MS15-1-2 Sm₇F₁₂Cl₂: Synthesis and Crystal Structure of a New Fluoride-Rich Samarium(II) Fluoride Chloride #MS15-1-2

C. Buyer ¹, S.A. Schumacher ¹, T. Schleid ¹ ¹University of Stuttgart - Stuttgart (Germany)

Abstract

Red rod-shaped single crystals of $Sm_7F_{12}Cl_2$ (CSD-2126941) with a length up to 0.3 mm were obtained as a by-product in

3

an experiment to obtain SmF₂ [1–4] from a NaCl flux. SmF₂ occurs as red plates in the CaF₂-type structure (cubic, *Fm m*, *a* = 580.31(4) pm, *d*(Sm–F) = 2501 pm, 8×) [4]. Both kinds of single crystals emerged after heating up a mixture of Sm, SmF₃ and NaCl (as flux) in a sealed niobium capsule to 850 °C and cooling down the product with 5 °C/h after four days. Sm₇F₁₂Cl₂ crystallizes in the Ba₇F₁₂Cl₂-type structure [5] with *a* = 1004.52(7) pm, *c* = 394.75(3) pm and *Z* = 1 (space $\frac{6}{100}$

group: *P*) analogous to Eu₇F₁₂Cl₂ [6]. For H⁻ instead of F⁻ anions, this structure is also known for Sr₇H₁₂Cl₂ [7] and Ca₇H₁₂Cl₂ [8]. There are three crystallographically independent Sm²⁺ cations, all coordinated by nine anions in the shape of tricapped trigonal prisms. While (Sm1)²⁺ only enjoys coordination from F⁻ anions (d(Sm1)–F) = 240 – 275 pm), (Sm2)²⁺ and (Sm3)²⁺ carry seven F⁻ anions at distances between 246 and 278 pm and two Cl⁻ anions with distances of about 314 pm as ligands. (F1)⁻, (F2)⁻ and (F3)⁻ are coordinated tetrahedrally, while (F4)⁻ has a square pyramidal Sm²⁺ environment. The coordination spheres of both Cl⁻ anions consist of six Sm²⁺ cations in shape of trigonal prisms. The atomic parameters are given in Table 1 and the unit cell of Sm₇F₁₂Cl₂ is shown in Figure 1 as viewed along [001]. A second samarium(II) fluoride chloride with the formula SmFCl adopts the PbFCl-type structure (tetragonal, *a* = 413.59(5) pm, *c* = 699.34(11) pm) [4] exhibiting four Sm–F distances of 252 pm and five Sm–Cl distances of 307 pm (1×) and 311 pm (4×) [4] in capped square antiprismatic coordination sphere.

Atom	Site	x/a	y/b	z/c	U _{eq} / pm²
Sm1	1 <i>a</i>	0	0	0	232(4)
Sm2	Зј	0.40813(12)	0.11180(12)	0	121(3)
Sm3	3k	0.28971(11)	0.40317(11)	¹ / ₂	92(2)
F1	Зј	0.1226(14)	0.2757(14)	0	179(26)
F2	Зј	0.4262(16)	0.3659(16)	0	233(37)
F3	3k	0.0501(14)	0.4375(14)	¹ / ₂	110(27)
F4	3 <i>k</i>	0.2195(15)	0.1250(15)	¹ / ₂	211(29)
Cl1	1c	¹ / ₃	² / ₃	0	193(19)
Cl2	1 <i>f</i>	² / ₃	¹ / ₃	¹ / ₂	110(17)

Atomic coordinates, Wyckoff positions and equivalent isotropic displacement parameters for hexagonal Sm₇F₁₂Cl₂.

References

[1] E. Catalano, R. G. Bedford, V. G. Silveira, H. H. Wickman, J. Phys. Chem. Solids 1969, 30, 1613 - 1627.

- [2] T. Petzel, O. Greis, Z. Anorg. Allg. Chem. 1973, 396, 95 102.
- [3] O. Greis, J. Solid State Chem. 1978, 24, 227 232.
- [4] C. Buyer, Th. Schleid, Acta Crystallogr. 2021, A 77, C1036.
- [5] F. Kubel, H. Bill, H. Hagemann, Z. Anorg. Allg. Chem. 1999, 625, 643 649.
- [6] O. Reckeweg, F. J. DiSalvo, S. Wolf, Th. Schleid, Z. Anorg. Allg. Chem. 2014, 640, 1254 1259.
- [7] O. Reckeweg, J. C. Molstad, S. Levy, C. Hoch, F. J. DiSalvo, Z. Naturforsch. 2008, 63b, 513 518.
- [8] O. Reckeweg, F. J. DiSalvo, Z. Naturforsch. 2010, 65b, 493 498.

Extended unit cell of $Sm_7F_{12}CI_2$ viewed along [001]

