A Room Temperature Polar And Weak-Ferromagnetic Oxide With Low Dielectric Loss

Alicia Manjon Sanz¹, Nagamalleswari Katragadda², Pranab Mandal³, Premakumar Yanda⁴, A Sundaresan⁵, S. D. Kaushik⁶, Weiguo Zhang⁷, P. Shiv Halasyamani⁸

¹Oak Ridge National Laboratory ²SRM University AP, ³SRM University AP, ⁴School of Advanced Materials, Chemistry, and Physics of Materials Unit, ⁵School of Advanced Materials, Chemistry, and Physics of Materials Unit, ⁶UGC-DAE Consortium for Scientific Research Mumbai Centre, ⁷University of Houston, ⁸University of Houston

manjonsanzam@ornl.gov

Single-phase materials that are simultaneously ferroelectric and ferromagnetic at room temperature are promising for non-volatile random access memory devices. Perovskite BiFeO3 which crystallizes in the polar rhombohedral structure (R3c), is ferroelectric and antiferromagnetic at room temperature. Here, we report a family of perovskite oxides in the BiFeO3 – Bi2/3TiO3 – ATiO3 (where A2+ = Ca2+, Sr2+, Ba2+) ternary phase diagram that is polar as well as weak ferromagnetic. We achieved nearly pure A-site bismuth-based perovskite phase Bi0.9167R0.075Fe0.9Ti0.1O3 that crystallizes in the space group R3c similar to BiFeO3 as corroborated by powder X-ray and neutron diffraction analysis. Their polarity was confirmed by second harmonic generation (SHG) experiments. Room-temperature powder neutron diffraction confirms G-type antiferromagnetic ordering consistent with weak ferromagnetism that onsets at TN = 557 K. These perovskites show a low dielectric loss, and the electrical response is dominated by grain contributions below 723 K.