Laplacian distribution for CaB6

(structure parameters, Table 1) from a periodic DFT calcula-

tion, whether its decisive chemical bonding features can be

extracted from a data set of static structure factors with a given

resolution 1
2Hmax = [sin(�)/�]max. Within this analysis, recon-

structed distributions of � and r2� for CaB6, obtained by

different Fourier-synthesis methods, are compared with each

other and with the original distributions obtained from DFT

calculation at the experimental geometry. All structure factors

were calculated from the DFT wavefunction (see Appendix

A). Comparison of the relevant chemical bonding features of

the quantum-chemically calculated static reference ED with

those obtained from a suitable Fourier synthesis at experi-

mentally accessible resolution [sin(�)/�]max can give an answer

to the question of whether that resolution is sufficient to yield

the chemical bonding information content of the original

distribution. This means a suitable Fourier-synthesis proce-

dure may be a valuable tool to evaluate the ideally extractable

information content of the original ED from a certain

measured or measurable data set with limited resolution.

2. Methods

2.1. ED and ED Laplacian distributions from theoretical
structure factors by the method(exponent) type of Fourier-
synthesis approach

The ED �(r) of a crystalline system is physically observable.

Diffraction measurements on crystalline samples yield

diffraction intensities I(H) at reciprocal-lattice positions

H ¼ ha� þ kb� þ lc�, which are related to the squared

modulus of the product of the corresponding static structure

factors F(H) and the Debye–Waller factor. These material-

and structure-dependent quantities are obtained by fitting

intensities of a coherent elastic scattering experiment, e.g. by

means of the HC pseudo-atom model (Hansen & Coppens,

1978; Gillet & Koritsanszky, 2012).

The ED structure factors are defined by a Fourier integral

of the corresponding ED distribution �(r) in the unit cell

(u.c.), the static or the dynamically smeared one. For the

purpose of a subsequent QTAIM analysis, we focus on static

EDs and structure factors F(H) in the following,

F Hj

� �
¼
R

u:c:

� rð Þ exp 2�iHjr
� �

dr: ð1Þ

Mathematical inversion of this formula leads to the well

known Fourier-series representation of the ED (Waser &

Schomaker, 1953):

� rð Þ ¼
1

Vu:c:

X1
j¼0

F Hj

� �
exp �2�iHjr

� �
: ð2Þ

Exact reconstruction of the original ED via Fourier back-

transformation is impossible in practice due to the necessity of

infinite structure-factor sets; all procedures working with such

incomplete back-transformations will be called Fourier

synthesis in the following,

Sn rð Þ ¼
1

Vu:c:

XnðHmaxÞ

j¼0

F Hj

� �
exp �2�iHjr

� �
: ð3Þ

The incompleteness of Fourier series Sn(r) often leads to

negative ED values, spurious non-nuclear maxima (NNMs)

and other errors, e.g. shifted nuclear ED maxima, broadened

nuclear ED ‘peaks’ and ED ripples (Altomare et al., 2008),

seen in the raw Fourier-synthesized [equation (3)] EDs [Fig.

2(a)]; all of them are typically classified as series termination

errors. In the present Fourier-synthesis approach for ED and

ED Laplacian reconstruction for QTAIM analysis, we tend

to distinguish between series truncation artefacts (negative

ED values and NNMs not present in the reference ED) and

so-called (normal) series termination errors. The latter

correspond to all other deviation types of a limited-

resolution Fourier synthesis from the mathematically exactly

[at infinite resolution, equation (2)] back-transformed ED. An

enumeration of deviation types is typically dependent on

context, such that for the present QTAIM type of ED analysis,

additional series termination errors were even more relevant

than those mentioned before, namely shifts of positions of

critical points, deviations of ED and ED Laplacian values at

critical points, and ED Laplacian ripples. The distinction
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Figure 2
Raw Fourier synthesis [equation (3)] of the ED distribution for CaB6 at
[sin(�)/�]max = 1.5 Å�1 shown in the (200) and (110) planes. (a)
Synthesized all-ED Sn,tot(r) with spurious NNMs and large regions with
negative values (red isolines). (b) All-ED S�n;valðrÞ from val-ED synthesis
Sn,val(r) [equation (19)] with spurious NNMs, the most prominent ones
shown by red arrows; black isoline steps of 0.0078 e� bohr�3.



between artefacts and errors reflects the evaluation strategy

adopted in the present approach. Fourier-synthesis results

with ED features classified as series termination artefacts are

considered of minor quality and are usually dropped. In

contrast, Fourier-synthesis results displaying (normal) series

termination errors (in the present definition) are principally

accepted while working systematically to decrease them (see

below). The classification as series termination artefact is

clearly possible for the negative ED values, which are not

allowed for real EDs; the situation is more delicate for

NNM occurrence. NNMs are principally allowed features for

real ED distributions, though rather seldom occur. Their

occurrence during Fourier synthesis of an unknown original

ED should be carefully checked in order to either establish

their reality or identify them as artefacts. This would be

related to potential future applications as a stand-alone

method and not for the present study, where they are clearly

identified as artefacts, because the reference DFT ED from

which the ED structure factors have been obtained does not

display NNMs.

Weighting-function methods. SnðrÞ is mathematically defined

by folding the true distribution of �(r) with the Dirichlet

kernel Dn(r). The latter is a cosine series oscillating in sign and

value around Dn(r) = 0 (Pepinsky, 1952). This is the reason

why Fourier synthesis with this kernel (‘raw Fourier synth-

esis’) may even yield regions in space where Sn(r) < 0. ED

distributions obtained from partial sums Sn(r) are character-

ized by Euclidean norm deviations �2
n, which monotonically

decay with increasing number n of partial sum elements (L2

norm) (Carleson, 1966):

�2
n ¼ kSn rð Þ � � rð Þk2 ¼

R
jSn rð Þ � � rð Þj2 dr

� �1=2
: ð4Þ

For a given distribution Sn(r), a reduction of the truncation

errors can be achieved by modifying the Dirichlet kernel,

evoking a gradual down-weighting of partial sum elements, i.e.

structure factors, with increasing length jHj ¼ H of the scat-

tering vector. This automatically occurs already by multi-

plication of the static structure factor with the Debye–Waller

factor, which decays as exp(–1
4BisoH2) (Coppens, 1997). It

results from folding the static ED distribution with the thermal

motion of the atoms. In order to smooth truncation errors,

early works on ED reconstruction either suggested the

introduction of an artificial temperature factor (Waser &

Schomaker, 1953; Pepinsky, 1952) or extrapolation of the

measured data using artificial series members (van Reijen,

1942). Acceleration of the convergence of the series expansion

by substituting the strongly oscillating Dirichlet kernel by

integral kernels with invariably positive terms offers a purely

mathematical method to avoid series truncation artefacts and

reduce certain errors without using empirical functions

(Pepinsky, 1952). The most prominent of those kernels is the

Fejer kernel, which is obtained by Cesaro summation, i.e.

calculating the arithmetic average Cnmax(r) of partial sums

Sn(r) defined in equation (3):

Cnmax rð Þ ¼
1

nmaxþ 1

Xnmax

n¼0

Sn rð Þ: ð5Þ

This leads to a maximum weight of 1.0 for the lowest structure

factor F(000) = F(Hj=0), and a monotonic decrease of the

weights �C(Hj) of the remaining nmax structure factors F(Hj)

according to 1 � n/(nmax+1) along the sequence n = 0,

1, . . . nmax. For this reason, the non-negative Fejer kernel acts

as a low-pass filter on the structure factors, which leads to

uniform convergence of a Fourier series.

As can be seen from the 1D index n, the Fejer method

historically is a 1D method, where the Cesaro summation of

partial sums of Fourier coefficients finally leads to a simple

multiplicative factor �C(Hj) for each Fourier coefficient F(Hj)

in the Fourier-synthesis formula [equation (6)]:

S�n rð Þ ¼
1

Vu:c:

XnðHmaxÞ

j¼0

�C Hj

� �
F Hj

� �
exp �2�iHjr

� �
: ð6Þ

For a given resolution [sin(�)/�]max = 1
2Hmax and a corre-

sponding number n(Hmax)+1 of Fourier coefficients to be

included, the size for each �C(Hj) factor varies in the range ]0,

1] and is related to the position of the Fourier coefficient in the

sequence of coefficients j = 0 . . . n(Hmax), according to

�CðHjÞ ¼ 1� nðHjÞ=½nðHmaxÞ þ 1�, where j = n(Hmax) denotes

the final coefficient to be included with non-zero weight.

Application of this method to structure-factor sets {F(Hj)}

organized by three indices hj, kj, lj is a non-unique extension.

Such a 3D variant for ED reconstruction has been proposed

and applied by Pepinsky (1952). It corresponds to �C(Hj)

factors composed of a product of the three 1D terms related to

hj, kj and lj:

�Pep3D Hj

� �
¼ 1�

jhjj

hmax þ 1

� �
1�

kj

�� ��
kmax þ 1

� �
1�

lj

�� ��
lmax þ 1

� �
: ð7Þ

All symmetry-related structure factors [Hj]sym belonging to

the same reflection class obtain the same weighting factor,

which is a common feature of all weighting schemes. As a

special feature of all 3D weighting schemes presented herein,

symmetry-independent structure factors with the same 1
2|Hj| =

sin(�)/� obtain different weighting factors. Note that this

weighting method denoted Pep3D in the following has some

intrinsic disadvantage. It selects [equation (7)] a box-shaped

region from the available structure factors Fhkl, which intro-

duces a certain directional anisotropy. Nevertheless, numerical

evaluation of this method has been selected herein also for

historical reasons.

Utilizing the degrees of freedom in the weighting schemes

denoted as 1D in the following, an ordered string (1D) of

structure factors {F(Hj)} is formed using the natural sequence

of increasing Hj = |Hj|. So, the ordered string looks like

{[Hj]|H|}ord. Not only will all symmetry-related structure factors

be given the same weighting factor, but so will all reflections

with the same Hj in general. This is a necessary consequence of

having a uniquely defined sequence of structure factors with

increasing Hj leading to monotonically decaying sigma factors
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with Hj. In the Fejer spirit, we may now assign increasing

position numbers nj to each class [Hj]|H|. F(0, 0, 0) has to be

assigned position number n0 = 0, as it must always obtain a

weighting factor of 1. Three different ways to assign position

numbers for the remaining list of structure-factor classes

[Hj]|H| were investigated.

In the conceptually simplest case (at first sight), we may

assign consecutive integer position number values nj = j = 1,

2, . . . , Nmax to the sequence of Nmax classes [Hj]|H|. As an

example, the first three classes [0,0,0] |H|, [1,0,0] |H| and [1,1,0]|H|

in the ordered list obtain position numbers nj = 0, 1 and 2,

respectively. This weighting method is denoted Fej_cnt in the

following:

�Fej cnt Hj

� �
¼ 1�

nj

Nmax þ 1
: ð8Þ

In the variant denoted Fej_pcl, we take into account the

number of structure factors inside each [Hj]|H| class. The

procedure uses the consecutive integer counting numbers j of

each single structure factor in the complete ordered list. Each

of the Nmax classes [Hj]|H| obtains the position value of the

arithmetic mean of the first and the last member’s position

value, nj = (jfirst + jlast)/2. As an example, the first classes in the

list [0,0,0] |H|, [1,0,0] |H| and [1,1,0]|H| obtain position numbers 0,

3.5 and 12.5, respectively. This procedure may be justified

considering that an infinitesimal, e.g. orthorhombic, distortion

would keep the number of structure factors, but split the

[Hj]|H| classes and lead to additional position numbers

compared with Fej_cnt. These are consistently taken into

account in the Fej_pcl weighting method:

�Fej pcl Hj

� �
¼ 1�

nj

Njmaxþ1

: ð9Þ

Having accepted position numbers for the [Hj]|H| classes

being fractional and not necessarily increasing by 1, the

introduction of Fej_stl represents only a small additional step.

In this weighting scheme there is an infinite number of posi-

tion number holes between the present ones, keeping the

space for additional structure factors (reflections), e.g. in case

of symmetry reductions that lead to vanishing of non-primitive

lattice translations. This is effectuated by using the Hj values

themselves as ‘position numbers’. Moreover, this 1D scheme is

a directly related alternative to the 3D Pepinsky one. Instead

of using the product of three 1D terms, the h, k, l values are

additively combined according to Hj ¼ 1=aðh2
j þ k2

j þ l2
j Þ

1=2

for the cubic structure [Hj = 1/dhkl, i.e. the reciprocal inter-

plane distance of lattice planes (hj kj lj)], with ‘a’ being the

lattice parameter:

�Fej stl Hj

� �
¼ 1�

Hj

Hmaxþ1

: ð10Þ

Since 1
2Hj = sin(�)/�, weighting factor �Fej1D will linearly

decrease with sin(�)/�. Note that all 1D schemes presented

herein automatically avoid the problem of selecting structures

Fhkl in a box-shaped region like in the original Pep3D

[equation (7)]. The region defined by Hmax is always spherical

in reciprocal space.

Based on Lanczos’s solution of smoothing the first deriva-

tive of a 1D Fourier expansion (Lanczos, 1956), Shchedrin &

Simonov (1969) suggested an algorithm for the 3D-expanded

ED Fourier-synthesis problem. Although the authors were not

interested in the ED gradient itself, it was recognized that

smoothing the ED gradient simultaneously smooths the

contours of the ED itself. Therefore, the Lanczos factors can

serve the same purpose as the Fejer factors, the smoothing of

the ED to counteract series termination artefacts:

�Lan3D Hj

� �
¼

sinfjhjj�=½hmaxðjkj; ljÞ þ 1�g

jhjj�=½hmaxðkj; ljÞ þ 1�

� �
sinfjkjj�=½kmaxðhj; ljÞ þ 1�g

jkjj�=½kmaxðhj; ljÞ þ 1�

� �

	
sinfjljj�=½lmaxðhj; kjÞ þ 1�g

jljj�=½lmaxðhj; kjÞ þ 1�

� �
¼ sincfjhjj�=½hmaxðkj; ljÞ þ 1�gsincfjkjj�=½kmaxðhj; ljÞ þ 1�g

	 sincfjljj�=½lmaxðhj; kjÞ þ 1�g; ð11Þ

with

hmax kj; lj

� �
¼ max

kj;lj¼const:
hj j: ð12Þ

This weighting method, herein denoted Lan3D, has been

implemented and employed in the following. Note that the

special condition [equation (12)] was especially designed to

avoid box-type selection of structure factors as occurs in the

original Pep3D [equation (7)].

Interestingly, a similar weighting function has also been

used for Fourier back-transformation of magnetic structure

factors obtained from polarized neutron scattering experi-

ments to calculate experimental magnetization density maps

(Shull & Mook, 1966).

In analogy to method Fej_stl, a 1D Lanczos method has

been set up, called Lan1D in the following. It is possibly

identical to the method mentioned by Strel’tsov et al. (1985),

but without the explicit formulas given there. Similar to the 1D

Fejer methods, in the Lan1D weighting scheme all structure

factors with the same Hj obtain the same numerical weighting-

factor value, while this is not so in the 3D schemes Pep3D and

Lan3D:

�Lan1D Hj

� �
¼

sinðHj�=Hmaxþ1Þ

Hj�=ðHmaxþ1Þ
¼ sincðHj�=Hmaxþ1Þ: ð13Þ

With these six weighting-function methods for compensation

of series termination effects in the Fourier synthesis of the ED

distribution at hand, the question remains as to how to achieve

a smoothed ED Laplacian distribution?

Weighting-function exponent. While Fourier series in

general are convergent, this is not necessarily valid for their

derivatives. Caused by the additional factor 4�2Hj
2, which

increases with increasing size (resolution) of the Fourier series

faster than the static structure factors decay, the second

derivatives of these Fourier series are divergent,
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r2Sn rð Þ ¼ �
1

Vu:c:

XjðHmaxÞ

j¼0

4�2Hj
2F Hj

� �
exp �2�iHjr

� �
: ð14Þ

As already mentioned, the Lanczos scheme was initially set up

to suppress oscillation artefacts in the first derivative of a

truncated Fourier series. Clearly, these artefacts are already

contained in the synthesized ED distribution itself, and a

numerical differentiation of this distribution gives the same

artefacts as the analytical one. Therefore, smoothing out series

termination artefacts of the ED will simultaneously improve

the ED gradient and Laplacian representation as well. The

interconnection between the ED distribution, its gradients and

its Laplacian distribution is directly employed in the QTAIM

topological analysis of the ED distribution. The critical points

are located where the ED gradient is zero, and they are

characterized by the ED curvatures at this point. Therefore,

the ED, the ED gradient and the ED Laplacian have to be

synthesized using the same sigma factor �p(Hj). This simple

conclusion also implies a further degree of freedom in the

sigma factor’s usage. Since the initial sigma factor derived by

Lanczos was for the first derivative, the Laplacian should have

the squared sigma factor, both of which cannot be fulfilled

simultaneously in the topological analysis of the ED. This not

only means that one can use either exponent, 1 or 2, but that

one can use any real number p � 1.0 (and eventually even

p > 0). Exploiting this degree of freedom has been found vital

for the whole study. To the best of our knowledge, this has

never been considered or formulated before in the framework

of Fourier synthesis of EDs and ED Laplacians. As a strategy,

for each Fourier-synthesis method presented herein, the

lowest exponent p has been used, which yields a series of

partial sums Sn(r) without artefact NNMs at 1
2Hmax > 1.1 Å�1.

For the present study shown below, this was achieved with 1.0

� p � 3.0, with the actual value used depending on the

method. The specification of the weighting function used in

each case will be abbreviated in the form method(p value), e.g.

Lan1D(1.75). Summarizing, for Fourier synthesis the

following equations were always employed:

S�
p

n rð Þ ¼
1

Vu:c:

Xj Hmaxð Þ

j¼0

�p Hj

� �
F Hj

� �
exp �2�iHjr

� �
ð15Þ

r
2S�

p

n rð Þ ¼ �
1

Vu:c:

XjðHmaxÞ

j¼0

�p Hj

� �
4�2H2

j F Hj

� �
	 exp �2�iHjr

� �
: ð16Þ

In the following, the �p superscript of the synthesized distri-

butions S�
p

n ðrÞ [equation (15)] and r2S�
p

n ðrÞ [equation (16)]

indicating the present method(exponent) (ME) type of

approach is omitted for brevity. The effect of the �p factors

with respect to the convergence of the ED and its Laplacian

distribution with increasing resolution 1
2Hmax is investigated

using the example of CaB6.

Although the application of Fourier synthesis for ED

reconstruction and even for its Laplacian has been reviewed

(Tsirelson & Ozerov, 1996), so far, the approach itself (inde-

pendent from experimental uncertainties) has never been

systematically investigated with respect to convergence

behaviour of QTAIM-related properties. Typically, only the

final results obtained from the experimental [sin(�)/�]max are

reported, but the behaviour of the final values upon increasing

resolution from lower resolutions up to this final one would be

a further criterion to judge reliability of the final results.

Moreover, as explained above, in a QTAIM study the Fourier

syntheses of the ED and the ED Laplacian are conceptually

restricted [equations (15), (16)] to employ the same smoothing

factors �p(Hj). To the best of our knowledge, it has never been

explicitly noted in the literature that this has actually been

done.

Valence-electron and all-electron Fourier synthesis. A

partitioning of all-electron density (all-ED) distributions into

additive core-electron (core-ED) and valence-electron (val-

ED) distributions has been found useful in chemistry, physics

and crystallography, i.e. for the reference DFT all-ED and all-

ED Laplacian, one can formulate

�DFTðrÞ ¼ �coreðrÞ þ �valðrÞ ð17Þ

and

r2�DFTðrÞ ¼ r
2�coreðrÞ þ r

2�valðrÞ: ð18Þ

The core states of a compound, e.g. B(1s2), Ca(1s2, 2s2, 2p6,

3s2, 3p6) for CaB6, are assumed to be chemically inert, such

that the core-ED can be reasonably approximated by the core-

ED from free atoms, and the chemical focus typically lies on

characteristic features of the val-ED specific for the respective

compound. In the present study, Fourier syntheses of val- and

all-EDs and their Laplacian distributions are investigated.

They are computed from application of equations (15), (16)

using val-ED and all-ED structure factors obtained for the

reference DFT wavefunction from the program Elk (see

Appendix A). With the subsequent QTAIM analysis in mind,

in the present study all-ED and all-ED Laplacians are always

employed and evaluated with respect to the corresponding

reference DFT all-electron distributions. All-ED and all-ED

Laplacian distributions synthesized from all-ED structure

factors are denoted Sn,tot(r) and r2Sn,tot(r), respectively, in the

following. For synthesized val-ED distributions Sn,val(r) and

r2Sn,val(r) only, an additional step is required to construct a

special kind of all-ED distribution S�n;valðrÞ and r2S�n;valðrÞ by

adding the corresponding reference DFT core-ED distribu-

tions �core(r) and r2�core(r):

S�n;valðrÞ ¼ Sn;valðrÞ þ �coreðrÞ ð19Þ

r
2S�n;valðrÞ ¼ r

2Sn;valðrÞ þ r
2�coreðrÞ: ð20Þ

Calculated deviations (see the next section) of this kind of

all-ED [equation (19)] and all-ED Laplacian [equation (20)]

with respect to the corresponding reference DFT all-ED

[equation (17)] and all-ED Laplacian [equation (18)] can be

easily seen,

S�n;valðrÞ � �DFTðrÞ ¼ Sn;valðrÞ � �valðrÞ; ð21Þ
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r
2S�n;valðrÞ � r

2�DFTðrÞ ¼ r
2Sn;valðrÞ � r

2�valðrÞ; ð22Þ

to solely measure the val-ED and val-ED Laplacian deviations

with respect to the corresponding reference DFT val-ED and

val-ED Laplacian distributions.

2.2. Statistical and topological evaluation of Fourier-synthe-
sized EDs and ED Laplacians with respect to deviations from
reference DFT-based distributions

For evaluation of obtained ED and ED Laplacian distri-

butions Sn(r) and r2Sn(r) determined with increasing resolu-

tions 1
2Hmax by various Fourier-synthesis methods(exponents),

several statistical quality and convergence measures have

been calculated. They are all based on the norms of the

deviations of the obtained distributions from the reference

distributions �DFT(r) and r2�DFT(r).

With the ED �(r) being a square-integrable function, the

sequence of its Fourier-synthesized distributions Sn(r) is

expected to converge with the number n of structure factors in

the Euclidean norm �L2 (Riesz–Fischer theorem, more

precisely �Lm, with 2 � m <1), i.e.

�L2
n ru:c:; Snð Þ ¼

R
u:c:

SnðrÞ � �ðrÞ
� �2

dr

	 
1=2

’ Vu:c:

PNvox;u:c:

j¼1

SnðjÞ � �ðjÞ
� �2

( )1=2

! 0 as n!1:

ð23Þ

A different way to perform Fourier synthesis proceeds via

Fejer summation, which can be written as a weighted Fourier

sum (see above). This kind of summation is expected to show

uniform convergence (Fejer’s theorem), and converges

already in the �L1 norm,

�L1
n ru:c:; Snð Þ ¼

R
u:c:

SnðrÞ � �ðrÞ
�� �� dr

’ Vu:c:

PNvox;u:c:

j¼1

SnðjÞ � �ðjÞ
�� �� ! 0 as n!1:

ð24Þ

For the criterion of ‘uniform convergence’ to be fulfilled,

the maximum norm �L1 has to converge according to

�L1n ðru:c:; SnÞ ¼ �max Snð Þ ¼ sup
r2u:c:

SnðrÞ � �ðrÞ
�� ��

’ sup
j2u:c:

SnðjÞ � �ðjÞ
�� �� ! 0 as n!1: ð25Þ

Note that uniform convergence always implies Euclidean and

point-wise convergence, but not vice versa (Tveito & Winther,

2005). The maximum norm �max(Sn) describes the maximal

deviation between the original and the reconstructed ED in

the unit cell. It is a very transparent measure of convergence,

although, when calculated on a finite grid, it may be more

prone to missing positions with higher deviations than the

mean square convergence measure (seen in one case below).

Note that the position r of maximal deviation may change with

increasing resolution.

The actual computations were performed by discrete

summations over an orthogonal equidistant real-space mesh

of Nvox,u.c. = 158 	 158 	 158 grid voxels j (mesh size =

0.02628 Å) covering the whole CaB6 unit cell. The all-electron

[Ftot(000) = 50 e�] and valence-electron [Fval(000) = 20 e�]

density structure factors were calculated from the DFT

wavefunction of the full unit cell. The ED and ED Laplacian

distributions obtained from Fourier synthesis were evaluated

on the uniform grid in the full unit cell using the �Ln
1, �Ln

2 and

�Ln
1 norm deviations with respect to the reference DFT

distributions �DFT(j) and r2�DFT(j).

The �Ln
1 and �Ln

2 norm deviations per voxel of the

reconstructed val-EDs Sn,val(r) and their Laplacians r2Sn,val(r)

(replace ‘S�n;val’ by ‘r2S�n;val’), and all-EDs Sn,tot(r) and their

Laplacians r2Sn;totðrÞ (replace ‘Sn,tot’ by ‘r2Sn;tot’) with respect

to the reference DFT all-ED �DFT(r) and its Laplacian have

been calculated on the unit-cell grid positions ru.c.:

�L1
n ru:c:; Sn;tot

� �
¼

1

Nvox;u:c:

XNvox;u:c:

j¼1

Sn;totðjÞ � �DFTðjÞ
�� �� ð26Þ

�L1
n ru:c:; Sn;val

� �
¼

1

Nvox;u:c:

XNvox;u:c:

j¼1

S�n;valðjÞ � �DFTðjÞ
�� �� ð27Þ

�L2
n ru:c:; Sn;tot

� �
¼

1

Nvox;u:c:

XNvox;u:c:

j¼1

Sn;totðjÞ � �DFTðjÞ
� �2

( )1=2

ð28Þ

�L2
n ru:c:; Sn;val

� �
¼

1

Nvox;u:c:

XNvox;u:c:

j¼1

S�n;valðjÞ � �DFTðjÞ
� �2

( )1=2

:

ð29Þ

In the present study, the focus lies mainly on the critical point

reconstruction between the atoms. Therefore, the statistical

measures introduced have been computed additionally for the

valence region between the atomic core regions. Summation

over the voxels of the valence region (Nvox,val = 3327147) was

performed, skipping the voxels inside the spherical regions

around the atomic positions with radii of 2.495 and 0.75 bohr

around Ca and B atoms, respectively, which are identified as

core regions from ELF/ELI-D (ELF = electron localization

function) atomic shell structure studies of free atoms (Kohout

& Savin, 1996; Baranov, 2014):

�L1
n rval; Sn;tot

� �
¼

1

Nvox;val

XNvox;val

j¼1

Sn;totðjÞ � �DFTðjÞ
�� �� ð30Þ

�L1
n rval; Sn;val

� �
¼

1

Nvox;val

XNvox;val

j¼1

S�n;valðjÞ � �totðjÞ
�� �� ð31Þ

�L2
n rval; Sn;tot

� �
¼

1

Nvox;val

XNvox;val

j¼1

Sn;totðjÞ � �DFTðjÞ
� �2

( )1=2

ð32Þ
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�L2
n rval; Sn;val

� �
¼

1

Nvox;val

XNvox;val

j¼1

S�n;valðjÞ � �DFTðjÞ
� �2

( )1=2

:

ð33Þ

While the theorems on the convergence are valid for the full

region of the unit cell (denoted ru.c.), it is not clear how the

statistical deviation measures behave in the valence region

(denoted rval).

For all distributions calculated herein �Ln
1 and �Ln

2 norm

deviations of the same distribution were found to obey the

known relations �Ln
1 > �Ln

2 and �Ln
1 < Nvox

1/2 �Ln
2, as

mathematically expected. Moreover, for all distributions

calculated herein, it was also found that for each Fourier-

synthesis function, the absolute deviations in the valence

regions rval were smaller than the corresponding ones in the

full regions, �Ln
1(rval) < �Ln

1(ru.c.) and �Ln
2(rval) < �Ln

2(ru.c.),

which is caused by the rather different maximal ED values in

both regions. In the following, it was considered more

convenient to compare relative norm deviations with one

another, taking into account the different average values in

the respective regions. The relative norm deviations were

obtained from division of the norm deviations by the �DFT or

�val 1- and 2-norms of the corresponding reference DFT all-

ED and val-ED, respectively, i.e. with m = 1, 2,

�Lm
n ru:c:; Sn;tot

� �
rel:t
¼
�Lm

n ru:c:; Sn;tot

� �
Lm ru:c:; �DFTð Þ

; ð34Þ

�Lm
n rval; Sn;tot

� �
rel:t
¼
�Lm

n rval; Sn;tot

� �
Lm rval; �DFTð Þ

; ð35Þ

�Lm
n ru:c:; Sn;val

� �
rel:v
¼
�Lm

n ru:c:; Sn;val

� �
Lm ru:c:; �valð Þ

; ð36Þ

�Lm
n rval; Sn;val

� �
rel:v
¼
�Lm

n rval; Sn;val

� �
Lm rval; �valð Þ

; ð37Þ

where

Lm ru:c:; �DFTð Þ ¼
1

Nvox;u:c:

XNvox;u:c:

j¼1

�m
DFTðjÞ

" #1=m

; ð38Þ

Lm rval; �DFTð Þ ¼
1

Nvox;val

XNvox;val

j¼1

�m
DFTðjÞ

" #1=m

; ð39Þ

Lm ru:c:; �valð Þ ¼
1

Nvox;u:c:

XNvox;u:c:

j¼1

�m
valðjÞ

" #1=m

; ð40Þ

Lm rval; �valð Þ ¼
1

Nvox;val

XNvox;val

j¼1

�m
valðjÞ

" #1=m

: ð41Þ

In an analogous way, relative norm deviations for the ED

Laplacian distributions were calculated as well [replace in

equations (34)–(37) ‘Sn,DFT’ and ‘Sn,val’ by ‘r2Sn,DFT’ and

‘r2Sn,val’, respectively, and in equations (34)–(41) ‘�DFT’ and

‘�val’ by ‘r2�DFT’ and ‘r2�val’, respectively].

The 1-norm per voxel of the all-ED �DFT has a simple

meaning: it is the average ED. Exact summation of the CaB6

all-ED �DFT in the whole unit cell [equation (38)] would yield

L1(ru.c., �DFT) = 50 e�/Vu.c., i.e. the average all-ED. Exact

summation of the all-ED in the ELI-D valence region

[equation (39)] would approximately yield L1(rval, �DFT)

’20 e�/Vu.c., which is mainly connected with ELI-D shell

structure representation reproducing not quantitatively

exactly the integer atomic shell occupations given by the

periodic table of the elements (Kohout & Savin, 1996;

Baranov, 2014). Note, while the exact sum (integral) of the ED

Laplacian over the unit cell has to be zero due to exact

cancellation of positive and negative values, the 1-norm of the

ED Laplacian being the sum (integral) of its absolute values is

mathematically unbounded from above. The values of the

employed L1 and L2 norms of the reference DFT ED and its

Laplacian are given in Table 2. They all correspond to those

obtained by summations on the equidistant grid specified

above. Thus, some deviation with respect to the theoretically

expected average ED values can be observed, which plays no

role in comparison of relative norm deviations of Fourier-

synthesized distributions normalized with the same reference

DFT ED norm.

Of interest is also the largest absolute deviation of each

Sn(r) and r2Sn(r) distribution in the whole unit cell and in the

valence region, denoted according to �max(ru.c., Sn,tot),

�max(rval, Sn,tot), and �max(ru.c., Sn,val), �max (rval, Sn,val),

respectively:

�max ru:c:; Sn;tot

� �
¼ �L1 ru:c:; Sn;tot

� �
¼ sup

j2u:c:
Sn;totðjÞ � �DFTðjÞ
�� �� ð42Þ

�max ru:c:; Sn;val

� �
¼ �L1 ru:c:; Sn;val

� �
¼ sup

j2u:c:
S�n;valðjÞ � �DFTðjÞ
�� ��: ð43Þ

Thus, the following 12 deviation measures for the synthesized

ED distributions have been calculated in the present study:

�Ln
m(ru.c., Sn,tot)rel.t, �Ln

m(ru.c., Sn,val)rel.v, �Ln
m(rval, Sn,tot)rel.t,

�Ln
m(rval, Sn,val)rel.v, with m = 1, 2, and �max (ru.c., Sn,tot), �max

(rval, Sn,tot), �max (ru.c., Sn,val) and �max (rval, Sn,val). The same
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Table 2
L1 and L2 norms (in atomic units) of the reference DFT ED and ED
Laplacian distributions (�val, �DFT and r2�val, r

2�DFT) used to calibrate
the corresponding �Ln

1 and �Ln
2 norm deviations of the Fourier-

synthesized distributions (Sn,val, Sn,tot and r2Sn,val, r
2Sn,tot).

m = 1 m = 2

Lm(ru.c., �val) 0.04140798 0.00002884
Lm(ru.c., �DFT) 0.10471686 0.00204269
Lm(rval, �val) 0.04533321 0.00003228
Lm(rval, �DFT) 0.04700689 0.00003365
Lm(ru.c., r

2�val) 0.10144559 0.00433510
Lm(ru.c., r

2�DFT) 3.59309631 0.23552473
Lm(rval, r

2�val) 0.05329431 0.00004829
Lm(rval, r

2�DFT) 0.08058963 0.00014996



12 quantities are also calculated for the synthesized ED

Laplacian distributions: in the formulas replace ‘Sn’ by ‘r2Sn’

and ‘�’ by ‘r2�’.

Further criteria for the quality of the Fourier-synthesized

EDs Sn(r) are (i) the absence of unphysical negative ED

values, and (ii) the absence of NNMs in agreement with the

reference ED. The criterion of non-negative ED values was

found to be violated by all non-weighted (‘raw’), i.e. non-

smoothed, Fourier-synthesized all-EDs, a few non-weighted

Fourier-synthesized val-EDs and a few Lan1D-synthesized all-

EDs with a much too low weighting exponent p = 1.0.

Application of smoothed Fourier synthesis corresponds in the

first step to getting rid of negative EDs. But, as will be shown

below, the requirement of the absence of artefact NNMs is a

more severe challenge. It plays a major role in evaluating the

synthesized ED and ED Laplacian distributions and adjusting

the weighting-function exponent accordingly. Roughly

speaking, for each Fourier-synthesis method presented herein,

the appropriate exponent p of the weighting function �p(Hj)

was commonly adjusted (i.e. not for each resolution sepa-

rately) to yield distributions without NNM artefacts for

most resolutions, predominantly the higher ones. The choice

to keep the exponent constant for each method was made

to allow for studying systematic changes with increasing

resolution.

3. Results: ED and ED Laplacian distributions from the
method(exponent) type of Fourier synthesis

A look at the structure-factor amplitudes of the all-ED

Fourier expansion reveals a very slow decay with increasing

resolution (Fig. 3). From this figure, one would not have a

criterion for determining a resolution necessary to yield a

sufficiently converged Fourier-synthesized all-electron distri-

bution. The valence-electron structure factors display a local

minimum at about [sin(�)/�]max ’ 0.75 Å�1, a local maximum

at about [sin(�)/�]max ’ 1.3 Å�1 and an overall decay that is

faster than the all-ED one. Note that the difference between

the all-electron and the valence-electron structure factors is

the core-electron structure factors (not shown). For the val-

ED structure factors, the decrease of one order of magnitude

from the local maximum at 
0.75 Å�1 is only achieved at
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Figure 3
Decay of valence-electron (blue) and all-electron (red) structure-factor
amplitudes |F(H)| for CaB6 with increasing resolution.

Figure 4
Decay of types of weighting function �p used, shown for [sin(�)/�]max =
1.5 Å�1: (a) principal decay, p = 1; (b) smoothing used with various
exponents 1.0 � p � 3.0; (c) complete prefactor (2�Hj)

2�p(Hj) used for
ED Laplacian synthesis. To distinguish the Lan1D smoothing curves for
all-ED synthesis (2.25 � p� 3.0) from the val-ED ones (p = 1.0), they are
always shown as pure lines skipping the data points.




3.25 Å�1, which would be too high for experimental studies.

The situation is even worse for the all-ED structure factors.

For raw Fourier synthesis, the similar size of neighbouring

structure factors increases the possibility of sudden topolo-

gical changes on inclusion of further neighbours, i.e. a non-

convergence of topological features, which is the typically

observed behaviour. This can be prevented using smoothing

factors �p(Hj) as described above. In the following, the raw

Fourier synthesis, which corresponds to constant weights

�p(Hj) = 1 for all structure factors F(Hj), will be considered the

most aggressive weighting scheme compared with all other

ones with smaller and variable weights. As will be seen below,

raw Fourier synthesis with constant weights [equation (3)] has

a strong tendency towards creation of artificial NNMs, and

even regions with negative ED values upon Fourier-series

truncation.

With exponent p = 1, overall concave decay (negative

curvature) of �p(Hj) is found for all 1D Fejer-type methods,

except Fej_stl with linear decay throughout the whole range

[0, [sin(�)/�]max] [Fig. 4(a)]. In contrast, the 3D Fejer-type

Pep3D factors on average display an overall convex decay.

The Lanczos-derived schemes yield an initially concave decay,

but exhibit an inflection point towards the end of the interval

and become slightly convex. The most aggressive weighting

schemes are found to be the Fejer-type ones Fej_pcl and

Fej_cnt, which display the highest weights for most of the

resolution interval [0, [sin(�)/�]max]. In particular, for these

methods, NNMs were found for several resolutions (Table 3).

This behaviour was counteracted by increasing the exponent p

until a reasonable amount of resolutions became free of NNM

artefacts at 1
2Hmax� 1.1 Å�1. This was the case at values p = 1.5

and 1.75 for Fej_cnt and Fej_pcl, respectively [Fig. 4(b)]. The

less aggressive Lanczos-derived weights did not yield NNMs

for 1
2Hmax � 1.1 Å�1 at p = 1.0 for the val-ED structure factors,

but for the smoothing of all-electron structure-factor synthe-

sized all-EDs with the Lan1D method, p = 2.25, 2.50, 2.75 and

3.0 had to be employed. In general, exponentiation with p >

1.0 increases the initial decay of �p(Hj) and introduces a

concave tail region or increases the degree of concavity of the

tail region.

With the initially (1
2Hmax ’ 0) convex and tailing concave

shape, the sigma factors �p(Hj) are similar to the Debye–

Waller factor which decreases according to exp(�1
4BisoHj

2). It

is also interesting to see how the completely different methods

Lan1D and Fej_cnt showing clearly different weighting factors

�p for p = 1.0 [Fig. 4(a)] accidentally obtain very similar

weights upon using the finally adjusted Fej_cnt exponent of p

= 1.5 [Fig. 4(b)]. From a signal processing point of view, the �p

factors for Fourier synthesis of the ED act as a low-pass filter.

For the Fourier synthesis of smoothed ED Laplacian distri-

butions, the �p factors play a decisive role by over-compen-

sating the quadratically increasing prefactor (2�Hj)
2, which

would lead to non-convergence of the raw Fourier series. For

the ED Laplacian reconstruction, the �p factors act as a

bandpass filter [Fig. 4(c)].

3.1. Fourier synthesis of val-ED and val-ED Laplacian
distributions

Fourier synthesis [equations (15), (16)] of val-ED Sn,val(r)

and val-ED Laplacian distributions r2Sn,val(r) employs static

val-ED structure factors. In view of the intended QTAIM

analysis, the derived [equations (19), (20)] all-electron distri-

butions S�n;valðrÞ andr2S�n;valðrÞ with added core distributions of

the reference DFT wavefunction are always analysed in the

following. The difference between these all-electron distribu-

tions and the corresponding reference DFT distribution is

equal to the difference between the corresponding val-ED and

val-ED Laplacian distributions [equations (21), (22)].

Raw Fourier synthesis of val-ED without smoothing

[equation (3)] results in NNMs even at resolution 1
2Hmax =

1.5 Å�1 [Fig. 2(b)]. Therefore, for each method employed the

exponent p of the smoothing factor �p(H) was increased

stepwise until a suitable number of resolutions in the range

0.5 Å�1
� 1

2Hmax � 5.0 Å�1 were free of NNMs. In order to

study the important systematic changes for each method, the

exponent p was not adjusted for each resolution separately. As

a result, for each method a number of NNMs occurring at

lower resolutions were accepted (Table 3).

Analysis of val-ED norm deviations. Raw Fourier synthesis

of val-ED distributions is expected to converge in the �Ln
2

norm, which is depicted in the left panel of Fig. 5(b). The �Ln
2

deviations for the raw synthesis are always smaller than the
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Table 3
Fourier synthesis of val-ED Sn,val(r) for CaB6.

Location of NNMs (see column ‘location’) and QTAIM basin populations
from S�n;valðrÞ for all methods (exponents p) and resolutions 1

2Hmax used.

Method 1
2Hmax (Å�1) Population (e�) Location

Lan3D, p = 1.0 5.0 24/4 	 0.0000 Split Ca—Ca
1.0 6/2 	 0.6255 B—Bexo

0.9 6 2 	 0.6455 B—Bexo

0.75 6 2 	 0.7170 B—Bexo

Lan1D, p = 1.0 1.0 6/2 	 0.6951 B—Bexo

0.9 6/2 	 0.6961 B—Bexo

0.75 6/2 	 0.6902 B—Bexo

p = 2.0 1.2 6/2 	 0.6219 B—Bexo

1.1 6/2 	 0.6509 B—Bexo

1.0 6/2 	 0.6435 B—Bexo

0.9 6/2 	 0.5901 B—Bexo

0.75 6/2 	 0.4243 B—Bexo

0.5 6 	 0.6057 Split B6
oct midpoint

p = 2.75 1.1 6/2 	 0.5941 B—Bexo

0.5 1 	 4.4717 B6
oct midpoint

Fej_pcl, p = 1.75 1.1 6 	 0.3479 Split B—Bexo

1.0 6/2 	 0.7589 B—Bexo

0.9 6/2 	 0.7790 B—Bexo

0.75 6/2 	 0.8307 B—Bexo

0.5 6/2 	 0.0606 B—Bexo

Fej_cnt, p = 1.50 1.1 6 	 0.2783 Split B—Bexo

1.0 6/2 	 0.7004 B—Bexo

0.9 6/2 	 0.6957 B—Bexo

0.75 6/2 	 0.6945 B—Bexo

Fej_stl, p = 1.0 1.6 6/2 	 0.1777 B—Bexo

1.0 6/2 	 0.5437 B—Bexo

0.9 6/2 	 0.5608 B—Bexo

0.75 6/2 	 0.5785 B—Bexo

Pep3D, p = 2.0 5.0 1 	 0.0012 B6
oct midpoint

0.5 1 	 4.3702 B6
oct midpoint



ones for the smoothed Fourier syntheses. The opposite

behaviour is found for the �Ln
1 deviations at higher resolu-

tions [except Pep3D(2.0), Fej_stl(1.0)], where the raw synth-

esis even displays a local maximum at about 1.2 Å�1 [Fig. 5(a),

left panel]. The different behaviour of the raw and smoothed

ED distributions indicated by �Ln
1 and �Ln

2 norms is a result

of the raw Fourier synthesis improving more on the higher

deviations than the smoothed ones. This can be seen from the

maximum norms given in the left panel of Fig. 5(c). The

monotonic decay of the �Ln
1 norms for the smoothed Fourier

syntheses is the mathematically expected behaviour. It is

related to the expected uniform convergence for these

weighting functions methods(p) as shown by the monotonic

decay of the corresponding maximum norms in the left panel

of Fig. 5(c). The overall decay of the maximum norm for the

raw Fourier synthesis and the convergence indicated at higher

resolutions indicate an unexpected uniform convergence of

the raw val-ED Fourier synthesis in the full region.

The norm deviations in the valence region rval, shown in the

right panels of Figs. 5(a)–5(c), are always smaller than the

corresponding ones in the total region ru.c. [Figs. 5(a)–5(c), left

panels], but to a variable degree. Notably, the uniform

convergence for the smoothed synthesis is also found to be

valid for the valence region [Figs. 5(a), 5(c), right panels],

which was not initially expected.

Analysis of val-ED Laplacian norm deviations. The �Ln
2

deviations of the synthesized val-ED Laplacian distributions
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Figure 5
Norm deviations for Fourier synthesis of val-ED Sn,val(r) for methods Lan1D(1.0), Lan3D(1.0), Fej_pcl(1.75), Fej_cnt(1.5), Fej_stl(1.0) and Pep3D(2.0)
[for colour coding, see legend in top-left figure (a)] and different resolutions [sin(�)/�]max. (a), (b), (c) Norm deviations �Ln

1, �Ln
2 and �max, respectively;

left panels, complete unit-cell region ru.c.; right panels, valence region rval.



in the full region [Fig. 6(b), left panel] display a monotonic

decay of the raw and the smoothed distributions. The corre-

sponding �Ln
1 [Fig. 6(a), left panel] and maximum norms �max

[Fig. 6(c), left panel] reveal the uniform convergence of the

smoothed and even the raw val-ED Laplacian distributions in

the full region.

In the valence region, the deviations �Ln
1, �Ln

2 and �max

[Figs. 6(a)–6(c), right panels] of the synthesized val-ED

Laplacian feature partially non-monotonic decays at lower

resolutions and uniform convergence at higher resolutions for

all functions [very slowly for Pep3D(2.0)]. The observed

monotonic decays of the �Ln
1 norms in the valence region

found for all smoothing functions besides the Fej_pcl(1.75)

one may also suggest a certain regular convergence for the

critical point Laplacian values. However, as can be seen in the

critical points section below, all methods (with their specific

exponents p used here) besides Pep3D(2.0) and Lan3D(1.0)

display a similar damped oscillatory convergence behaviour

with respect to deviation from the reference critical point

values.

QTAIM basin analysis of S�n;valðrÞ. Classical QTAIM topo-

logical analysis was performed on the all-ED S�n;valðrÞ obtained

by adding the correct core-ED of the reference DFT calcu-

lation to the synthesized val-ED [equation (19)]. With two

crystallographically distinct atom types, it is sufficient to

display the results for the Ca atomic basin only with a refer-

ence DFT value of Qeff(Ca) = +1.52. The numerical recovery
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Figure 6
Norm deviations for Fourier synthesis of val-ED Laplacian r2Sn,val(r) for methods(p) Lan1D(1.0), Lan3D(1.0), Fej_pcl(1.75), Fej_cnt(1.5), Fej_stl(1.0)
and Pep3D(2.0) [for colour coding, see legend in top-left figure (a)] and different resolutions [sin(�)/�]max. (a), (b), (c) Norm deviations �Ln

1, �Ln
2 and

�max, respectively; left panels, complete unit-cell region ru.c.; right panels, valence region rval.



of the total electron number 50 e�/u.c. showed an error of

maximally 0.0002 electrons in all investigations. The occur-

rence of NNMs for some resolutions (Table 2) does not lead to

visible effects in the basin population and volume curves

shown (Fig. 7).

All weighting functions methods(p) investigated display a

rather regular convergence of the QTAIM atomic charges

with increasing resolution [Fig. 7(a)]. For all functions except

Fej_stl(1.0) and Pep3D(2.0), a chemically reasonable accuracy

was obtained at resolutions beyond 0.75 Å�1. With respect to

the decay of the weighting factors [Fig. 4(b)], these functions

correspond to the least aggressive ones. They are found to

display the larger ED norm deviations (Fig. 5). Interestingly,

the Ca atomic volumes [Fig. 7(b)] do not simply display a

similar behaviour to the charge curves, which is most clearly

seen for function Fej_stl(1.0). Despite the comparably bad

charge reconstruction, its volume reconstruction is compar-

able with the more competitive functions.

Critical point analysis of S�n;valðrÞ. The most challenging

quality aspect for the Fourier-synthesized all-ED S�n;valðrÞ

[equation (19)] and all-ED Laplacian r2S�n;valðrÞ [equation

(20)] distributions is their ability to reproduce the chemical

content contained in the original DFT-calculated distribution.

For this purpose, critical points for all Fourier-synthesized ED

distributions have been determined and analysed. The

chemical focus requires (based on the DFT ED and chemical

bonding arguments) the increase of ED at critical points in the

sequence �8(c.c.p.-B6) < �6(r.c.p.-BBB) < �4(b.c.p.-BBendo) <

�5(b.c.p.-BBexo), negative values of the ED Laplacian for

�4(b.c.p.-BBendo), �5(b.c.p.-BBexo), �6(r.c.p.-BBB), and posi-

tive ones for �3(b.c.p.-B3Ca) and �8(c.c.p.-B6) increasing

according to �5 < �4 < �6 < �3 < �8 (cf. Fig. 1). These relations

of signs and values are found to already be obeyed at lower

resolutions for all Fourier-synthesis weighting functions

methods(p) except for Pep3D(2.0) (Figs. 8, 9), even in those

cases where at the original position of �5(b.c.p.-BBexo) an

NNM has been found. A rather monotonic approach of the

corresponding ED values towards the initial ones is observed

for all these functions (Figs. 8, 9, left panels). The Pep3D(2.0)

function [Fig. 8(b)] displays the largest deviations and slowest

convergence of all functions. Concerning the ED Laplacian

(Figs. 8, 9, right panels), none of the functions features a

monotonic decrease of the deviations with respect to the

original values. Instead, a rather similar oscillating approach is

observed for most of them. This can be remedied by an

increase of the smoothing factor’s exponent p. For method

Lan1D this was tested by increasing from initially p = 1.0 to p

= 2.0 [Fig. 9(a), right panel]. It can be seen that the oscillatory

approach to the reference values can be largely smoothed out,

but at the price of systematically increased ED deviations [Fig.

9(a), left panel]. A wider discussion of this issue is found in the

next section.

Weighting function Pep3D(2.0) even seems to fail conver-

ging the ED Laplacian at the critical points investigated [Fig.

8(b), right panel]. Searching for an indication of this failure in

the norm deviations, it is striking that the maximum norm in

the valence region does not seem to converge at all [Fig. 6(c),

right panel]. On the other hand, Lan3D(1.0) also seems to

have a problem converging the ED Laplacian at the critical

points [Fig. 8(a), right panel], but its convergence of the

maximum norm in the valence region does not look unusual

[Fig. 6(c), right panel]. Whether this can be remedied by

increasing the smoothing factor exponent, similar to the

Lan1D case, has not been tested.

Another important point concerns the size of the deviations

at each critical point rc.p. for a given resolution. It is already

obvious from the figures (Figs. 8, 9) that the absolute devia-

tions of the synthesized ED and ED Laplacian values with

respect to the reference values at each type of critical point are

rather different. This observation is also valid for the relative

deviations, given by

�S�n;valðrc:p:Þrel: ¼ S�n;valðrc:p:Þ � �DFTðrc:p:Þ
� �

=�DFTðrc:p:Þ ð44Þ

and
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Figure 7
QTAIM analysis of all-ED S�n;valðrÞ obtained from Fourier synthesis of val-
ED of CaB6 with subsequently added reference core-ED [equation (19)]
using methods(p) Lan3D(1.0), Lan1D(1.0), Fej_pcl(1.75), Fej_cnt(1.5),
Fej_stl(1.0) and Pep3D(2.0); (a) QTAIM effective charges Qeff(Ca), and
(b) associated atomic volumes Vol(Ca); dashed horizontal lines indicate
values obtained from the reference DFT ED.



�r2S�n;valðrc:p:Þrel:

¼ r
2S�n;valðrc:p:Þ � r

2�DFTðrc:p:Þ
� �

= r2�DFTðrc:p:Þ
�� ��: ð45Þ

As an example, a collection of absolute and relative

deviations from Lan1D(1.0, 2.0) Fourier synthesis are given

for resolutions of 1.1 and 1.3 Å�1 in Table 4. The results for

Lan1D(1.0) at 1
2Hmax = 1.1 Å�1 could be considered as the low-

resolution limit of a successful Fourier synthesis with method

Lan1D being free from NNMs. However, within this series of

Fourier syntheses the oscillatory approach to the reference

values and visual ED Laplacian contour ripples (see the next

section) for the higher resolutions (not yet for this comparably

low resolution) may be disturbing. Certainly, the exceptionally

high relative deviation of the ED Laplacian at r.c.p.-BBB of

+87.7% is connected with this feature. A deviation of +100%

would make the Laplacian value equal to 0, which would be a

failure to qualitatively reproduce the chemical bonding

condition r2� (r.c.p.-BBB) < 0. An alternative candidate is

Lan1D(2.0) at 1
2Hmax = 1.3 Å�1, where a lower resolution

cannot be chosen because of NNM occurrence. It has the

advantage of being a member of the Lan1D(2.0) series with a

more regular convergence behaviour and negligible ED
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Figure 8
Critical point evaluation for all-EDs S�n;val (rc.p.) (right panel) and all-ED Laplacians r2S�n;val (rc.p.) (left panel) obtained from val-ED and val-ED
Laplacian [equations (19), (20)] Fourier synthesis using weighting functions (a) Lan3D(1.0), (b) Pep3D(2.0) and (c) Fej_stl(1.0). Dashed horizontal lines
indicate values obtained from the reference DFT ED; data symbols in brackets ‘()’ indicate values at position (1

2,
1
2, 0) of original b.c.p.(BB)exo, where an

NNM is found (Table 3).



Laplacian ripples (see the next section) not only for this

resolution, but also for higher ones up to 5.0 Å�1. Obviously,

there is not one best choice of low-resolution limit, it rather

depends on priorities set up by the requirements of the

investigation. This is also valid for the other methods

presented (Figs. 8, 9).

All-ED S�n;valðrÞ and all-ED Laplacian r2S�n;valðrÞ distribu-

tions. In order to get a visual impression for the all-ED S�n;valðrÞ

and all-ED Laplacian distributions r2S�n;valðrÞ obtained

[equations (19), (20)] from Fourier-synthesized val-ED

Sn,val(r) and val-ED Laplacian r2Sn,val(r), a selection of

corresponding all-ED and all-ED Laplacian maps is presented

in Figs. 10 and 11, respectively. For comparison with the

Fourier-synthesized all-ED and all-ED Laplacian distributions

(see below), those obtained with method Lan1D have been

chosen here as well. For this method the value p = 1.0 of the

weighting-function exponent could be selected for val-ED

synthesis, which led to non-occurrence of NNMs for 1
2Hmax �

1.1 Å�1 and for 1
2Hmax = 0.5 Å�1. All synthesized ED distri-

butions are completely smooth (Fig. 10), in contrast to the

more challenging ED Laplacian distributions (Fig. 11, left
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Figure 9
Critical point evaluation for all-EDs S�n;val (rc.p.) (right panel) and all-ED Laplacians r2S�n;val (rc.p.) (left panel) obtained from val-ED and val-ED
Laplacian [equations (19), (20)] Fourier synthesis using weighting functions (a) Lan1D(1.0, 2.0), (b) Fej_pcl (1.75) and (c) Fej_cnt(1.5). Dashed
horizontal lines indicate values obtained from the reference DFT ED; data symbols in brackets ‘()’ indicate values at position (1

2,
1
2, 0) of original

b.c.p.(BB)exo, where an NNM is found (Table 3).



column). It can be seen that increasing resolution 1
2Hmax is

accompanied by increasing amount of contour ripples in the

ED Laplacian distributions, which is a consequence of the

rather aggressive weighting (i.e. comparably large weights).

For illustration of the effect of less aggressive weighting

(smaller weights) on the Laplacian distribution smoothness, a

comparison with a higher smoothing exponent p = 2.75 is

shown in Fig. 11, right column. It can be seen that with p = 2.75
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Figure 11
Resolution-dependent all-ED Laplacian distributions r2S�n;valðrÞ in CaB6

from val-ED Laplacian synthesis [equation (20)] for each resolution using
method Lan1D. (a)–(c) employing exponent p = 1.0; (d)–(f) p = 2.75. The
molecular graphs with b.c.p.’s (green), r.c.p.’s (blue), and c.c.p.’s (black)
are shown; isolines are drawn at intervals of 0.05 e� bohr�5. Note that the
topology of (d) is substantially different from all the other ones: there is
an NNM at the octahedron centre, and b.c.p.-BBendo and r.c.p.-B3 are
missing.

Figure 10
Resolution-dependent all-ED distributions S�n;valðrÞ in CaB6 from val-ED
synthesis [equation (19)] for each resolution indicated using method
Lan1D. (a)–(c) employing exponent p = 1.0; (d)–(f) p = 2.75. The
molecular graphs with b.c.p.’s (green), r.c.p.’s (blue) and c.c.p.’s (black)
are shown; isolines are drawn at intervals of 0.01 e� bohr�3. Note that the
topology of (d) is substantially different from all the other ones: there is
an NNM at the octahedron centre, and b.c.p.(B–Bendo) and r.c.p.(B3) are
missing.

Table 4
Deviations of Lan1D(p) synthesized val-EDs and all-EDs and their Laplacians from reference DFT values at chemically important critical points for
selected resolutions and exponents p.

Values given in the first row correspond to the reference DFT values �(rc.p.) and r2�ðrc:p:Þ at each critical point; values given in each cell of the table body
correspond to absolute and relative deviations [equations (44), (45)] of the ED (top row) and the ED Laplacian (bottom row), respectively; ED values and
differences given in e� bohr�3, ED Laplacian ones in e� bohr�5.

�DFT(rc.p.),
r2�DFTðrc:p:Þ

b.c.p.-BBexo

0.1523, �0.3794
b.c.p.-BBendo

0.1207, �0.1250
r.c.p.-BBB
0.1119, �0.0279

c.c.p.-B6

0.0685, +0.2363
b.c.p.-B3Ca
0.0144, +0.0439

S�n;val, 1.1 Å�1
�0.0107, �7.1% �0.0035, �2.9% �0.011, �1.0% 0.0074, 10.9% 0.0005, 3.3%

p = 1.0 0.0487, 12.8% 0.0290, 23.2% 0.0245, 87.7% �0.0460, �19.5% 0.0014, 3.2%
S�n;val, 1.3 Å�1

�0.0153, �10.1% �0.0049, �4.1% �0.0012, �1.1% 0.0098, 14.3% 0.0006, 4.2%
p = 2.0 0.0739, 19.5% 0.0319, 25.5% 0.0018, 6.5% �0.0343, �14.5% 0.0034, 7.7%
Sn;tot, 1.3 Å�1

�0.0180, �11.9% �0.0048, �4.0% �0.0016, �1.4% 0.0134, 19.6% 0.0027, 18.9%
p = 2.75 0.1387, 36.6% 0.0405, 32.4% 0.0403, 144% 0.0763, 32.3% 0.0245, 55.9%
Sn;tot, 1.5 Å�1

�0.0144, �9.5% �0.0046, �3.8% �0.0011, �1.0% 0.0098, 14.3% 0.0022, 15.4%
p = 2.75 0.1355, 35.7% 0.0936, 74.9% �0.0051, 18.4% �0.0124, �5.3% �0.0014, �3.1%



the ED Laplacian contour ripples can be smoothed out. No

systematic efforts have been undertaken to find for each

resolution the smallest necessary exponent p value for

obtaining a certain predefined smoothness of the ED Lapla-

cian contours. It may be sufficient to mention that already with

p = 2.0 all ED Laplacian contours calculated with this model

are visually smooth (a numerical criterion has not been

employed). The value p = 2.75 was chosen here to make a

visual comparison with the Fourier-synthesized all-ED distri-

butions shown below, which have been obtained with the same

exponent. For the synthesized val-ED distributions, the higher

exponents p = 2.0 and 2.75 yield systematically higher overall

�Ln
1 and �Ln

2 norm deviations of the val-ED in valence

regions than with more aggressive weighting p = 1.0 [Fig.

12(a)].

For the synthesized val-ED Laplacian the situation is more

complex. The �Ln
1(rval, r

2Sn,val) deviations in the valence

region [Fig. 12(b)] are found to be smaller with aggressive

weighting p = 1.0 than with p = 2.75 weighting until 1
2Hmax =

2.0 Å�1, and become larger for resolutions 1
2Hmax � 2.5 Å�1.

For all resolutions shown [Fig. 12(b)], the intermediate

exponent p = 2.0 yields lower norm deviations �Ln
1,2 than the

p = 2.75 one. Thus, for higher resolutions 1
2Hmax � 1.5 Å�1, an

exponent 1.0 < p � 2.0 Å�1 might be sufficient to prevent

visible Laplacian contour ripples. This may be related to the

original Lanczos result (Lanczos, 1956) of p = 1 for gradient

synthesis, implying p = 2 for ED Laplacian synthesis. It is,

however, not clear how his results on purely 1D Fourier

synthesis apply to a 1D condensed variant (like Lan1D) of a

real 3D Fourier-synthesis task. In summary, it seems that the

increasing rippling in the ED Laplacian distribution contours

has an adverse effect on the �Ln
1 norms of the p = 1.0

syntheses, and that they improve upon smoothing out those

ripples. Once the ripples are smoothed out (with p = 2.0), the

norm deviations become worse again upon increased

smoothing (p = 2.75).

Certainly, the smoothing of ED Laplacian contours via

increased p values simultaneously increases the ED �Ln
1

deviations [seen also locally in critical point analysis, Fig. 9(a),

left panel] of the already smooth ED distributions as just

indicated, which means that a suitable compromise p value

must be found, depending on the focus of the application.

3.2. Fourier synthesis of all-ED and all-ED Laplacian
distributions

As was shown in Fig. 3, the all-ED structure factors decay

very slowly with increasing resolution 1
2Hmax, which certainly

makes Fourier synthesis in the atomic core regions a very

challenging task. However, the question arises: to what extent

these effects adversely affect ED analysis in the valence

region? Because of its quality in reproduction of the chemical

bonding features with exponent p = 1.0 for val-ED Fourier

synthesis, method Lan1D was chosen to investigate this issue.

By systematic p-value variation it was found that for all-ED

Fourier synthesis, exponents in the range 2.25 � p � 3.0 are

useful to prevent negative ED and NNM artefacts for most

resolutions used (Table 5). The preferred model for systematic

evaluations was the Lan1D(2.75) one, which showed no such

artefacts for all resolutions. Other smoothing variants in the

indicated range were also investigated, because for certain

resolutions, i.e. 1
2Hmax = 1.5 Å�1, their Fourier syntheses were
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Figure 12
CaB6: valence region relative norm deviations �Ln

1 (full lines) and �Ln
2

(dashed lines) for Lan1D synthesis of (a) val-ED Sn,val(r) and all-ED
Sn,tot(r), and (b) val-ED Laplacian r2Sn,val(r) and all-ED Laplacian
r2Sn,tot(r). Val-ED and val-ED Laplacian synthesis with exponents p =
1.0 (black lines), 2.0 (blue lines), 2.75 (red lines), and all-ED and all-ED
Laplacian synthesis with p = 2.75 (green lines).

Table 5
Fourier synthesis of all-ED.

Location of NNMs and their basin populations for Lan1D method using
various exponents 2.25 � p � 3.0.

Method(p) 1
2Hmax (Å�1) Population (e�) Location

Lan1D, p = 2.25 1.9 6/2 	 0.1446 B—Bexo

1.8 6/2 	 0.1655 B—Bexo

1.3 6/2 	 0.2559 B—Bexo

1.2 6/2 	 0.2850 B—Bexo

12 	 0.1624 B—Bendo

Lan1D, p = 2.50 1.3 6/2 	 0.1239 B—Bexo

1.1 8 	 0.0141 B3
triangle

Lan1D, p = 2.75 – – –
Lan1D, p = 3.00 – – –



also free of artefacts, and therefore competitive alternatives to

the p = 2.75 variant.

Analysis of all-ED norm deviations. Raw Fourier synthesis

of the all-ED is expected to converge in the �Ln
2 norm, which

is verified in the left panel of Fig. 13(b). The �Ln
2 deviations

are smaller than the ones for the smoothed Fourier syntheses,

and the convergence is faster. The opposite behaviour is found

for the �Ln
1 deviations depicted in the left panel of Fig. 13(a).

Here, the smoothed all-ED distributions have lower devia-

tions than the raw one, which is a result of the raw Fourier

synthesis improving more on the higher deviations occurring

at higher values [Fig. 13(c), left panel], namely in the core

regions. The raw Fourier-synthesis �Ln
1 deviations display the

occurrence of a local maximum at about 0.9 Å�1 and

convergence at higher resolutions. The convergence of the

�Ln
1 norm for the smoothed Fourier syntheses [Fig. 13(a), left

panel] is the mathematically expected behaviour. It is related

to the uniform convergence obtained using these weighting

functions methods(p) as can be seen by the monotonic decay

of the corresponding maximum norms in the left panel of Fig.

13(c). The monotonic decay of the maximum norm on the grid

for the raw Fourier synthesis indicates uniform convergence as

well, which is surprising and the detailed reason is not known.

Certainly, for all resolutions investigated, the maximum norm

is found at the position of the Ca nucleus, which is located on a

grid point. This can be considered a lucky circumstance,

because it is the position where the maximum norm over the

whole unit-cell region is expected to be located, mainly

because the boron nucleus (not being located on the evalua-
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Figure 13
Fourier synthesis of all-ED for CaB6 using method Lan1D with exponents p = 2.25, 2.50, 2.75 and 3.0. (a)–(c) Norm deviations �Ln

1, �Ln
2 and �max,

respectively, of all-ED Sn,tot(r); left panel, total u.c. region ru.c.; right panel, valence region rval.



tion grid) has a lower atomic number. It is important to realize

that with large deviations from the reference DFT ED at the

Ca nuclear position and their slow convergence indicated by

values of �DFT(rCa)’ 7522 bohr�3 and Sn,tot(rCa)’ 713 bohr�3

for raw synthesis and 148 bohr�3 for Lan1D(2.75) at 1
2Hmax =

5.0 Å�1, Fourier synthesis of the all-ED in the core region near

the nucleus is not suitable in a quantitative way with the

method(exponent) type of approach applied here. The ques-

tion remains as to whether all-ED Fourier synthesis in the

valence region can give chemically meaningful results.

In the valence region, all deviation types �Ln
1, �Ln

2 and

�max [Figs. 13(a)–13(c), right panels] for the smoothed all-ED

distributions are much smaller than for the corresponding raw

ones. While the maximum norm of the raw distribution

displays an irregular behaviour up to high resolutions, the

smoothed ones decay monotonically beyond a local maximum

at about 1.2 Å�1. It is noteworthy that the locations of the

maximum norm in the valence region are always found at grid

points directly in the neighbourhood of the exclusion radius of

the boron atoms, such that their values are considered to be

(and actually found to be, see below) significantly larger than

the deviations expected at the critical point locations deep

inside the valence region. Although overall monotonic

decay of �Ln
1 and �Ln

2 in the valence region is not seen

for the smoothed distributions, uniform convergence of

Fourier-synthesized all-EDs is indicated by the norms �Ln
1,

�Ln
2 and �max at higher resolutions [Figs. 13(a)–13(c), right

panels]. The more aggressive weighting functions (lower p

values, higher weights) yield the smaller deviations at these

resolutions.
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Figure 14
Fourier synthesis of all-ED Laplacian for CaB6 using method Lan1D with exponents p = 2.25, 2.50, 2.75 and 3.0. (a)–(c) Norm deviations �Ln

1, �Ln
2 and

�max, respectively, of all-ED Laplacian r2Sn,tot(r); left panel, total u.c. region ru.c.; right panel, valence region rval.



Analysis of all-ED Laplacian norm deviations. For raw

Fourier synthesis the all-ED Laplacian deviations in the full

unit-cell region are divergent [Figs. 14(a)–14(c), left panel] as

mathematically expected. While this is clearly indicated in the

�Ln
1 and �Ln

2 norm deviations [Figs. 14(a), 14(b), left panel],

convergent behaviour of the maximum norm �max is simu-

lated at lower resolutions until a sudden strong increase

beyond 3.0 Å�1 changes the convergence scenario [Fig. 14(c),

left panel]. The abrupt rise is an artefact caused by the

combination of two factors, namely (i) the finite grid resolu-

tion, and (ii) the electron–nuclear cusp (Kato, 1957). Due to

the shape of the plane waves, the electron–nuclear cusp cannot

be represented by Fourier synthesis with structure factors

available at any experimental conditions and not in the

present theoretical study either. In contrast, the electron–

nuclear cusp is present in the given reference DFT all-ED of

CaB6 and leads to a value of 0 for the DFT all-ED Laplacian

given at the nuclear positions (in fact, the value is mathema-

tically undefined, and is arbitrarily given a value of 0), such

that these positions were excluded from the maximum norm

evaluations of the synthesized all-ED Laplacian distributions.

On the regular grid used, this only concerns the Ca position at

(0, 0, 0), which is a grid point, while the B-atom positions are

not located on grid points. Thus, on evaluation of the full unit-

cell maximum norm of the all-ED Laplacian, the highest

deviation is found for a grid point closest to the B nucleus for

all resolutions 1
2Hmax � 3.0 Å�1. For all higher resolutions

investigated, another grid point features the highest deviation.

It is located one grid point away from the Ca position, i.e. at a

larger distance from the Ca nucleus than the previous grid

point was from the B nucleus. Principally, the region around

the Ca nucleus is the one where all the highest deviations are

expected to be located. However, due to the larger distance of

the Ca nucleus to the next grid point, the point with the

shorter distance to the B nucleus displays the highest devia-

tion at lower resolutions, until the divergence of the large

deviations close to the Ca nucleus finally dominates the

maximum norms at higher resolutions. This nicely illustrates

the difficulties that can arise on using the maximum norm as a

sole criterion of convergence behaviour.

For the smoothed distributions in the total region a uniform

convergence seems to be indicated by the �Ln
1 and the
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Figure 15
Fourier synthesis of all-ED Sn,tot(r) for CaB6 using method Lan1D with
exponents p = 2.25, 2.50, 2.75, 3.0 and comparison with val-ED synthesis
S�n;valðrÞ (black lines) with Lan1D(1.0); (a) QTAIM effective charges
Qeff(Ca), and (b) associated atomic volumes of the Ca atom; dashed
horizontal lines indicate values obtained from the reference ED from
DFT calculation.

Figure 16
Fourier synthesis of all-ED and all-ED Laplacian of CaB6 using
Lan1D(2.75). Critical point evaluation with respect to ED Sn,tot(rc) (a)
and ED Laplacian r2Sn,tot(rc) (b) values obtained for different
resolutions [sin(�)/�]max. Dashed horizontal lines indicate values obtained
from the reference DFT calculation.



maximum norm [Figs. 14(a), 14(c), left panels]. In contrast, the

�Ln
2 norm is found to diverge with increasing resolution [Fig.

14(b), left panel]. This contradiction may be related to the

insufficient resolution of the evaluation grid. In contrast, all

norm deviations in the valence region [Figs. 14(a)–14(c), right

panels], after some intermediate local maximum, are found to

indicate uniform convergence beyond about 2.0 Å�1. For the

all-ED Laplacian Fourier synthesis, this is the decisive obser-

vation with respect to the chemical bonding focus of the

present study.

QTAIM basin analysis of Sn;totðrÞ. Standard QTAIM topo-

logical analysis was performed on the all-ED distribution

obtained by Fourier synthesis of the all-ED. The numerical

electron recovery of the total electron number 50 e�/u.c. in all

investigations showed an error of maximally 0.0002 electrons.

The occurrence of NNMs for some resolutions (Table 2) does

not lead to visible effects in the effective charge and volume

curves shown (Fig. 15). The Ca effective charge obtained from

QTAIM analysis of the reference DFT ED amounts to

Qeff(Ca) = +1.52.

In contrast to the rather monotonic improvement of the Ca

effective charges obtained from val-ED Fourier synthesis [Fig.

15(a), Lan1D(1.0) val-ED results shown by the black line for

comparison], all-ED synthesis features comparably large

deviations improving in an oscillatory manner to the correct

value [Fig. 15(a)]. The more aggressive variants of Lan1D

(lower p values) Fourier synthesis are found to display the

larger oscillations. They show smaller �L1 norm deviations

[Fig. 13(a)] than the less aggressive ones with higher p values.

An accuracy with respect to the Ca effective charge compar-

able with that found already at resolutions of about 0.75 Å�1

for the val-ED Fourier synthesis can be obtained with the all-

ED synthesis only at resolutions beyond 2.5 Å�1 [Fig. 15(a)].

While the Ca volumes are found to be systematically too small

at all resolutions for the val-ED synthesis [Fig. 7(b), Fig. 15(b)

black line], the opposite is found for the all-ED synthesis [Fig.

15(b)]. It can be seen that the spikes of volume overestimation

(p = 2.25) are connected with the spikes of charge under-

estimation (p = 2.25). Thus, the overestimation of the Ca

atomic volumes (volume broadening) leads to the under-

estimation of the positive charge of Ca atomic basins (electron

population enhancement).

Critical point analysis of Sn;totðrÞ. Critical point analysis was

performed for Lan1D(2.75), because for this model no NNMs

adversely affect the systematic investigation. At all resolutions

0.75 Å�1
� 1

2Hmax � 5.0 Å�1 shown [Fig. 16(a)], the reference,

chemically meaningful, ED value sequence is observed for the
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Figure 17
Resolution-dependent all-ED distributions Sn;totðrÞ from all-ED synthesis
for CaB6 using weighting function Lan1D(2.75). The molecular graphs
with b.c.p.’s (green), r.c.p.’s (blue) and c.c.p.’s (black) are shown for each
resolution; isolines are drawn at intervals of 0.01 e� bohr�3.

Figure 18
Resolution-dependent all-ED Laplacian distributions r2Sn;totðrÞ from all-
ED Laplacian synthesis for CaB6 using weighting function Lan1D(2.75).
The molecular graphs with b.c.p.’s (green), r.c.p.’s (blue) and c.c.p.’s
(black) are shown for each resolution; isolines are drawn at intervals of
0.05 e� bohr�5.



all-ED synthesis distributions as well, �8(c.c.p.-B6) < �6(r.c.p.-

BBB) < �4(b.c.p.-BBendo) < �5(b.c.p.-BBexo). The convergence

of the ED deviations from the original values is non-mono-

tonic for the three critical points �5, �4 and �6 with the largest

ED values, displaying one local minimum at roughly 1
2Hmax �

1.1 Å�1, but from this point on the deviations are found to

decrease monotonically with increasing resolution.

Concerning the synthesized critical point values of the all-

ED Laplacian [Fig. 16(b)], the chemically required sequence

of all-ED Laplacian values increases along �5(b.c.p.-BBexo) <

�4(b.c.p.-BBendo) < �6(r.c.p.-BBB) < �3(b.c.p.-B3Ca) <

�8(c.c.p.-B6), with �5, �4, �6 displaying negative values, �3 and

�8 positive ones. This is observed for all resolutions 1
2Hmax �

1.7 Å�1.

The absolute and relative deviations of the synthesized all-

ED and ED Laplacian values are given in Table 4 for reso-

lutions 1
2Hmax = 1.3 and 1.5 Å�1. Inspecting the deviations for

all-ED Laplacian synthesis at 1
2Hmax = 1.3 Å�1, the relative

deviation of +144% at r.c.p.-BBB reveals that the chemical

bonding criterion of a negative all-ED Laplacian is even

missed there. This is no longer the case for resolutions

�1.5 Å�1. While the absolute values of the ED deviations for

Lan1D(2.75) all-ED synthesis at 1.5 Å�1 are of roughly similar

size as those for Lan1D(2.0) val-ED synthesis at 1
2Hmax =

1.3 Å�1, the corresponding all-ED Laplacian deviations for

the Lan1D(2.75) all-ED synthesis are significantly higher at

the three critical points, with negative reference ED Laplacian

values compared with Lan1D(2.0) val-ED Laplacian synthesis.

Similar to the situation discussed above for val-ED Laplacian

synthesis with Lan1D(1.0), also for all-ED Laplacian synthesis

using Lan1D(2.75) an oscillatory approach to the reference

value is found [Fig. 16(b)] for critical points in the resolution

range 1.0 Å�1
� 1

2Hmax � 2.0 Å�1, while for resolutions

beyond 2.0 Å�1 a rather monotonic decrease of the deviations

from the reference DFT values can be expected. Also, for all-

ED Laplacian synthesis, increasing the p value of Lan1D(2.75)

is expected to smooth out this oscillatory approach at the price

of increased deviations for the synthesized all-ED values. This

has not been explicitly tried here. For the present study, it is

considered to be sufficient to have established a rough

comparison between valence- and all-ED Fourier-synthesis

efficiency (Table 4) for the example of CaB6 and choice of

synthesis method Lan1D. A wider comparison will be given in

Section 4.

All-ED Sn;totðrÞ and all-ED Laplacian r2Sn;totðrÞ distribu-

tions. For visual inspection, the synthesized all-ED and all-ED

Laplacian distributions are depicted in Figs. 17 and 18,

respectively. It can be seen that not only the all-ED contours,

but also the corresponding Laplacian contours, are very

smooth. Thus, the comparably high weighting function expo-

nent p = 2.75 dictated by avoidance of artefact NNMs seems to

be sufficient for smoothing out Fourier-synthesis ripples as

well. This is different from the val-ED synthesis situation,

where the avoidance of NNMs was already achieved at p = 1.0,

but val-ED Laplacian contour ripples at higher resolutions

were clearly visible [Figs. 11(b), 11(c)]. They were seen to be

smoothed out at the same exponent p = 2.75 as well [Figs.

11(e), 11(f)]. Nevertheless, the norm deviations for all-ED and

all-ED Laplacian synthesis in the valence regions are found to

be significantly higher than for val-ED [Fig. 12(a)] and val-ED

Laplacian synthesis [Fig. 12(b)] using the same exponent p =

2.75.

4. Discussion

Six different weighting function methods, namely Lan3D,

Pep3D, Lan1D, Fej_pcl, Fej_cnt and Fej_stl, for weighted

Fourier synthesis [equations (15), (16)] have been employed

for investigation of the reconstruction quality of characteristic

all-ED and all-ED Laplacian features found in the corre-

sponding reference DFT distributions of CaB6. Two kinds of

all-ED and all-ED Laplacian reconstruction procedures have

been considered: (i) Fourier synthesis of val-ED Sn,val(r) and

val-ED Laplacianr2Sn;val with subsequent addition [equations

(19), (20)] of the corresponding reference DFT core distri-

butions resulting in distributions S�n;valðrÞ and r2S�n;valðrÞ,

respectively, and (ii) Fourier synthesis of all-ED Sn,tot(r) and

all-ED Laplacian r2Sn;totðrÞ distributions.

The actual weighting functions employed are characterized

by the combination of a method with a smoothing exponent p,

denoted as method(p). It is noteworthy that, while the non-

exponentiated method functions method(1) (i.e. p = 1) display

rather different weighting curves [Fig. 4(a)], the combination

of each method with a different exponent can make them

more similar. For example, weighting function values of

Fej_cnt(1.5) turned out to be very similar to the ones for

Lan1D(1.0) [Fig. 4(b)], which was initially not the case [Fig.

4(a)]. Nevertheless, although overall quality, as measured by

norm deviations, and chemical quality, as measured from

specific QTAIM-derived deviations, were found to be very

similar for both functions above, the tiny differences

268 Carina Bergner et al. � Fourier-synthesis approach for ED reconstruction Acta Cryst. (2023). A79, 246–272

research papers

Table 6
Summary of numerical quality criteria fulfilment based on QTAIM
analysis for various weighting functions method(exponent p) tested.

Values are given for val-ED synthesis (‘Sn,val synthesis’) and all-ED synthesis
(‘Sn,tot synthesis’). Resolutions for criterion C{r2�(rc.p.)} are put into brackets,
where the ED Laplacian at critical points does not clearly converge. For each
method(exponent) the decisive resolution for fulfilment of all four criteria is
marked in bold.

Resolutions
free from
NNM (Å�1)

Resolutions
with |�Qeff(Ca)|
� 0.05 (Å�1)

Resolutions
obeying
C{�(rc.p.)}
(Å�1)

Resolutions
obeying
C{r2�(rc.p.)}
(Å�1)

Sn,val synthesis:
Lan3D, p = 1.0 � 1.1 � 0.75 � 0.75 (� 1.3)
Lan1D, p = 1.0 � 1.1 � 0.75 � 0.75 � 0.5
Lan1D, p = 2.0 � 1.3 � 0.75 � 0.75 � 0.5
Fej_pcl, p = 1.75 � 1.2 � 0.75 � 0.5 � 1.8
Fej_cnt, p = 1.5 � 1.2 � 0.75 � 0.75 � 0.5
Fej_stl, p = 1.0 � 1.7 > 5.0 � 0.75 � 1.7
Pep3D, p = 2.0 6¼ 0.5, 5.0 � 5.0 � 1.3 (� 0.75)
Sn,tot synthesis:
Lan1D, p = 2.75 � 0.5 � 2.0 � 0.75 � 1.7



remaining led to non-occurrence of NNM artefacts at slightly

different resolutions (Table 6).

Norm deviations of the raw and synthesized ED and ED

Laplacian distributions in the whole unit-cell region have been

computed to verify the mathematically expected convergence

behaviours with increasing resolution. Furthermore, as an

intermediate step towards the more point-wise convergence

investigation at selected ED critical points in the QTAIM

framework, norm deviations in the valence region of the unit

cell have been studied. Considering the intended QTAIM-

type topological analysis, the observed convergence of the

�Ln
1 norm valence-electron and all-ED deviations in the

valence region [Figs. 5(a) and 13(a), right columns] is an

important reconstruction quality indicator, because intera-

tomic separatrices (basin surfaces) and critical points located

on them are then embedded in a region with systematic

improvement of the overall linear deviations �Ln
1 (homo-

geneous convergence). The same is valid for the more sensible

ED Laplacian distributions [Figs. 6(a) and 14(a), right

columns].

Finally, the convergence of QTAIM analysis based results

with increasing resolution was evaluated for each weighting

function method(exponent p). The quantities considered are

the effective atomic charges, and ED and ED Laplacian values

at chemically important critical points. In the case of val-ED

synthesis with weighting functions Lan1D(1.0), Fej_pcl(1.75),

Fej_cnt(1.5) and Fej_stl(1.0) convergent behaviour is detected

(Figs. 7–9). The val-ED Laplacian displays a kind of damped

oscillatory approach to the reference DFT values, and the

weighting functions Lan3D(1.0) and Pep3D(2.0) even showed

some difficulties converging the val-ED Laplacian at selected

critical points (Fig. 8) for larger resolutions (e.g. 5 Å�1), such

that their occurrence in the final evaluation of reconstruction

quality is only chosen for the sake of completeness, and the

problematic non-converged criterion is put into brackets in

Table 6. This problem of the Lan3D(1.0) scheme needs further

investigation in the future.

For all-ED and all-ED Laplacian synthesis using weighting

function Lan1D(2.75), convergence of the QTAIM effective

charge Qeff(Ca) was found to show oscillatory behaviour with

much larger deviations than found for val-ED Lan1D(1.0)

synthesis at the same resolution (Fig. 15). The reason is the

large average all-ED set up by structure factor Ftot(000) of

50 e�/Vu.c., which is compared with the average val-ED of

20 e�/Vu.c. from Fval(000). This constant all-ED level must be

redistributed by the subsequent structure factors to build up

the comparably huge and narrow atomic ‘peak’ in the core

regions and depleting the valence regions between the atoms

accordingly. The redistribution process works rather slowly

with increasing resolution, as has been indicated above from

the synthesized values of the all-ED at the Ca position at the

resolution of 5 Å�1 to be only 9.5% (raw synthesis) and 2%

[Lan1D(2.75)] of the reference DFT value. As a consequence,

the nuclear core ‘peak’ is already too wide from using raw

Fourier synthesis [equations (15), (16), with constant �p(Hj) =

1] and even wider for smoothed Fourier synthesis [equations

(15), (16), within the method(exponent) type of approach],

leading to decreased charge transfer for lower resolutions,

where these core-electron regions significantly overlap. For

all-ED synthesis with resolutions �2.0 Å�1 Qeff(Ca) is found

to become reasonably converged (Table 6), indicating

reasonably reduced core(Ca)–core(B) ED overlap. The

synthesized all-ED values at the characteristic critical points

investigated show rather smooth convergence behaviour for

resolutions �1.1 Å�1, while all-ED Laplacian values again

(like for the val-ED Laplacian) show an oscillatory approach

to the reference DFT values (Fig. 16).

In a specific comparison of the reconstruction qualities of

each weighting function method(p) used, a collection of four

criteria has been set up; classification of the most successful

function is the one fulfilling all criteria at the lowest resolution.

The criteria chosen are based on chemical bonding arguments

in the framework of QTAIM, and also take into account the

precision necessary for typical chemical bonding discussions.

They are clearly not universally objective, but serve for the

predefined purpose.

The first and most important criterion for comparison of the

reconstruction quality is the absence of artefact NNMs in the

synthesized EDs. As already mentioned, this criterion was

used to select the lowest possible smoothing exponent p � 1.0

for each weighting method.

A second criterion is based on the reconstruction of the

effective charges Qeff of the different species, i.e. reconstruc-

tion of Qeff(Ca) = +1.52 obtained from QTAIM analysis of

reference DFT ED is sufficient. A satisfactory recovery of the

reference Ca-atom atomic charge is considered to be achieved

within a deviation |�Qeff(Ca)| � 0.05, which is fulfilled for

most val-ED Fourier-synthesis weighting functions of type

method(exponent) at resolutions � 0.75 Å�1.

Based on the reference DFT ED and chemical bonding

arguments, an increase of ED at critical points in the sequence

�8(c.c.p.-B6) < �6(r.c.p.-BBB) < �4(b.c.p.-BBendo) < �5(b.c.p.-

BBexo) was required to be obeyed for a successful Fourier

synthesis. This third evaluation criterion, denoted C{�(rc.p.)}, is

found to be obeyed at virtually all resolutions investigated

(Table 6).

Satisfactory reconstruction of the val-ED Laplacian distri-

bution is more challenging. One problem is the kind of

damped oscillatory approach of the synthesized values

towards the reference ones (Figs. 8, 9) found for all weighting

functions [besides Pep3D(2.0)]. As investigated for method

Lan1D, a suitable increase of weighting function exponent p

damps the oscillatory approach and can thus decrease the

lowest resolution for fulfilment of condition C{r2�(rc.p.)} for

the other methods with comparably small exponents 1.0 � p <

2.0. The complete fulfilment of the requests[requirement for]

of negative values of the ED Laplacian for �4, �5, �6, and

positive ones for �8 and �3(b.c.p.-B3Ca) increasing according

to �5 < �4 < �6 < �3 < �8 (which is the fourth evaluation

criterion denoted C{r2�(rc.p.)}) is mainly dependent on the

ED Laplacian sign at �6(r.c.p.-BBB). The reference value of

�0.0279 bohr�5 is very close to zero, such that resolution-

dependent, rather small variations in absolute value

may yield positive ED Laplacian values here. Hence,
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the fulfilment of relations C{r2�(rc.p.)} is strongly

method and exponent dependent and is found to vary

between resolutions of [sin(�)/�]max � 0.5 Å�1 [functions

Fej_cnt(1.5) and Lan1D(1.0, 2.0)] and [sin(�)/�]max � 1.8 Å�1

[function Fej_pcl(1.75)].

The simultaneous fulfilment of all four conditions based on

QTAIM analysis of the synthesized ED and ED Laplacian

distributions of CaB6 leads to the conclusion that for val-ED

Fourier synthesis a resolution of at least 1.2 Å�1 is necessary

for chemically suitable ED and ED Laplacian distributions.

For comparable all-ED synthesis quality, a data set resolution

of 2.0 Å�1 is necessary (Table 6). It is noteworthy that the high

value for all-ED synthesis is caused by the |�Qeff(Ca)|

condition and not the C{r2�(rc.p.)} condition, which would

have already been satisfied at and beyond 1.7 Å�1.

5. Conclusions

The topic of this pilot study is the development and evaluation

of a strategy for the task of extracting sufficiently precise ED

and ED Laplacian distributions using a Fourier ‘back-trans-

formation’ process with an incomplete number of structure

factors (Fourier synthesis). The compound CaB6, crystallizing

in a cubic cP7-type of structure, has been chosen for this study.

As a result, a Fourier-synthesis approach has been presented,

which yields a systematic reconstruction of ED and ED

Laplacian distributions from quantum-chemically (DFT)

calculated valence-electron and all-ED static structure factors

of variable resolution. The decisive issue is the application of

suitable weighting functions to avoid series termination arte-

facts, while extracting the maximum amount (precision) of

chemical bonding information possible.

The features of the ED and ED Laplacian reconstructions

obtained by the present Fourier-synthesis approach have been

studied for six weighting methods, namely Pep3D, Lan3D,

Lan1D, Fej_pcl, Fej_cnt and Fej_stl. Pep3D and Lan3D have

been explicitly adopted from the literature, methods Fej_pcl,

Fej_cnt and Fej_stl are newly developed, and method Lan1D

has been mentioned before in the literature, but not explicitly

formulated. For the purpose of getting rid of NNM artefacts, a

new strategy has been introduced to supplement each

weighting method with a suitable smoothing factor exponent,

such that the final weighting functions used were of the type

method(exponent) (ME approach). The exponent p was

adjusted to take the smallest possible value (p � 1.0) leading

to ED distributions without NNM artefacts. The smaller p

values led to smaller norm deviations of the synthesized EDs.

Using higher exponents within each method, eventual reso-

lution-dependent ED Laplacian contour ripples can be

systematically smoothed out as well, although at the price of

increased ED norm deviations, such that a compromise needs

to be found.

Convergence of the ED and ED Laplacian distributions

with respect to the corresponding reference DFT-based

distributions with increasing resolution [sin(�)/�]max was

clearly demonstrated by analysis of norm deviations of the

synthesized distributions, QTAIM effective charge deviations,

and ED and ED Laplacian value deviations from the refer-

ence DFT values at chemically important critical points. The

criteria for successful sufficiently precise reproduction of the

characteristic ED and ED Laplacian features important for

chemical bonding arguments were chosen to be rather low, e.g.

they were based on qualitative relations of values between

different critical points and not on absolute value conver-

gence. Based on these types of criteria, successful recon-

struction of the val-ED and its Laplacian from valence-

electron structure factors is found for resolutions �1.2 Å�1

and for all-ED structure factors �2.0 Å�1. In the evaluations

of the reconstruction quality, the 1D weighting methods have

overall been more successful than the 3D ones, with the best

results obtained from Lan1D, Fej_pcl, Fej_cnt. This list of

suitable methods is not considered to be a static one; it may be

extended by further methods in the future, and some of the

present methods may turn out to be less suited for, e.g.,

systems with lower symmetry. Generally, the methods

presented here are not suitable for a realistic reconstruction of

the all-ED in the atomic core regions, because reconstruction

of the steep nuclear all-ED ‘peak’ with increasing resolution is

too slow. An approach complementary to the present one,

focusing mainly on reproduction of the all-ED nuclear ‘peaks’,

has been reported by Altomare et al. (2008).

The prospects of application of the presented ME type of

Fourier-synthesis approach could be rather wide, provided

some substantial supplementary studies are undertaken in the

future.

In combination with experimental ED reconstruction

studies based on the Hansen–Coppens model, the presented

approach could be applied without further modification. The

HC model would then play the role of the reference DFT

model in the present study, and the fitted multipoles would

correspond to the val-ED �val(r), whose static structure factors

are accessible. The core-ED in the HC model is derived from

free atoms and takes the role of �core(r) in the present study.

Calculation of static ED distributions within the HC model

using the multipole parameters corresponds to an extrapola-

tion of the experimental data set to infinite resolution.

Conversely, in the framework of Fourier synthesis, the appli-

cation of mathematical weighting functions decaying with

increasing sin(�)/� until [sin(�)/�]max corresponds to system-

atically down-weighted contributions of the higher reflections,

which could be considered as an under-interpretation of these

data. Therefore, a less biased strategy for robust experimental

static ED studies could be to consider both approaches in

parallel. For gathering more experience with Fourier-

synthesis techniques for ED and ED Laplacian reconstruction,

further theoretical studies are necessary, e.g. for non-cubic

structures.

The applicability of the presented method(exponent)-type

approach to Fourier synthesis of dynamic ED and ED

Laplacian distributions in the valence regions is expected. The

corresponding studies could be done on the basis of the HC

model using the core-electron and valence-electron structure

factors and the thermal parameters. Because of the physical

smoothing of the distributions caused by thermal averaging,
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subsequent mathematical smoothing with the present

approach (eventually even with p � 1.0) could lead to dyna-

mical ED distributions obtained from structure-factor data

sets consistent with experimental resolution avoiding data set

extrapolation.

To use the presented method(exponent) type of Fourier-

synthesis approach as a stand-alone technique, it also has to be

complemented by a study about how to distinguish between

artefact NNMs and real NNMs ‘contained’ in the structure-

factor data set. For example, the degree and kind of resilience

of NNMs in Fourier-synthesized (ME approach) EDs with

increasing resolution should be investigated for realistic model

systems with the occurrence of the NNM feature in the

reference ED distributions.

APPENDIX A
Electron-density and structure-factor calculation from
wavefunctions

Periodic DFT calculations of the electronic structure of CaB6

were carried out using the experimentally determined lattice

parameter of 4.152 Å and a boron position at 6f (x, 1
2,

1
2) with

x = 0.2018 (Börrnert, 2013). Wavefunctions were calculated at

the DFT/PBE (Perdew et al., 1996) level based on the full-

potential augmented plane wave (APW) method with local

orbitals using the full potential (L)APW code Elk (Dewhurst

et al., 2011). A (4, 4, 4) k-point set was used. For calcium, an

APW+lo-basis was used, where atomic 1s, 2s, 2p states were

technically treated as core states. For boron atoms, a

LAPW+lo+LO basis was used, where all electrons were

technically treated as valence electrons. The ED of the inner

part of the MT (muffin-tin) spheres was expanded with a

maximal angular momentum lVmax = 6 (Baranov & Kohout,

2011). The interpolation step width for the radial points

within the spheres was decreased to 1. The maximum length

of the G+k vector divided by the smallest MT radius

(RGkAPWmax) was 10.0, the angular momentum cut-off for

the MT electron density and potential (lVmax) was 12.0, the

maximal length of the G-vector for the expansion of the

interstitial electron density and potential (GVmax) was 26.0,

and the angular momentum cut-off for the APW functions

(lAPWmax) was 12.0.

The DOS (density of states) of CaB6 reveals a clear ener-

getic separation of 9 eV for chemical valence states (20 elec-

trons per formula unit) and core states [B(1s2), Ca(1s2, 2s2,

2p6, 3s2, 3p6)] (Börrnert, 2013). Therefore, besides the all-

electron structure factors, the chemical valence-electron

structure factors of CaB6 were calculated, applying a suitable

energy window for their calculation with Elk.

The ED and its Laplacian calculated from the DFT wave-

function were obtained with the DGrid-4.7 code (Kohout,

2012). In addition, a module performing the weighted Fourier

synthesis according to equations (7)–(16) has been imple-

mented into DGrid-4.7 (Börrnert et al., 2022). With that

module, real-space distributions of ED and the ED Laplacian

and subsequent QTAIM analysis were available from the

reference DFT wavefunction (reference DFT distributions

and values) as well as from the structure-factor sets of varying

resolution and with varying weighting functions metho-

d(exponent) (Fourier-synthesized distributions and values).

While the QTAIM basin boundaries are given with the grid

resolution used (uniform mesh with mesh size of 0.02628 Å),

the ED integration inside these boundaries was obtained at

much better spatial resolution by invoking the standard ED

refinement algorithm of DGrid-4.7.
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