MS40 Operando and in-situ crystallographic studies

MS40-2-6 In situ 3D observations of a core-shell volume transition in an Ni₃Fe nanocrystal using Bragg coherent X-ray diffraction imaging #MS40-2-6

C. Chatelier ¹, C. Atlan ¹, M. Dupraz ¹, N. Li ¹, E. Rabkin ², S. Labat ³, J. Eymery ⁴, M.I. Richard ¹ ¹CEA Grenoble - ESRF - Grenoble (France), ²Technion-Israel Institute of Technology - Haifa (Israel), ³IM2NP - Aix Marseille Université - Marseille (France), ⁴CEA Grenoble - Grenoble (France)

Abstract

Coherent X-ray Diffraction Imaging (CDI) [1] allows for the *in situ* 3D mapping of the structural changes during phase transitions and chemical reactions, with a fair spatial resolution of the order of magnitude of 10 nm [2]. Using this technique in multi-Bragg conditions (Bragg CDI on multiple reflections), it was possible to follow the structural evolution (change in morphology, variation of the displacement and strain fields) as a function of temperature in a 300 nm Ni₃Fe nanocrystal. During this volume transition, which happens between 500°C and 600°C, a core-shell structure is progressively observed with two distinct lattice parameters (difference of 0.39%, corresponding to two different Ni:Fe ratios), leading to highly strained and coherent domains. A rounding of the particle is also observed, with a disappearing of the initial facets. Static molecular calculations (LAMMPS) of different systems, such as faceted and core-shell nanoparticles, complete this work and allow for the confirmation of a core-shell structure. This study shows the perfect ability of modern phase retrieval methods to reconstruct highly strained systems such as core-shell nanoparticles.

References

[1] I. Robinson and R. Harder, Coherent X-Ray Diffraction Imaging of Strain at the Nanoscale, Nat. Mater. 8, 291 (2009).
[2] S. Labat, M.-I. Richard, M. Dupraz, M. Gailhanou, G. Beutier, M. Verdier, F. Mastropietro, T. W. Cornelius, T. U. Schülli, J. Eymery, and O. Thomas, Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging, ACS Nano 9, 9210 (2015).

BCDI analysis (a) before and (b) after annealing

