## MS15-2-8 $\mathrm{Rb}_{2} \mathrm{I}_{8} \mathrm{Nd}_{4} \mathrm{Sb}_{16,667} \mathrm{O}_{28}$ : A Quinary Oxoantimonate(III) lodide with Rubidium and Neodymium \#MS15-2-8

R.J.C. Locke ${ }^{1}$, K.N. Bozenhardt ${ }^{1}$, T. Schleid ${ }^{1}$<br>${ }^{1}$ University of Stuttgart - Stuttgart (Germany)


#### Abstract

In attempts to synthesize $\mathrm{NdSb}_{2} \mathrm{O}_{4} \mathrm{I}$ in analogy to $\mathrm{NdBi}_{2} \mathrm{O}_{4}{ }^{[1]}$, with $\mathrm{Rb}_{2}{ }_{8} \mathrm{Nd}_{4} \mathrm{Sb}_{16.667} \mathrm{O}_{28}$ the first flux-containing rare-earth metal(III) oxoantimonate(III) iodide could be obtained via solid-state reactions, which forms pale violet, long thin, needleshaped crystals. It crystallizes in the monoclinic space group C2/m with $a=2269.98(17) \mathrm{pm}, b=415.27(3) \mathrm{pm}, c=$ 1284.56(9) pm and $\beta=96.559(3)^{\circ}$ for $Z=1$ (CSD-2169526).

Four out of five crystallographically distinct $\mathrm{Sb}^{3+}$ cations (Sb1-Sb4) form square $\psi^{1}$-pyramids $\left[\mathrm{SbO}_{4}\right]^{5-}$ (Figure 1, right) together with four oxygen atoms and a stereochemically active non-bonding electron pair each. These pyramids exhibit $\mathrm{Sb}^{3+}-\mathrm{O}^{2-}$ distances from 196 to 228 pm and are linked either by two edges or by two edges and one corner. The fifth $\mathrm{Sb}^{3+}$ cation (Sb5) forms rather a $\psi^{1}$-tetrahedron $\left[\mathrm{SbO}_{3}\right]^{3-}$ ( Figure 1, right) with only three oxygen atoms at similar distances and its lone pair. There is some disorder present, which causes to be the Sb 4 and Sb 5 positions only partially occupied. In this new structure, for the first time, a triple and a quadruple coordination mode of the $\mathrm{Sb}^{3+}$ cations with oxygen atoms occurs simultaneously. The $\psi^{1}$-pyramids are each linked by edges, while the $\psi^{1}$-tetrahedra are connected by corners, resulting in infinite strands of so-called "halfpipes" (Figure 1, left) propagating along [010]. The structure displays $\left[\mathrm{NdO}_{8}\right]^{13-}$ hemiprisms, which share by four skew edges to form a kind of staircase structure. These polyhedra are located within antimony-oxygen "halfpipes" with each oxygen atom of a hemiprism also belonging to the "halfpipe". The $\mathrm{Rb}^{+}$cations, occupying only one half of their crystallographic positions, have six iodide anions as neighbours to form trigonal prisms $\left[\mathrm{Rbl}_{6}\right]^{5-}$, which share two trans-oriented faces to form endless chains according to 1D$\left\{\left[\mathrm{Rb\mid}_{6 / 2}^{\mathrm{f}}\right]^{2 \mathrm{~s}}\right\}$ (Figure 2).


## References

[1] M. Schmidt, H. Oppermann, C. Henning, R. W. Henn, E. Gmelin, N. Söger, M. Binneweis, Z. Anorg. Allg. Chem. 2000, 626, 125-135.
[2] R. J. C. Locke, Doctoral Dissertation 2024, University of Stuttgart, in preparation.
[3] K.-N. Bozenhardt, Master Thesis 2022, University of Stuttgart.


Figure L. Antimony-oxygen "halfpipes" (left) and their building blockas ( $\psi$ l-pyramids [(Sb1$\left.4) \mathrm{O}_{4}\right]^{3}$ and $\psi^{1}$-tetrahedra $\left[(\mathrm{Sb} 5) \mathrm{O}_{3}\right]^{3}$, right $)$.


Figure 2. Projection of the monoclinic crystal structure of $\mathrm{Rb}_{2} \mathrm{l}_{3} \mathrm{Nd}_{4} \mathrm{Sb}_{26.60} \mathrm{O}_{28}$ onto [010] emphasizing the antimony-oxygen "halfpipes" filled with $\left[\mathrm{NdO}_{3}\right]^{13}$ - polyhedra.

