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Because of the strong electron–atom interaction, the kinematic theory of

diffraction cannot be used to describe the scattering of electrons by an assembly

of atoms due to the strong dynamical diffraction that needs to be taken into

account. In this paper, the scattering of high-energy electrons by a regular array

of light atoms is solved exactly by applying the T-matrix formalism to the

corresponding Schrödinger’s equation in spherical coordinates. The indepen-

dent atom model is used, where each atom is represented by a sphere with an

effective constant potential. The validity of the forward scattering approxima-

tion and the phase grating approximation, assumed by the popular multislice

method, is discussed, and an alternative interpretation of multiple scattering is

proposed and compared with existing interpretations.

1. Introduction

1.1. Motivation

The theory of dynamical diffraction was first developed in

1928 (Bethe, 1928; Cowley, 1995), very shortly after the first

experimental demonstration of electron diffraction. Over the

20th century, several theories of electron diffraction have been

extensively applied in various areas of solid-state physics. In

particular, the multiple scattering theory (MST) (Korringa,

1947, 1994; Kohn & Rostoker, 1954; Dederichs, 1971) has

proven to be very efficient for describing electronic properties

of matter. Besides, MST provides an intuitive picture of

dynamical diffraction. Partial wave scattering theory (Schiff,

1955) provides another description of multiple scattering with

the possibility to take into account inelastic scattering (Howie,

1963) and loss of coherency (Howie, 2014). Other less

commonly known attempts at an intuitive depiction of dyna-

mical diffraction have been proposed to explain electron

channelling in crystals, for example by VanDyck & Op de

Beeck (1996). Dynamical diffraction must be taken into

account when considering electron–atom interactions, since

even at the very high electron energies commonly used in

modern transmission electron microscopes, the interaction is

so strong that, theoretically, the kinematic approximation is

not valid for ideal crystals thicker than 10–15 nm (Hirsch et al.,

1965; Glaeser & Downing, 1993; Subramanian et al., 2015). In

practice, crystal growth cannot be controlled to such a degree

of accuracy and, usually, nanocrystals of organic compounds

have a size on the order of hundreds of nanometres. This is a

challenging aspect of high-energy electron diffraction in

crystallography, as it significantly complicates the structure

determination process. However, structures have been

successfully determined from ED (electron diffraction) data
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using the standard kinematic theory (Gemmi et al., 2019;

Nannenga et al., 2014; Nannenga & Gonen, 2019). Although

dynamical refinement (Palatinus et al., 2013) usually leads to

better intensity predictions (Gemmi et al., 2019), the agree-

ment between theory and experiment is still significantly

worse than that obtained for X-ray data (Oleynikov et al.,

2007; Klar et al., 2021).

Although there is no quantitative prediction of the effects

of dynamical diffraction on the ability to solve a crystal

structure, it may be speculated that dynamical diffraction may

be attenuated by other effects such as a lack of coherency

caused by solvent scattering or crystal defects. Therefore,

more accurate theoretical models are needed for getting

better results from electron diffraction experiments.

1.2. State of the art

The theory of multiple scattering has a long and rich history,

including modern theoretical developments and implementa-

tions (Sébilleau et al., 2017; Zabloudil et al., 2005). However, in

the context of high-energy electron diffraction, the multislice

(MS) (Cowley & Moodie, 1957) approach and Bloch-wave

(BW) (Bethe, 1928; Metherell & Fisher, 1969) approach are

the most popular methods for simulating diffraction patterns

by crystals.

MS is particularly well suited for solving large problems as it

involves successive convolutions, which can be very efficiently

computed with the fast Fourier transform (FFT) (Ishizuka &

Uyeda, 1977). However, in order to avoid aliasing, transverse

periodic boundary conditions must be met. This is not always

possible if the crystal is in an arbitrary orientation as is the

case in typical continuous-rotation electron diffraction

experiments. A small beam tilt can also be used as an option to

remedy this aspect but only extends reliably to a maximum 3–

6� (Ishizuka, 1982; Chen et al., 1997). Simulations with arbi-

trary orientations could also be performed by considering all

unit cells in a crystal, while adding zero padding at its ends.

Even though modelling a full crystal can quickly become

intractable computationally, the use of a smooth envelope

function may improve this commonly admitted limitation of

MS (Kirkland, 2019). A few very efficient MS implementa-

tions have been reported to date (Ophus, 2017). Some of them

are targeted at convergent-beam electron diffraction (CBED),

while others have special features such as inclusion of inelastic

scattering (Allen et al., 2015). Yet, an approach combining full

modelling capabilities with an acceptable computational effi-

ciency, designed specifically for the continuous-rotation elec-

tron diffraction of large organic structures, does not seem to

be available. Such an approach would indeed be of significant

value for macromolecular structure determination from ED

data.

On the other hand, the BW method can simulate ED for

structures in arbitrary orientations but does not scale well

with the structure size. Although a few rather efficient BW

implementations (Zuo & Weickenmeier, 1995) have been

proposed to include a large number of beams, BW can hardly

be applied to very large structures since the scattering matrix

becomes prohibitively large. Due to the unfavourable OðN3Þ

complexity of matrix diagonalization, where N is the number

of beams, the method is hardly applicable in practice to the

determination of macromolecular structures where it would

have to be done numerous times. Non-periodic structures,

defects and solvent scattering are also hard to model with this

method.

In other areas of physics, specialized multiple scattering

approaches have also been developed. In particular, the

T-matrix approach has been extensively applied to wave

propagation related problems such as electromagnetics

(Hamid et al., 1990a,b; Eremin et al., 1995), optics (Moine &

Stout, 2005) and acoustics (Silva et al., 2012; Godin, 2011).

Although it does not compete with MS from a computational

standpoint, this approach benefits from providing an exact

solution to Schrödinger’s equation for an ensemble of

spherically symmetric atomic potentials in the independent

atom model (IAM) approximation. Besides, ab initio real-

space multiple scattering calculations have also been devel-

oped in X-ray photon emission spectroscopy with elaborate

potentials including many-body effects (Rehr et al., 2009).

Similar approaches based on the T-matrix also exist in electron

energy-loss spectroscopy (Sébilleau et al., 2006).

1.3. Contribution and outline

The purpose of this paper is to adapt the T-matrix formalism

specifically to the case of scattering of fast electrons by light-

atom structures. In particular, we present an intuitive picture

of multiple scattering in the forward scattering approximation.

We propose a comparison with the MS interpretation of

multiple scattering. In addition, we discuss the validity of the

forward scattering approximation and the phase grating

approximation used in the MS approach. Finally, we draw

conclusions and outline extensions of the proposed approach

in order to account for incoherent inelastic electron scattering.

2. Theory

The scattering of fast electrons by an atomic structure is

described by the wavefunction �, obeying the following

Schrödinger’s equation (Kirkland, 2019):

�
h- 2

2me

rrr
2
r � eVðrÞ

� �
� ¼ E�; ð1Þ

where h- is Planck’s constant, me the mass of the electron, e the

elementary charge, VðrÞ the spatially varying electrostatic

potential created by the atoms, and E the electron energy.

In an ED experiment, E� Vðr!1Þ ¼ 0, which corre-

sponds to the continuum, non-quantized state of the system

(Chuang, 1996). Therefore, we solve (1) with E as a parameter,

equal to the energy of incident electrons.

The total wavefunction � is described as the sum of an

incident wave �ðiÞ and a scattered wave �ðsÞ:

�ðrÞ ¼ �ðiÞ þ�ðsÞ: ð2Þ
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The incident wave is assumed to be known, i.e. a plane wave or

a Gaussian wave for example. The T-matrix aims at deter-

mining the scattered wave �ðsÞ by the sample.

2.1. T-matrix formulation

In its standard form, the T-matrix approach solves for the

case where the incident wave is described by a plane wave of

wavenumber k0 ¼ 2�=� (optics convention), and the electro-

static potential is modelled by a uniform constant inside non-

overlapping spheres. The constant potential and radius of the

spheres depend on the atom type.

Although this is not an accurate representation of the actual

potential profile VðrÞ, using an appropriate amplitude for the

constant potential V0 should provide similar values of scat-

tering cross sections. The scattering cross section being a

reliable figure of merit of the strength of an interaction, one

can assume that a suitable choice of radius and constant

potential should therefore provide a faithful depiction of the

extent of multiple scattering in the structures of interest.

The setup is shown in Fig. 1. This formulation is well

established (Hamid et al., 1990a,b; Eremin et al., 1995) and the

theory is outlined here for the purpose of introducing the

forward multiple scattering approximation. In the T-matrix

approach, the electrostatic potential is assumed constant

inside different regions of the 3D space. In each region, the

problem is reduced to the Helmholtz equation in spherical

coordinates:

rrr
2
rp

�þ k2
p� ¼ 0

kp ¼ k0np

k0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2meE

h- 2

r

np ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Vp

E

r
;

where Vp � 0 is the constant positive potential inside sphere p

of radius ap centred at dp, kp the wavenumber inside the

sphere and np is sometimes referred to as the refractive index

by analogy with optics. In the remainder, np will be referred to

as the potential strength for clarity purposes. The scattered

wavefunction �ðsÞ can be decomposed into the scattered

wavefunctions of individual atom spheres,

�ðsÞ ¼
PN
p¼1

�ðsÞp ; ð3Þ

where N is the number of spheres. The p-sphere scattered

wave �ðsÞp can itself be partitioned into a part inside sphere p

noted �ðinÞp and a part outside sphere p noted �ðoutÞ
p . The

expressions for �ðinÞp and �ðoutÞ
p are detailed as

�ðinÞp ðrpÞ ¼
P1
l¼0

jlðkprpÞ
Pm¼l

m¼�l

ap;lmYm
l ð�p; �pÞ ð4Þ

�ðoutÞ
p ðrpÞ ¼

P1
l¼0

h
ð1Þ
l ðk0rpÞ

Pm¼l

m¼�l

bp;lmYm
l ð�p; �pÞ; ð5Þ

where p ¼ 1 . . . N, jl and h
ð1Þ
l are the spherical Bessel and

Hankel functions of the first kind, respectively, Ym
l are the

spherical harmonics of order l and azimuthal order m. Note

that these equations are expressed in the reference frame of

each sphere p, hence the use of variable rp.

The unknown coefficients ap;lm, bp;lm are found by imposing

the continuity of the wavefunction and its radial derivative at

the surface of each sphere p. After some mathematical

manipulations (see Appendix A), this results in the following

linear system of equations:

ðI� TÞA ¼ L; ð6Þ

where I is the identity matrix, A the unknown vector of

coefficients, T the cross-coupling matrix and L the known

incident wave which appears on the right-hand side of (6).

Note that, in this formulation, the unknown coefficients,

found from the continuity interface conditions, will model the

response of each individual sphere to both the incident wave

and the waves scattered by the other atoms. This model

therefore does account for multiple scattering.

2.2. Far field and scattering cross section

In electron crystallography, diffraction patterns are

recorded that correspond to the intensity of the scattering

amplitude profile jf ð�; �Þj2 for various crystal orientations. A

diffraction pattern is obtained in the far-field diffraction
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Figure 1
Setup and conventions for the scattering problem solved with the T-
matrix approach. A plane wave with a wavevector k0 with incident angles
(�i, �i) interacts with N spherical atoms, each with individual location (for
example, atom p at dp), radius (ap) and electrostatic potential strength
(np). The scattered wave is observed at observation point P at r in the
global reference frame and at individual distances in the local reference
frame of the spheres (for example, jrpj). See discussion in the text for
additional details. In practice, the incident plane wave is taken along the
+z axis and the structure oriented accordingly.



regime, which arises when the shape of the angular radiation

scattering amplitude f ð�; �Þ no longer depends on the distance

to the scattering specimen. Using the asymptotic behaviour

h
ð1Þ
l ðk0rpÞ ’ ð�jÞ

lþ1
f½expðjk0rpÞ�=ðk0rpÞg and since �p ’ �,

�p ’ �, the far-field scattering amplitude fpð�; �Þ from each

individual sphere p can be written as

fpð�; �Þ ¼
P1
l¼0

Pl

m¼�l

ð�jÞ
lþ1

bp;lmYm
l ð�; �Þ: ð7Þ

The total far-field scattering amplitude f ð�; �Þ is the sum of the

scattered field contributions from all individual spheres. Note

that the scattered field from each individual sphere already

accounts for the scattering between the spheres through the

coefficients ap and bp. Since, in the far field, rp ’ r� dp � er,

f ð�; �Þ ¼
PN
p¼1

fpð�; �Þ expð�jk0er � dpÞ: ð8Þ

The normalized differential scattering cross section can be

obtained as

�ð�; �Þ

�a2
p

¼
4�r2

�a2
p

����ðsÞðr; �; �Þ

�ðiÞðr; �; �Þ

���2

¼
4jf ð�; �Þj2

k0ap

� �2
; ð9Þ

where we have used �ðsÞðr; �; �Þ ’r!1 ½expðjk0rÞ=ðk0rÞ�f ð�; �Þ.

3. Real-space forward multiple scattering picture

3.1. T-matrix forward scattering approximations

Equation (6) is a convenient way to represent the system

as it readily identifies L as the solution to the uncoupled

(T = 0) problem. If T = 0, the system can be broken down

separately into the scattering problems for each individual

sphere, for which the solutions are immediately identified as

ap;lm ¼ clmup;l, bp;lm ¼ clmvp;l. These are indeed the well

known analytical solutions of Mie scattering by a soft sphere

(Balanis, 1989).

The cross-coupling matrix T accounts for multiple scattering

effects. If A is written as A ¼ ð. . . ap;lm; bp;lm . . .ÞT, then T is a

matrix with only off-diagonal components:

T ¼

0 . . . T1q . . . . . . T1p . . . T1N

Tq1 . . . 0 . . . . . . Tqp . . . TqN

Tp1 . . . Tpq . . . . . . 0 . . . TpN

TN1 . . . TNq . . . . . . TNp . . . 0

2
664

3
775; ð10Þ

where Tpq represents the scattering from sphere p due to the

scattering from sphere q. By considering all components Tpq,

Tqp, we assume that the scattering from sphere p affects

scattering from sphere q and vice versa. Matrix (10) is

completely filled with nonzero entries apart from its diagonal

components. It is therefore not a sparse matrix, which implies

quadratically growing memory requirements. Moreover, since

full intersphere scattering is considered, the solution of

equation (6) requires matrix inversion which is computation-

ally expensive.

However, as detailed below in Section 4.2, backscattering

can be neglected for very fast electrons, which is known as the

forward scattering approximation. This results in T being

lower triangular if the spheres are sorted in ascending order

along ez. In the case of atoms lying in the same coordinate

plane, i.e. slice, the atoms can be sorted according to their

transverse coordinates. Then, as 90� scattering is neglected in

the forward scattering approximation, the T-matrix remains

lower triangular. Inversion of the lower triangular matrix is

computationally tractable and calculations can be performed

sequentially one slice after the other. Therefore, the forward

scattering approximation converts the implicit self-consistent

T-matrix scheme into a forward scattering explicit scheme

similar to the approach taken in the MS method.

3.2. Multiple scattering approximations

Since A0 ¼ L represents single scattering, we can establish

that A1 ¼ TA0 accounts for secondary scattering. Similarly,

outward scattering amplitudes from sphere p can be written as

bp ¼ bð0Þp þ
P

q;zq<zp

Tpqbð0Þq

þ Tpq

P
q;zq<zp

Tqr

P
r;zr<zq

bð0Þr þ . . .

¼
P
n¼0

Tnbð0Þp ¼
P
n¼1

bðnÞp ; ð11Þ

where the first term accounts for kinematic scattering, the

second term for secondary scattering, the third term for

tertiary scattering, and so on. This is a development similar to

the Korringa–Kohn–Rostoker (KKR) theory of multiple

scattering (Korringa, 1947, 1994; Kohn & Rostoker, 1954).

This forward multiple scattering picture is illustrated in Fig. 2

for the case of a two-atom system. From a computational point

of view, equation (11) may offer an advantage over the full

forward scattering approximation if only a few n-time scat-

tering terms are necessary. Indeed, since each term in the
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Figure 2
Two-level forward scattering approximation using the T-matrix approach
with an incident plane wave propagating upwards. The third column
represents scattering from the top scatterer, located at distance kd from
the bottom scatterer. By neglecting backscattering, this can be
approximated by the sum of (i) the kinematic scattering of the incident
plane wave by the top scatterer (first column) and (ii) the secondary
scattering following kinematic scattering from the bottom scatterer
(second column). The scattering from the bottom scatterer is viewed by
the top scatterer as a particular incident wave (neither planar nor
spherical) emitted from a point source at a distance kd.



expansion depends on precomputed coefficients b
ð0Þ
p;lm,

computation of the b
ðnÞ
p;lm coefficients for the nth scattering

term can be massively parallelized for each atom.

3.3. Scattering probabilities

The probability of an electron being scattered elastically n

times can be estimated classically from ballistic arguments

using a continuous model of matter. It can be established

(Egerton, 2011) that the probability of an electron being

elastically scattered n times after passing through an amor-

phous sample of thickness z follows a Poisson distribution

Pn
e ¼ ð1=n!Þðz=leÞ

n expð�z=leÞ, where le is the elastic mean free

path. It is paramount to note that this classical expression

models incoherent scattering, not including interference

effects between multiple scattering events. This model is

therefore valid for classical particles not exhibiting particle–

wave duality behaviour. In quantum systems, it is also possible

to consider incoherent scattering if inelastic scattering is

strongly present. Indeed, inelastic scattering not only induces

a transfer of energy between scatterers but also a loss of

coherency through phase shifts (Howie, 2014). As a result,

quantum systems, where inelastic scattering is predominant,

would scatter incoherently. For example, inelastic scattering

may be due to electron–electron interactions, solvent or

impurity scattering, as well as thermal diffuse scattering.

In this section, we suggest a way to consider probabilities of

multiple coherent elastic scattering events. It will be shown

that while multiple scattering amplitudes can be considered, it

may not be possible to identify corresponding probabilities

without any ambiguity precisely because of interference.

Using a wave-like description, the probability of an electron

undergoing a scattering event can be determined from the

scattering cross section as follows. Let S be the area over

which the specimen is illuminated.

Let z be the thickness of the specimen. The incident elec-

tron plane wave can be normalized by jAj2 ¼ 1=Sz so that it

integrates over the interaction volume V ¼ Sz to a single

electron. Then, the flow of electrons per unit time per unit

area (Vainshtein, 1964) is defined as J0 ¼ h- k0=mjAj2 ¼ v0=Sz,

where v0 is the speed of the incident electrons.

By definition of the cross section, J0� is the probability of an

electron being scattered every second. Since it takes a time

�t ¼ z=v0 for an electron to pass through the specimen, the

overall probability of a single electron being scattered is

therefore Pscat ¼ �J0�t. Therefore, after inserting the

expressions for J0 and �t,

Pscat ¼
�

S
;

where S can for example be the area of the aperture in

selected-area electron diffraction (SAED). When performing

a MS simulation, S is the area of the simulated domain

(transverse supercell if performing a periodic simulation).

Here, we define fn as the complex scattering amplitudes

obtained by considering scattering from the wave being scat-

tered n times. It can readily be established that

f ð�Þ ¼
PN
n¼1

fnð�Þ

� ¼
PN
n¼1

�n

�n ¼ jfnj
2
þ 2Re fn

PN
m>n

f 	m

� 	
: ð12Þ

We can then define Pn ¼ �n=S as the probability of an electron

being scattered n times. The choice of n-time scattering cross

section �n is arbitrary precisely because of the cross-coupling

interference terms fnf 	m. It has been chosen in such a way that

when more n-scattering terms are taken into account, prob-

abilities of higher n-level scattering events are transferred

from the lower n-level scattering events. In the case of an

application to two-beam scattering theory, the intensity of the

forward and scattered beams oscillates as the thickness of the

sample grows. The scattered beam is zero when the forward

beam has been scattered an even number of times and

maximum when the forward beam has been scattered an odd

number of times (Cowley & Moodie, 1957). Our definition of

scattering probabilities should reflect this behaviour.

The probability of an electron not being scattered is natu-

rally Pcoh ¼ 1� Pscat, where Pscat ¼
P

n Pn. Note that, since

S� �, the probability of scattering is necessarily less than 1.

For a very large number of scatterers, N, regularly spaced by

distance dz, we can define the average cross section �a ¼ �=N.

The corresponding scattering probability is then PðdzÞ =

�a�dz ¼ dz=le where � ¼ 1=Sdz is the density (since Sdz

contains only one scatterer) and le ¼ 1=�a� is the mean free

path. This is consistent with the definition used by Laty-

chevskaia & Abrahams (2019).

3.4. First Born approximation and kinematic scattering

Let us assume normal incidence with �i ¼ 0, so that

ep ¼ expðjk0dpÞ, and note that the Ewald sphere can be

represented by q = Kðsin � cos �; sin � sin�; 1� cos �Þ in reci-

procal space (or transfer vector momentum space), with

K ¼ 1=� being the wavenumber in crystallographic conven-

tion. Keeping only the kinematic term in equation (11) and

inserting in the far field in equation (8) give

f ð�; �Þ ¼
PN
p¼1

f ðeÞp expð2j�q � dpÞ; ð13Þ

where f ðeÞp is the scattering amplitude of sphere p in the first

Born approximation, also known as the form factor. Equation

(13) corresponds to the standard kinematic formula for the

structure factor traditionally used in crystallography. Note that

the kinematic approximation is nothing else than the first Born

approximation applied to the whole assembly of atoms.

It will be shown in Section 4.2 that the first Born approx-

imation holds in the case of single scatterers, but fails in

application to multi-atom systems. This means that the kine-

matic approximation is not generally valid.
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3.5. Multiple scattering in the MS approach

In MS, the forward scattering approximation is used and the

potential discretized in slices. The wavefunction is propagated

from one slice to the other using a Fresnel propagator.

A multiple scattering interpretation of the MS approach has

been proposed (Cowley & Moodie, 1957), which, although

analogous to the one presented above, differs in that it is

stated in reciprocal space. More details on the differences

between the two interpretations can be found in Appendix B.

4. Application and results

Very efficient open-source packages exist for T-matrix calcu-

lations, but they are targeted at applications in electro-

magnetics (Egel et al., 2017; Kottke, 2020). There are also

packages targeted at photon and electron spectroscopy and

related to the T-matrix, such as msSpec (Sébilleau et al., 2011)

and FEFF9 (Rehr et al., 2010). Here, an open-source package,

adapted to high-energy electron diffraction and including the

forward scattering approximation, has been developed and

made available (Drevon, 2021).

4.1. Validity of the implementation

In practice, the size of the matrix in equation (6) has to be

truncated to a maximum integer order �max due to computer

memory limitations.

A rule for obtaining accurate results is to use an integer

larger than the maximum value of the normalized radius ka,

which we call kamax ¼ maxp kap where ap is the radius of the

spheres and k the wavenumber.

Besides, the translational addition theorem (Dufva et al.,

2008) used for expressing the scattered field of any sphere in

the reference frame of another sphere introduces an approx-

imation of the translated spherical Hankel functions. This

theorem is also more commonly known as the structure

constant expansion or Kasterin expansion. The computational

accuracy of this translation decreases from the centre at which

this expansion is written. This is analogous to a Taylor

expansion, for which the accuracy away from the point at

which it is expressed increases with increasing expansion

order. Note that the distances between the spheres do not

affect the accuracy of this translation operation and should not

affect the choice of �max. Once again, the radius of the spheres

determines the choice of �max. This is illustrated in Fig. 3(a),

where the error between h
ð1Þ
l Y42, computed at the origin, using

the translational addition theorem with dp ¼ ð0; 3; 5Þ and

�max ¼ 10, is displayed in log scale.

The choice of �max is best evaluated by assessing the

continuity of the wavefunction at the surface of the spheres as

shown in Fig. 3(b) for N ¼ 4 and kamax ¼ 4. This is also used to

validate the correctness of the implementation since it can be

seen that machine accuracy can be reached when increasing

the order of the expansion.

4.2. Validity of forward scattering and phase grating
approximations for light atoms

In the case of very fast electrons typically used in trans-

mission electron microscopes, E = 50–300 keV. Inclusion of

relativistic effects results in a wavelength � = 0.02508 Å at

200 keV, which will be assumed from now on unless stated

otherwise.

In the IAM approximation, the Coulomb potential is

created by the charge of the nucleus and its electron cloud. It

is typically fitted with a sum of three screened Coulomb

potentials and three Gaussian terms (Kirkland, 2019) which

results in the potential shown in Fig. 4(a).

The solution to Schrödinger’s equation in such a potential

can only be solved perturbatively (Müller, 1965) and is beyond

the scope of this study. However, indicative values for kp and

kap can be used with a multi-shell representation as shown in

the form of blue patches in Fig. 4(a). Although the range of the
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Figure 3
(a) Error difference in evaluating h

ð1Þ
2 Y42 using (i) the standard product of

the radial Hankel function h
ð1Þ
2 and spherical harmonic Y42 and (ii) the

translational addition theorem (14), (15) at a distance dp ¼ ð0; 3; 5Þ (in
normalized radii) from the origin with expansion order �max ¼ 10. The
circle represents spheres of radius 1. Colour axis in log scale. (b)
Continuity error at the sphere boundaries [i.e. difference between the
solution computed at the boundary using equations (4) and (5),
integrated over the sphere boundary]. For this example, N ¼ 4 and
kamax ¼ 4. The error reaches machine accuracy at expansion order
�max ¼ 10.

Figure 4
(a) Electrostatic potential, created by an atom of carbon in the IAM (blue
solid line). The blue patches show a multi-shell approximation model,
which can be used to represent the potential in a T-matrix approach. (b)
Scattering amplitude in the Born approximation for the multi-shell model
with increasing truncation radius kamax.



screened Coulomb potential is theoretically infinite, it can be

truncated to radius ka for most practical purposes. This

Coulomb potential truncation is commonly known as the

muffin-tin model. The number of concentric spheres to use has

mainly an effect on the large-angle representation of the form

factor which does not impose severe constraints in a low-angle

forward scattering approximation. In Fig. 4(b), the multi-shell

scattering amplitudes calculated in the Born approximation

are shown for increasing values of truncation radius. The

figure only shows a satisfactory agreement with the electron

diffraction scattering factors for normalized radius as large as

ka ¼ 400. Even though the potential VðrÞ is extremely small at

such a large value of the radius ka ¼ 400, those shells are

required to account for the proper low-angle representation of

the form factor.

As mentioned above, ED simulations based on the T-matrix

approach are very expensive computationally at ka ¼ 400,

because higher-order terms of series in equations (4), (5)

would need to be included. However, the medium truncation

range should be sufficient for providing a reasonable picture

of dynamical scattering. Fig. 5(a) shows the total scattering

cross section of a single sphere with increasing radius for a

range of values of potential strength np. The dark blue curve

shows the locations of the spherical shell for carbon. It

becomes almost flat for the parameter set (ka ¼ 30,

np ¼ 1:001), from which it keeps increasing very slightly to

reach the asymptotic value � ’ 0:0035. This value is almost

identical to the average elastic cross section for real carbon in

the Born approximation (Latychevskaia & Abrahams, 2019)

which confirms that the chosen parameters capture the

strength of incident electron–carbon interaction. Therefore,

even though the chosen parameter set is a coarse repre-

sentation of the potential profile of a real carbon atom, it

should provide a reasonably faithful estimate of the extent of

multiple scattering of real carbon-based samples, which is the

main objective of this study.

Fig. 5(b) shows the shape of the far-field amplitudes for two

sets of ka, np values. The first one is for the extreme value of

ka ¼ 3 and np ¼ 1:1 while the second corresponds to one of

the carbon atoms. While differences are obvious for the first

case, the Born approximation is very accurate for the carbon

atoms, although some minor differences appear at low angles

where the phase grating approximation provides some

improvements too.

Fig. 6(a) shows a ðka; npÞmap of the difference between the

exact coefficients of the two-body problem and those calcu-

lated using the kinematic approximation. This error is calcu-

lated as

errðbp;l;mÞ ¼
P

p;l;m

jbp;l;m � b
approx
p;l;m j: ð14Þ

Fig. 6(b) shows the same thing as a result of using the forward

approximations.

For this case, a value of kd ¼ 3ka is used, which is close to

interatomic distances. Overall, it is clear that the forward

scattering approximation is very accurate over all ranges of

parameter sets for carbon atoms, which is expected since there

is very little backscattering beyond 90�. On the other hand, the

kinematic approximation does not appear quite as good, even

for this, a mere two-atom problem. Although not shown here,

both the kinematic and forward scattering approximations

tend to work slightly better with increasing distances kd, since

coupling between the spheres gets reduced and, therefore, is

less likely to affect scattering from the other spheres. Using

low values of np results in an overall good approximation of

both the uncoupled and forward scattering approximation.

This is an anticipated result, since for weak potentials the

kinematic approximation works better. The uncoupled

approximation improves with decreasing radii, since a small ka

results in a small scattering cross section. On the other hand,

the forward scattering approximation improves with larger

values of ka, which make backward scattering less likely.

Fig. 7(a) shows the scattering coefficients bp;l;m in complex

space for the given two-body problem, where np ¼ 1:01,

kd ¼ 3ka, while increasing radius ka (up to ka ¼ 15) for a
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Figure 5
(a) Total scattering cross section � at 200 keV for a few values of np over a
range of normalized radii ka. The dark blue curve shows the location of
the carbon spherical shells. (b) Shape of the scattering amplitude for
normalized radius. The green curves correspond to ka ¼ 3 and potential’s
strength np ¼ 1:1. The blue curves correspond to ka ¼ 10, np ¼ 1:02
which is one of the carbon shells. Dashed lines show the Born
approximation and dashed–dotted lines show the phase grating
approximation used in MS. The Born approximation is very good for
the carbon data point used.

Figure 6
Error of bp;lm [equation (14)] in ðka; npÞ space (colour axis in log scale) for
a two-scatterer system using the (a) kinematic scattering approximation,
(b) forward scattering approximation. The blue dots correspond to the
location of the spherical shells of a carbon atom at E = 200 keV (shown
only for first five shells for visualization purposes).



selected set of orders l. Only the coefficients for sphere p ¼ 2

are shown since it is the sphere most affected by the approx-

imations. Here, only m ¼ 0 coefficients are used, because in

the case of planar illumination, this configuration has azimu-

thal symmetry. The coefficients are computed using the full T-

matrix, the forward scattering approximation and the kine-

matic approximation. In order to get this picture, the coeffi-

cients were divided by the phase factor at sphere p, i.e.

bp;lm expðjkdÞ. The arms of the spiral are rotated by �=2 from

one order to the other as a result of the jl factor in the

spherical expansion of the incident plane wave. All the coef-

ficients increase with increasing ka as a result of the increasing

scattering cross section with increasing ka. For a given ka, the

strongest contributing term orders are around l ¼ ka as a

direct manifestation of the convergence behaviour presented

above. It can be observed that the kinematic approximation

error increases with the radius while the forward approxima-

tion is very accurate across all radii.

Fig. 7(b) shows a comparison of the computed far-field

scattering amplitudes for N ¼ 2, ka ¼ 30, np ¼ 1:01, kd ¼ 2ka

using the full T-matrix, the forward approximation and the

kinematic approximation. The peaks and valleys are both due

to the single scattering profile of the constant sphere and the

interferometric path length expðjkdÞ. It is possible to see that

the coupled problem has a slight averaging effect over the

kinematic pattern, a well known feature of dynamical

diffraction.

4.3. Successive multiple scattering approximations

Finally, we consider an array of N identical scatterers

regularly spaced by kd ¼ 3ka which correlates with lengths in

molecules.

Here, we consider the successive multiple scattering

approach under normal illumination. This is an extreme case

where strong dynamical scattering is expected.

Figs. 8(a) and 8(b) show the evolution of the error [equation

(14)] on scattering amplitude coefficients for an increasing

number of spheres while also varying the number of successive

approximations while keeping parameters ka ¼ 7, kdka ¼ 3

fixed.

The forward scattering approximation becomes worse for

increasing numbers of spheres as a result of accumulated

errors. This is a limitation of a forward propagation scheme

such as the one used in the MS approach, whose accuracy gets

worse with increasing simulated sample thickness (Kirkland,

2019). Overall, the successive approximation schemes natu-

rally converge to the forward approximation for sufficiently

large n. However, higher-order terms need to be included in

equations (4), (5) as the number of spheres (or thickness of the

sample) increases. This result is similar to other multiple

scattering approaches. For example, in the case of a two-beam

configuration, it was shown (Cowley & Moodie, 1957) that the

scattered beam could be expressed using expansion (17),

considering only the scattering terms of the primary beam

n ¼ 1; 3; 5 . . .. The famous two-beam analytical scattering

expression is obtained as the sum of the infinite series.

Fig. 9(a) shows the scattering probabilities of n-times scat-

tering for ka ¼ 7, np ¼ 1:01, ka ¼ 3kd with increasing N. The

dynamic scattering probability Pdyn ¼
P

n>1 Pn and the kine-

matic as well as the total scattering probabilities are shown. It

seems that all multiple scattering terms increase with the

number of spheres, in contrast to the ballistic picture of the

Poisson distribution (Egerton, 2011), also shown as dashed–

dotted lines calculated using the average scattering cross

section. The main reason for these trends is that the ballistic

picture ignores the effect of interference, which drastically

affects the overall scattering process.

Fig. 9(b) shows the scattering amplitudes fn, associated with

n-times scattering for ka ¼ 7, np ¼ 1:01 and N ¼ 15. The

scattering amplitudes have similar shapes, which mostly

contribute to constructive interference, although slight peak

misalignments can be seen. The reason for the large-angle
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Figure 8
(a) Error [equation (14)] on the scattering amplitude coefficients with
increasing number of spheres N for ka ¼ 7, np ¼ 1:001, kdka ¼ 3.
Squares: forward scattering approximation; diamonds: kinematic approx-
imation; triangles: secondary approximations; coloured dashed lines:
successive n-times multiple scattering approximations. (b) Error on the
scattering amplitude coefficients in the increasing successive approxima-
tions for ka ¼ 7, kdka ¼ 3 and N ¼ 100 spheres while varying np.

Figure 7
(a) Complex space scattering coefficients bp;l;m for a two-body problem
for np ¼ 1:01, kd ¼ 3ka with increasing radius ka. Only the coefficients
for sphere p ¼ 2 and m ¼ 0 are shown. The coefficients were computed
from full T-matrix (open circles), in the forward scattering approximation
(squares) and the kinematic approximation (diamonds). (b) Comparison
of far-field scattering amplitudes for N ¼ 2, ka ¼ 30, np ¼ 1:01, kd ¼ 2ka
using full T-matrix (solid blue), in forward approximation (green dashed
line) and kinematic approximation (red dashed–dotted). The forward
approximation is indistinguishable from the exact solution in this case.



scattering, visible on the figure, is due to the small radius used

in this example. As mentioned above, a much larger normal-

ized radius would be required to properly account for the low-

angle representation of the far-field diffraction pattern.

However, because of the comparable scattering cross section

of the chosen model and a real carbon atom, the extent of

multiple scattering should have been reasonably estimated.

Note that the examples presented here have been

performed for electron incident energies of 200 keV, which is a

typical value in transmission electron microscopy. Decreasing

the energy would result in lower normalized radii, which

would correspond to shifting the blue curve for carbon in Fig.

5(a) to the left. As a result, spherical harmonics of lower

orders would be sufficient to achieve good accuracy. On the

other hand, the forward scattering approximation would lose

accuracy at smaller thicknesses, and then full inversion of the

system (6) might be required. For higher energies, the forward

approximation becomes more accurate but the size of the

system increases, making the problem computationally harder.

5. Conclusion and perspective

An alternative approach, based on the T-matrix formalism,

has been applied to the scattering of fast electrons, by light-

atom structures. The validity of important approximations,

used in the MS approach, has been discussed, and a multiple

scattering approximation framework has been proposed and

put in perspective compared with other existing interpreta-

tions. While it is worth mentioning that the T-matrix does not

scale favourably with large increasing values of the wave-

length-normalized radii ka, as commonly used for high-energy

electron diffraction, it can still provide valuable insights in

understanding dynamical diffraction effects thanks to its

ability to solve the wave equation exactly. For a 200 keV

electron beam, each spherical coefficient ap, bp accounts for

one wavelength of physical space comparable with the

sampling resolution used in typical MS simulations. For a

truncation longitudinal number n ¼ 400, the total number of

coefficients for all atoms would be 2n2N since azimuthal

coefficients m 6¼ 0 are necessary for nonlinear array arrange-

ments. For N = 10 000 atoms, this is on the order of a few

gigabytes of memory. While inverting a matrix of this size

would be computationally intractable, the forward scheme

approximation, presented in this paper, makes such a

computation viable. Indeed, it offers the possibility of parallel

computation for all atoms in the same slice, similar to the way

it is traditionally done in finite difference schemes.

In the presented approach, the spherically symmetric

effective potential does not model the real electrostatic

potential very accurately. However, we anticipate that the

proposed interpretation of multiple scattering is equally

applicable to the more accurate case of a screened Coulomb

potential. Such a potential could naturally be included by

using a basis of radial functions representing solutions to the

homogeneous Schrödinger’s equation, which can be obtained

numerically. In fact, since the T-matrix approach mainly

relies on the spherical symmetry of the individual scatterers,

it can be adapted to any family of radial functions, provided

that translational coefficients (15), (16) can be computed

numerically.

For periodic structures, the Green’s functions (GFs) could

be used as basis functions. All GFs are solutions to Schro-

dinger’s equation in a periodic potential, expressed as an

expansion upon the lattice vectors of the crystal under

consideration. They would automatically satisfy the boundary

conditions imposed by the Bloch theorem in crystals. This is

the starting point of the Kohn–Rostoker method (Kohn &

Rostoker, 1954).

An apparent limitation of both T-matrix and MS approa-

ches lies in the use of the IAM, which, by definition, ignores

the effect of bonding. Theoretically, such bonding could be

included (Natoli et al., 1986). In fact, the MS approach can be

adapted, at a computational cost, to bonding models such as

the transferable aspherical atom model (TAAM) or even

potentials determined by density functional theory. On the

other hand, the single-site T-matrix approach, presented in

this paper, cannot work directly with such potentials because

the spheres are treated as non-overlapping. A possible option

would be to employ effective potentials calculated in the

framework of self-consistent electronic structures, where the

effect of bonding manifests itself in the bonding-corrected

effective potential. However, it is still an open question

whether the effects of such bonding play an important role in

structure determination of organic structures by electron

diffraction.

The advantage of the multiple scattering approximation is

that it may offer the possibility to include consistently the

effect of incoherent and inelastic scattering, which can provide

a greater insight into dynamical diffraction effects in real

experiments. Incoherent scattering could, for example, be

included in a stochastic fashion as randomly affecting the

phase of the scattered waves. Inelastic scattering might require

the use of dedicated electrostatic absorption potentials. It is
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Figure 9
(a) Scattering probabilities (dashed coloured lines) of n-times scattering,
kinematic (cyan solid line), dynamic scattering (blue solid line) and total
scattering (black solid) probabilities. The total scattering probability
following the Poisson distribution using the average scattering cross
section is shown as the black dashed–dotted line. Probabilities have been
integrated over angular distribution using ka ¼ 7, np ¼ 1:01 and
ka ¼ 3kd. (b) Scattering amplitudes fn, associated with n-times scattering
(for n = 1-, 2- and 3-level scattering) for ka ¼ 7, np ¼ 1:01 and N ¼ 15.
The total scattering amplitude f ¼

P
n fn is shown in solid black.



anticipated that incoherent and inelastic scattering may have a

significant effect in dynamical diffraction even when energy

filters are used.

6. Data availability statement

Computer codes, developed in this study, are freely available

under the GNU GPL licence v3.0 from https://github.com/

ronandrevon/pyScatSpheres. No new ED data were produced

in this study.

APPENDIX A
T-matrix

The unknown coefficients ap;lm, bp;lm are found by imposing

the continuity of the wavefunction and its radial derivative at

the surface of each sphere p:

PN
q¼1

�ðoutÞ
q þ�ðiÞ

 !
jrp¼ap

¼ �ðinÞp

� �
jrp¼ap

@rp

PN
q¼1

�ðoutÞ
q þ�ðiÞ

 !
jrp¼ap

¼ @rp
�ðinÞp

� �
jrp¼ap

;

where �ðiÞ is the incident electron wavefunction, �ðinÞp the

scattered wavefunction of sphere p expressed inside the

sphere, �ðoutÞ
p the scattered wavefunction of sphere p

expressed outside sphere p, and ap the radius of sphere p.

Using the orthogonality of the spherical harmonics, the

following linear system yields the unknown coefficients:

ap;lm ¼ up;lclm þ up;l

PN
q 6¼pP1

�¼0

P	¼�
	¼��

a
ðout-inÞ
�;	;l;m ðdpqÞbq;�	 ð15Þ

bp;lm ¼ vp;lclm þ vp;l

PN
q6¼pP1

�¼0

P	¼�
	¼��

a
ðout-inÞ
�;	;l;m ðdpqÞbq;�	; ð16Þ

where the translational addition theorem (Dufva et al., 2008)

has been used to express the field, scattered by sphere q in the

reference frame of sphere p, formally written as �ðoutÞ
q ðrpÞ. This

operation involves the coupling coefficients a
ðout-inÞ
�;	;l;m ðdpqÞ, where

dpq ¼ dq � dp.

The coefficients clm are related to the incident wave. In the

case of a plane wave expðjk0 � rÞ, j ¼
ffiffiffiffiffiffi
�1
p

, the addition

theorem is used to expand the plane wave on the spherical

Bessel solutions basis set:

clm ¼ 4�jlYm	
l �i; �að Þep

ep ¼ expðjk0dp
pÞ


p ¼ sinð�pÞ sinð�pÞ sinð�iÞ þ cosð�pÞ cosð�iÞ;

where dp;�p;�p are the spherical coordinates of the centre of

sphere p in the global coordinate system and 0 
 �i 
 � is the

angle of incidence with respect to the ez axis. For propagation

in the ðy; zÞ plane, assumed in this paper, �i ¼ �=2 and ep is

the phase offset at sphere p. The different notations are illu-

strated in Fig. 1.

The coefficients up;l and vp;l are expressed as

up;l ¼
h0lðk0apÞjlðk0apÞ � hlðk0apÞjlðk0apÞ

0

jlðkpapÞh
0
lðk0apÞ � npj0lðkpadpÞhlðk0apÞ

vp;l ¼
npj0lðkpapÞjlðk0apÞ � jlðkpapÞj

0
lðk0apÞ

jlðkpapÞh
0
lðk0apÞ � npj0lðkpapÞhlðk0apÞ

;

where z0l ¼ @�zlð�Þ.
Each of equations (15), (16) represent n2 equations for

individual spheres where n ¼ lmax is the truncation long-

itudinal order. Note that each equation involves the outside

coefficients bq;l;m of all the other spheres through the trans-

lational coefficients. As a result, equations (15), (16) represent

a N � 2� n2 system with as many unknowns as the number of

equations and, therefore, can be written in the matrix form (6).

APPENDIX B
Multiple scattering picture of the MS approach

The expression for the scattering amplitude f ðh; kÞ of beam

h; k is proportional to the following expression:

f ðh; kÞ /
P

l

P
h1

P
k1

P
l1

. . .
P

hN�1

P
kN�1

P
lN�1

Qh1;k1;l1
. . .

�QhN�1;kN�1;lN�1
Q h� hu; k� kv; l � lwð Þ

� exp �2�j H
 ��z
PN�1

n¼1


n

� 	� �
; ð17Þ

where h ¼
PN

n¼1 hn, k ¼
PN

n¼1 kn, hu ¼
PN�1

n¼1 hn,

kv ¼
PN�1

n¼1 kn, lw ¼
PN�1

n¼1 ln, H ¼ N�z is the total thickness

of the sample, N the number of slices of thickness �z, Qh;k;l =

�j=�z�h;k expð�2j�lnzn=cÞ + �Fh;k;l, Fh;k;l is the structure

factor, � ¼ 2�meh=� the interaction parameter, 
 the excita-

tion error of beam ðh; k; lÞ and 
n is the excitation error of

beam ð
Pn

r¼1 hr;
Pn

r¼1 lrÞ. The excitation error is expressed as


 ¼
1

2K

h

a2
þ

k

b2

� 	
�

l

c
; ð18Þ

where a, b and c are the lattice constants of the crystal and

K ¼ 1=� the wavenumber. Equation (18) expresses the

longitudinal distance of beam ðh; k; lÞ to the paraboloid

shown in Fig. 10(a). This paraboloid is a very accurate

representation of the Ewald sphere for large wavenumber K.

Therefore, 
 is very close to the excitation error commonly

defined in crystallography.

From equation (17) it is possible to gather terms in powers

of QN�n
0;0;0 into f

ðnÞ
h;k, which corresponds to the incident beam

scattered n times before contributing to reflections h; k. The

term QN
0;0;0 only appears for h ¼ k ¼ 0 and corresponds to the

unscattered direct beam. There are N terms involving the

factor QN�1
0;0;0 depending on which slice the single scattering
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event took place. There are NðN � 1Þ=2 terms involving the

factor QN�2
0;0;0 depending on which pair of slices the two-level

scattering process is considered, and so on for the higher-order

multiple scattering terms (Cowley & Moodie, 1957). This

multiple scattering picture is illustrated in 2D in Fig. 10(b) for

a case with N ¼ 3 and using only beams in the zero-order

Laue zone (ZOLZ) li ¼ 0.

Using only ZOLZ beams, f
ð1Þ
h;k, ðh; kÞ 6¼ ð0; 0Þ is expanded as

f
ð1Þ
h;k / Fh;k;0

PN
m¼1

expð�2j�m�z
Þ; ð19Þ

which is the well known kinematic scattering regime, where

the sum converges to the standard Ewald sphere curvature

factor sinð�
HÞ=�
 for infinitely thick slices N!1,

�z! 0, N�z ¼ H.

For a two-level scattering using only ZOLZ beams, f
ð2Þ
h

would expand as (written in 2D here)

f
ð2Þ
h /

P
h1

Fh1;0
Fh�h1;0

PN
m1¼1

PN
m2>m1

expf�2j��z½m1
1 þm2ð
 � 
1Þ�g: ð20Þ
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Figure 10
Multiple scattering in MS. (a) Distance 
ðMSÞ to the Ewald paraboloid
(solid curve) as represented by MS and distance 
ðBWÞ to the Ewald sphere
(dashed curve), known as the excitation error in the Bloch wave theory.
Point P is the projection of reciprocal point ðun;wnÞ onto the Ewald
paraboloid. (b) Multiple scattering in reciprocal space for N ¼ 3 slices
located at z1; z2; z3. In this example, the beam is scattered in the first slice
at z1 in direction ðh1; 0Þ ¼ ð2; 0Þ. Then, at slice z2, it scatters in direction
ðh2; 0Þ ¼ ð1; 0Þ, which results in an overall scattering of the original beam
in ðh1 þ h2; 0Þ ¼ ð3; 0Þ. Finally, at the last slice zN ¼ z3, deflection is in
direction ðhN; 0Þ ¼ ð2; 0Þ. Therefore, the overall scattering for this
example corresponds to a contribution to reflection ðh1 þ h2 þ h3; 0Þ =
(5,0) in the diffraction pattern. The open blue circles show how to
interpret the successive excitation errors 
i.
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Sébilleau, D., Natoli, C., Gavaza, G. M., Zhao, H., Da Pieve, F. &
Hatada, K. (2011). Comput. Phys. Commun. 182, 2567–2579.

Silva, G. T., Baggio, A. L., Lopes, J. H. & Mitri, F. G. (2012).
arXiv:1210.2116.

Subramanian, G., Basu, S., Liu, H., Zuo, J. & Spence, J. C. H. (2015).
Ultramicroscopy, 148, 87–93.

Vainshtein, B. (1964). Structure Analysis by Electron Diffraction, pp.
114–204. Oxford: Pergamon Press.

Van Dyck, D. & Op de Beeck, M. (1996). Ultramicroscopy, 64, 99–
107.

Zabloudil, J., Hammerling, R., Weinberger, P. & Szunyogh, L. (2005).
Editors. Electron Scattering in Solid Matter. Berlin: Springer.

Zuo, J. M. & Weickenmeier, A. L. (1995). Ultramicroscopy, 57, 375–
383.

research papers

Acta Cryst. (2023). A79, 180–191 Tarik R. Drevon et al. � Dynamical diffraction of high-energy electrons 191

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5020&bbid=BB51

