Using crystallography tools to improve vaccine formulations

<u>Márcia Carvalho de Abreu Fantini</u>¹, Cristiano Luis Pinto Oliveira¹, José Luiz de Souza Lopes¹, Tereza da Silva Martins², Milena Apetito Akamatsu³, Aryene Góes Trezena⁴, Milene Tino de Franco⁴, Viviane Fongaro Botosso⁵, Osvaldo Augusto Brazil Esteves Sant´Anna⁶, Nikolay Kardjilov⁷, Martin Kjaerulf Rasmussen⁸, Heloísa Nunes Bordallo⁸

¹University of São Paulo, Physics Institute, São Paulo - SP, Brazil;
²Chemistry Department, Federal University of São Paulo, Diadema - SP, Brazil;
³Innovation Division, Butantan Institute, São Paulo - SP, Brazil;
⁴Imunogenetic Laboratory, Butantan Institute, São Paulo - SP, Brazil;
⁵Virology Laboratory, Butantan Institute, São Paulo - SP, Brazil;
⁶Imunochemistry Laboratory, Butantan Institute, São Paulo - SP, Brazil;
⁷HZB für Materialien und Energie, Helmholtz-Zentrum Berlin, Berlin, Germany;
⁸Niels Bohr Institute, University of Copenhagen,;

mfantini@if.usp.br

This work summarizes developments attained in oral vaccine formulations based on the encapsulation of antigens inside porous silica matrices. These vaccine vehicles protect the proteins from the harsh acidic stomach medium, allowing them to reach the Peyer's patches, inducing immunity. Focusing on the pioneer research conducted at Butantan Institute, in Brazil, the results report the optimization of the antigens' encapsulation yield, as well as their homogeneous distribution inside the meso and macro porous network. The characterization plus modelling of pure antigens having different dimensions and their complexes, like silica with hepatitis B virus like particles and diphtheria anatoxin, were performed by Small Angle X-ray Scattering (SAXS), X-ray Absorption Spectroscopy (XAS), X-ray Phase Contrast Tomography (XPCT) and neutron and X-ray imaging. The association of these techniques with complementary ones provided a clear picture of the proposed vaccines. Mice with variable high and low humoral responses presented significant levels of antibodies, proving the efficacy of the proposed oral immunogenic complex.

Keywords: Oral vaccine, Porous silica, SAXS, XAS, XPCT