MS27 Minerals and Materials Under Extreme Conditions

MS27-03 Polymerization of CO₄ groups in carbonates **L. Bayarjargal**¹, **D. Spahr**¹, **J. König**¹, **V. Milman**², **B. Winkler**¹ *¹Institute of Geosciences, Goethe University Frankfurt - Frankfurt am Main (Germany), ²Dassault Systèmes*

BIOVIA - Cambridge (United Kingdom)

Abstract

The building blocks of 'conventional' carbonates such as calcite or magnesite are trigonal planar $[CO_3]^{2^-}$ -groups [1,2]. These CO₃-groups remain stable as isolated groups up to pressures of ~70 GPa. At higher pressures and high temperatures above ~2000 K the formation of $[CO_4]^{4^-}$ -groups was observed and explained by the formation of carbon with sp^3 -hybridized orbitals [2]. In contrast to sp^2 -hybridized CO₃-groups, CO₄-groups may polymerize based on half-occupied orbitals that allow for additional bonding. However, extensive investigation of the polymerization of CO₄-groups was hindered by experimental difficulties to achieve such extreme conditions. In contrast to CO₄-groups, polymerizations of other orthoanions [MO₄] have been extensively investigated in the past. [SiO₄]⁴⁻-tetrahedra are the main building blocks in silicates and play a major role in crystallography and mineralogy [3,4]. Tetrahedral SiO₄-groups can polymerize and build pairs, chains, rings, sheets or networks [3,4]. In addition to the SiO₄-tetrahedra in silicates, further anions such as [BO₄]⁵⁻ -groups of borates are key-components in basic chemistry and polymerize with BO₄-groups and even with other BO₃ building blocks [5].

Recently, we demonstrated the synthesis of carbonates containing CO_4 -groups at moderately high pressures (20-30 GPa) by reacting carbonates with either oxides or CO_2 [6-8]. These carbonates have chemical compositions other than the well-known 'conventional' carbonates (MeCO₃) and are either enriched in a metal oxide or CO_2 [6-8]. Some of them can even be recovered at ambient conditions [6,7]. The favorable synthesis pressure conditions allowed us to investigate different structural aspects and the polymerization of CO_3 -groups in large detail. As a result of the polymerization, carbonates with isolated CO_4 -tetrahedra or carbonates with groups, rings, chains or pyramids can be formed (see the figure). The structural variety of those carbonates resembles that of silicates and some borates. In the present study, we will give an overview of carbonates containing CO_4 -groups and present crystal-chemical aspects of CO_4 -groups in comparison to SiO₄ and other MO₄ complex anions.

We acknowledge funding from the DFG (BA4020/2, WI1232, FOR2125) and DESY for the provision of experimental facilities and beamtime. B.W. is grateful for support by the BIOVIA Science Ambassador program.

References

- [1] Bayarjargal et al. Phys. Earth Planet. Inter., 281, 31 (2018)
- [2] Binck et al. Phys. Rev. Mater., 4, 055001 (2020)
- [3] Liebau, F., Structural Chemistry of Silicates, Berlin (1985)
- [4] Okrusch, M., Matthes, S., (Eds.) Mineralogie: Berlin (2014)
- [5] Mutailipu et al. Chem. Rev., 121, 1130 (2021)
- [6] Spahr et al. Inorg. Chem., 60, 14504 (2021)
- [7] Spahr et al. Inorg. Chem., 60, 5419 (2021)
- [8] König et al. Earth Space Chem., 6, 73 (2022)

Polymerization of CO4-groups

Group

Chain

