MS15-1-10 Closing Some Gaps of Knowledge: Single Crystals of Tm₂O[SiO₄] with the B-Type Structure #MS15-1-10

P. Djendjur¹, S. Greiner¹, T. Schleid¹ ¹University of Stuttgart / Institute for Inorganic Chemistry - Stuttgart (Germany)

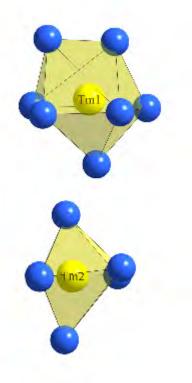
Abstract

Lanthanoid oxosilicates and their derivatives show a huge variety of compositions and structures. Since many solid-state reactions take place in glassy silica ampoules, a rather big proportion of side products from these reactions tend to yield oxosilicate derivatives. Compounds of the formula type $Ln_2O[SiO_4]$ (Ln = La, Nd, Eu, Gd, Ho - Lu) realize two different structure types. The $Gd_2O[SiO_4]$ - or A-type structure is adopted by representatives all over the whole lanthanoid series (Ln = La, Nd, Eu, Gd, Ho – Tm and Lu)^[1-6] and exhibits isolated [SiO₄]^{4–} tetrahedra in combination with a porous network $\sum_{\infty}^{2} \left\{ \left[O(Ln1)_{1/1}(Ln2)_{3/3} \right]^{4+} \right\}$

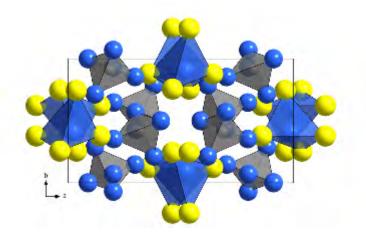
of distorted $[OLn_4]^{10+}$ tetrahedra connected via edges and corners forming layers, which spread out parallel to the (100) plane. Another structure type is represented by the Yb₂O[SiO₄]- or B-type arrangement, which is so far only known with the heavier lanthanoids $(Ln = Er, Yb - Lu)^{[7-9]}$. In this work, we present another representative of these B-type lanthanoid(III) oxide oxosilicates, namely Tm₂O[SiO₄], which closes the gap in the short $Ln_2O[SiO_4]$ series with Ln = Er - Lu. It crystallizes in the monoclinic space group C2/c with the lattice parameters $a = 1432.74(11) \text{ pm}, b = 668.52(5) \text{ pm}, c = 1033.67(8) \text{ pm}, \beta = 122.183(3)^{\circ} \text{ and } Z = 8 \text{ (CSD-2169113)}.$

The crystal structure consists of two crystallographically different Tm^{3+} cations (Figure 1). $(Tm1)^{3+}$ is surrounded by seven oxygen atoms to form a capped octahedron, whereas (Tm2)³⁺ has a distorted octahedron with only six oxygen atoms as coordination sphere. With this in mind, it becomes clear, why the B-type structure can only be found with representatives of the later part of the lanthanoid series, offering rather small coordination spheres for both Ln³⁺ cations. Like in the A-type structure, silicon is surrounded by four of the five distinct oxygen atoms to form $[SiO_4]^{4-}$ tetrahedra (d(Si-O) = 161 - 164)pm), which remain isolated from one another. The single remaining oxygen atom (O5) is coordinated in a distorted tetrahedral manner by four Tm³⁺ cations, building $[OTm_4]^{10+}$ units, which are connected via common *trans*-oriented edges to two neighbouring $[OTm_4]^{10+}$ units to form undulated strand tetrahedral manner by the total of the matrix of the ma

[001] direction (Figure 2).


References

[1] K. Fukuda, T. Iwata, E. Champion, Powd. Diffr. 2006, 21, 300-303.


[2] L. Leon-Reina, J. M. Porras-Vazquez, E. R. Losilla, L. Moreno-Real, M. A. G. Aranda, J. Solid State Chem. 2008, 181, 2501-2506.

- [3] M. E. Bohem, Th. Schleid, Z. Anorg. Allg. Chem. 2016, 642, 1055–1055.
- [4] Yu. I. Smolin, S. P. Tkachev, Kristallografiya 1969, 14, 22-25.
- [5] I. Hartenbach, S. F. Meier, J. Wontcheau, Th. Schleid, Z. Anorg. Allg. Chem. 2002, 628, 2907–2913.
- [6] H. Müller-Bunz, Th. Schleid, Z. Anorg. Allg. Chem. 1999, 625, 613-618.
- [7] Yu. I. Smolin, Kristallografiya 1969, 14, 985–989.
- [8] D. Phanon, R. Černý, Z. Anorg. Allg. Chem. 2008, 11, 1833–1835.
- [9] T. Gustafsson, M. Klintenberg, S. E. Derenzo, M. J. Weber, J. O. Thomas, Acta Crystallogr. 2001, C 57, 668–669.

Coordination polyhedra of $(Tm1)^{3+}$ and $(Tm2)^{3+}$.

Unit cell of the B-type structure of $Tm_2O[SiO_4]$.

