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Primitive substitution tilings on Rd whose expansion maps are unimodular are

considered. It is assumed that all the eigenvalues of the expansion maps are

algebraic conjugates with the same multiplicity. In this case, a cut-and-project

scheme can be constructed with a Euclidean internal space. Under some

additional condition, it is shown that if the substitution tiling has pure discrete

spectrum, then the corresponding representative point sets are regular model

sets in that cut-and-project scheme.

1. Introduction

In the study of aperiodic tilings, it has been an interesting

problem to characterize pure discrete spectrum of tiling

dynamical systems (Baake & Moody, 2004). This property is

related to understanding the structure of mathematical

quasicrystals. For this direction of study, substitution tilings

have been good models, since they have highly symmetrical

structures. A lot of research has been done in this direction

(see Akiyama et al., 2015; Baake & Grimm, 2013 and refer-

ences therein). Given a substitution tiling with pure discrete

spectrum, it is known that this can be described via a cut-and-

project scheme (CPS) (Lee, 2007). However, in the work of

Lee (2007), the construction of the CPS is with an abstract

internal space built from the pure discrete spectral property.

Since the internal space is an abstract space, it is neither easy

to understand the tiling structure, nor clear if the model sets

are regular or not. In the case of one-dimensional substitution

tilings with pure discrete spectrum, it is shown that a CPS with

a Euclidean internal space can be built and the corresponding

representative point sets are regular model sets (Barge &

Kwapisz, 2006). In this paper, we consider substitution tilings

on Rd with pure discrete spectrum whose expansion maps

are unimodular. We show that it is possible to construct a

CPS with a Euclidean internal space and that the corre-

sponding representative point sets are regular model sets in

that CPS.

The outline of the paper is as follows. First, we consider a

repetitive primitive substitution tiling on Rd whose expansion

map is unimodular. Then we build a CPS with a Euclidean

internal space in Section 3. In Section 4, we discuss some

known results around pure discrete spectrum, Meyer set and

Pisot family. In Section 5, under the assumption of pure

discrete spectrum, we show that each representative point set

of the tiling is actually a regular model set in the CPS with a

Euclidean internal space.
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2. Preliminaries

2.1. Tilings

We begin with a set of types (or colours) f1; . . . ; �g, which

we fix once and for all. A tile in Rd is defined as a pair

T ¼ ðA; iÞ where A ¼ suppðTÞ (the support of T) is a compact

set in Rd, which is the closure of its interior, and

i ¼ lðTÞ 2 f1; . . . ; �g is the type of T.

We let gþ T ¼ ðgþ A; iÞ for g 2 Rd. We say that a set P of

tiles is a patch if the number of tiles in P is finite and the tiles of

P have mutually disjoint interiors. The support of a patch is the

union of the supports of the tiles that are in it. The translate of

a patch P by g 2 Rd is gþ P :¼ fgþ T : T 2 Pg. We say that

two patches P1 and P2 are translationally equivalent if

P2 ¼ gþ P1 for some g 2 Rd. A tiling of Rd is a set T of tiles

such that Rd
¼ [fsuppðTÞ : T 2 T g and distinct tiles have

disjoint interiors. We always assume that any two T -tiles with

the same colour are translationally equivalent (hence there

are finitely many T -tiles up to translations). Given a tiling T , a

finite set of tiles of T is called a T -patch. Recall that a tiling T

is said to be repetitive if every T -patch occurs relatively

densely in space, up to translation. We say that a tiling T has

finite local complexity (FLC) if, for every R > 0, there are

finitely many equivalence classes of T -patches of diameter less

than R.

2.2. Delone j-sets

A �-set in Rd is a subset K ¼ �1 � . . .���

� Rd
� . . .� Rd (� copies) where �i � R

d and � is the

number of colours. We also write K ¼ ð�1; . . . ;��Þ ¼ ð�iÞi��.

Recall that a Delone set is a relatively dense and uniformly

discrete subset of Rd. We say that K ¼ ð�iÞi�� is a Delone �-set

in Rd if each �i is Delone and suppðKÞ :¼ [�i¼1�i � R
d is

Delone.

The types (or colours) of points for Delone �-sets have a

meaning analogous to the colours of tiles for tilings. We define

repetitivity and FLC for a Delone �-set in the same way as for

tilings. A Delone set � is called a Meyer set in Rd if ��� is

uniformly discrete, which is equivalent to saying that

��� ¼ �þ F for some finite set F (see Moody, 1997). If K

is a Delone �-set and suppðK) is a Meyer set, we say that K is a

Meyer set.

2.3. Substitutions

We say that a linear map � : Rd
! Rd is expansive if there

is a constant c > 1 with

dð�x; �yÞ � c � dðx; yÞ

for all x; y 2 Rd under some metric d on Rd compatible with

the standard topology.

Definition 2.1. Let A ¼ fT1; . . . ;T�g be a finite set of tiles

on R
d such that Ti ¼ ðAi; iÞ; we will call them prototiles.

Denote by PA the set of patches made of tiles each of which is

a translate of one of Ti’s. We say that ! : A! PA is a tile-

substitution (or simply substitution) with an expansive map � if

there exist finite sets Dij � R
d for i; j � �, such that

!ðTjÞ ¼ fuþ Ti : u 2 Dij; i ¼ 1; . . . ; �g ð1Þ

with

�Aj ¼
[�
i¼1

ðDij þ AiÞ for each j � �: ð2Þ

Here all sets in the right-hand side must have disjoint interiors;

it is possible for some of the Dij to be empty. We call the finite

set Dij a digit set (Lagarias & Wang, 1996). The substitution

�� � matrix S of the tile-substitution is defined by

Sði; jÞ ¼ #Dij. We say that � is unimodular if the minimal

polynomial of � over Q has constant term �1 (i.e.

det� ¼ �1); that is to say, the product of all roots of the

minimal polynomial of � is �1.

Note that for M 2 N

�MAj ¼
[�
i¼1

ðD
M
ij þ AiÞ for j � �;

where

ðD
M
Þij ¼

[
k1;k2;...;kðM�1Þ��

ðDik1
þ �Dk1k2

þ . . .þ �M�1
DkðM�1Þj

Þ:

ð3Þ

The tile-substitution is extended to translated prototiles by

!ðTj � xÞ ¼ !ðTjÞ � �x: ð4Þ

The equations (2) allow us to extend ! to patches in PA
defined by !ðPÞ ¼ [T2P!ðTÞ. It is similarly extended to tilings

all of whose tiles are translates of the prototiles from A. A

tiling T satisfying !ðT Þ ¼ T is called a fixed point of the tile-

substitution, or a substitution tiling with expansion map �. It is

known that one can always find a periodic point for ! in the

tiling dynamical hull, i.e. !NðT Þ ¼ T for some N 2 N. In this

case we use !N in the place of ! to obtain a fixed-point tiling.

We say that the substitution tiling T is primitive, if there is an

‘> 0 for which S‘ has no zero entries, where S is the substi-

tution matrix.

Definition 2.2. K ¼ ð�iÞi�� is called a substitution Delone

�-set if K is a Delone �-set and there exist an expansive map

� : Rd
! Rd and finite sets Dij for i; j � � such that

�i ¼
[�
j¼1

ð��j þDijÞ; i � �; ð5Þ

where the unions on the right-hand side are disjoint.

There is a standard way to choose distinguished points in

the tiles of a primitive substitution tiling so that they form a

�-invariant Delone �-set. They are called control points

(Thurston, 1989; Praggastis, 1999) which are defined below.

Definition 2.3. Let T be a fixed point of a primitive

substitution with an expansion map �. For every T -tile T, we

choose a tile �T on the patch !ðTÞ; for all tiles of the same

type, we choose �T with the same relative position. This
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defines a map � : T ! T called the tile map. Then we define

the control point for a tile T 2 T by

fcðTÞg ¼
\1
m¼0

��mð�mTÞ: ð6Þ

The control points satisfy the following:

(a) T 0 ¼ T þ cðT 0Þ � cðTÞ, for any tiles T;T 0 of the same

type;

(b) �ðcðTÞÞ ¼ cð�TÞ, for T 2 T .

For tiles of any tiling S 2 XT , the control points have the

same relative position as in T -tiles. The choice of control

points is non-unique, but there are only finitely many possi-

bilities, determined by the choice of the tile map. Let

� ¼
[�
i¼1

ðCi � CiÞ: ð7Þ

It is possible to consider a tile map

� : T ! T s:t: 8 T 2 T ;

the tile �ðTÞ has the same tile type in T : ð8Þ

Then for any T; S 2 T ,

cð�TÞ � cð�SÞ 2 �:

Let

C :¼ CðT Þ ¼ ðCiÞi�� ¼ fcðTÞ : T 2 T g

be a set of control points of the tiling T in Rd. In what follows,

if there is no confusion, we will use the same notation C to

mean supp C.

For the main results of this paper, we need the property that

h[i��Cii ¼ h�i with 0 2 [i��Ci. Under the assumption that � is

unimodular, this can be achieved by taking a proper control

point set which comes from a certain tile map. We define the

tile map as follows. It is known that there exists a finite patch P

in a primitive substitution tiling which generates the whole

tiling T (Lagarias & Wang, 2003). Although it was defined

with primitive substitution point sets by Lagarias & Wang

(2003), it is easy to see that the same property holds for

primitive substitution tilings. We call the finite patch P the

generating tile set. When we apply the substitution infinitely

many times to the generating tile set P, we obtain the whole

substitution tiling. So there exists n 2 N such that nth iteration

of the substitution to the generating tile set covers the origin.

We choose a tile R in a patch !nðPÞ which contains the origin,

where R ¼ �þ Tj for some 1 � j � �. Then there exists a

fixed tile S 2 P such that R 2 !nðSÞ. Replacing the substitu-

tion ! by !n, we can define a tile map � so that

�ðTÞ is a j-type tile in !nðTÞ if T 2 T with T 6¼ S

�ðSÞ ¼ R:

�
Then 0 2 Cj by the definition of the control point sets and so

Cj � �. Notice that

��1
2 Z½�
; ð9Þ

since � is unimodular. From the construction of the tile map,

we have �ðCiÞ � Cj for any 1 � i � �. From (9), Ci � hCji for

any 1 � i � �. Hence [i��Ci � hCji. Thus[
i��

Ci

* +
¼ h�i: ð10Þ

Remark 2.4. In the case of primitive unimodular irreducible

one-dimensional Pisot substitution tilings, it is known that

h[i��Cii ¼ h�i by choosing the left end points of the tiles as

the control points (see Barge & Kwapisz, 2006; Sing, 2007).

2.4. Pure point spectrum and algebraic coincidence

Let XT be the collection of tilings on Rd each of whose

patches is a translate of a T -patch. In the case that T has FLC,

we give a usual metric � on the tilings in such a way that two

tilings are close if there is a large agreement on a big region

with small shift (see Schlottmann, 2000; Radin & Wolff, 1992;

Lee et al., 2003). Then

XT ¼ f�hþ T : h 2 Rd
g

where the closure is taken in the topology induced by the

metric �. For non-FLC tilings, we can consider ‘local rubber

topology’ on the collection of tilings (Müller & Richard, 2013;

Lenz & Stollmann, 2003; Baake & Lenz, 2004; Lee & Solo-

myak, 2019) and obtain XT as the completion of the orbit

closure of T under this topology. For tilings with FLC, the two

topologies coincide. In the case of either FLC or non-FLC

tilings, we obtain a compact space XT . We have a natural

action ofRd on the dynamical hull XT of T by translations and

get a topological dynamical system ðXT ;R
d
Þ. Let us assume

that there is a unique ergodic measure � in the dynamical

system ðXT ;R
d
Þ and consider the measure-preserving dyna-

mical system ðXT ; �;R
d
Þ. It is known that a dynamical system

ðXT ;R
d
Þ with a primitive substitution tiling T always has a

unique ergodic measure (Solomyak, 1997; Lee et al., 2003). We

consider the associated group of unitary operators fTxgx2Rd on

L2ðXT ; �Þ:

TxgðT
0
Þ ¼ gð�xþ T

0
Þ:

Every g 2 L2ðXT ; �Þ defines a function on Rd by x 7! hTxg; gi.

This function is positive definite on Rd, so its Fourier trans-

form is a positive measure �g on Rd called the spectral measure

corresponding to g. The dynamical system ðXT ; �;R
d
Þ is said

to have pure discrete spectrum if �g is pure point for every

g 2 L2ðXT ; �Þ. We also say that T has pure discrete spectrum

if the dynamical system ðXT ; �;R
d
Þ has pure discrete spec-

trum.

When we restrict discussion to primitive substitution tilings,

we note that a tiling T has pure discrete spectrum if and only if

the control point set CðT Þ of the tiling T admits an algebraic

coincidence (see Definition 2.5). So from now on when we

assume pure discrete spectrum for T , we can directly use the

property of algebraic coincidence. We give the corresponding

definition and theorem below.
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Definition 2.5. Let T be a primitive substitution tiling on Rd

with an expansive map � and C ¼ ðCiÞi�� be a corresponding

control point set. We say that C admits an algebraic coin-

cidence if there exists M 2 Zþ and 	 2 Ci for some 1 � i � �
such that

	 þ �M� � Ci:

Here recall from (7) that � ¼ [�i¼1ðCi � CiÞ.

Note that, if the algebraic coincidence is assumed, then for

some M 2 Zþ

�M�� �M� � Ci � Ci � �: ð11Þ

Theorem 2.6. [Theorem 3.13 (Lee, 2007)] Let T be a

primitive substitution tiling on Rd with an expansive map �
and C ¼ ðCiÞi�� be a corresponding control point set. Suppose

that all the eigenvalues of � are algebraic integers. Then T has

pure discrete spectrum if and only if C admits an algebraic

coincidence.

The above theorem is stated with FLC by Lee (2007). But

from Lemma 4.1 and Proposition 4.2, pure discrete dynamical

spectrum of T implies the Meyer property of the control point

set C. All Meyer sets have FLC. So it is a consequence of pure

discrete dynamical spectrum. On the other hand, the algebraic

coincidence implies that

	 þ �M� � Ci for some 	 2 Ci and 1 � i � �:

This means that �M� is uniformly discrete and thus � is

uniformly discrete. From Moody (1997), we obtain that ���
is uniformly discrete. For any 1 � i; j � �,

Ci � Cj � aþ�� ðbþ�Þ ¼ a� bþ���

for some a 2 Ci and b 2 Cj:

Hence suppðCÞ ¼ [�i¼1Ci is a Meyer set (Moody, 1997). Thus it

is not necessary to assume FLC here. There is a computable

algorithm to check the algebraic coincidence in a primitive

substitution tiling (Akiyama & Lee, 2011).

2.5. Cut-and-project scheme

We give definitions for a CPS and model sets constructed

with Rd and a locally compact Abelian group.

Definition 2.7. A cut-and-project scheme (CPS) consists of a

collection of spaces and mappings as follows:

R
d
 �

1

R
d
�H �!


2
HSeLL ð12Þ

where Rd is a real Euclidean space, H is a locally compact

Abelian group, 
1 and 
2 are the canonical projections,eLL � Rd
�H is a lattice, i.e. a discrete subgroup for which the

quotient group ðRd
�HÞ=eLL is compact, 
1jeLL is injective and


2ð
eLLÞ is dense in H. For a subset V � H, we denote

�ðVÞ :¼ f
1ðxÞ 2 R
d : x 2 eLL; 
2ðxÞ 2 Vg:

A model set inRd is a subset � ofRd of the form �ðWÞ, where

W � H has non-empty interior and compact closure. The

model set � is regular if the boundary of W

@W ¼ W \ W�

is of (Haar) measure 0. We say that K¼ ð�iÞi�� is a model �-set

(respectively, regular model �-set) if each �i is a model set

(respectively, regular model set) with respect to the same CPS.

Especially when H is a Euclidean space, we call the model set

� a Euclidean model set (see Baake & Grimm, 2013).

3. Cut-and-project scheme on substitution tilings

Throughout the rest of the paper, we assume that � is diag-

onalizable, the eigenvalues of � are algebraically conjugate

with the same multiplicity, since the structure of a module

generated by the control points is known only under this

assumption (Lee & Solomyak, 2012).

Let

�01; . . . ; �0s ð13Þ

be the distinct real eigenvalues of � and

�0sþ1; �
0
sþ1; . . . ; �0sþt; �

0
sþt ð14Þ

be the distinct complex eigenvalues of �. By the above

assumption, all these eigenvalues appear with the same

multiplicity, which we will denote by J. Recall that � is

assumed to be diagonalizable over C. For a complex eigen-

value � of �, the 2� 2 diagonal block

� 0

0 �

� �
is similar to a real 2� 2 matrix

a �b

b a

� �
¼ S�1 � 0

0 �

� �
S; ð15Þ

where � ¼ aþ ib; a; b 2 R, and

S ¼
1

2ð Þ1=2

1 i

1 �i

� �
:

Since � is diagonalizable, by eventually changing the basis in

Rd, we can assume without loss of generality that

� ¼

 1 � � � O

..

. . .
. ..

.

O � � �  J

264
375 and  j ¼  :¼

A1 � � � 0

..

. . .
. ..

.

0 � � � Asþt

264
375
ð16Þ

where Ak is a real 1� 1 matrix for 1 � k � s, a real 2� 2

matrix of the form

ak �bk

bk ak

� �
for sþ 1 � k � sþ t, and O is the ðsþ 2tÞ � ðsþ 2tÞ zero

matrix, and 1 � j � J.
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Let m ¼ sþ 2t. Note that m is the degree of the minimal

polynomial of � over Q. For each 1 � j � J, let

Hj ¼ f0g
ðj�1Þm

� Rm
� f0gd�jm:

Further, for each Hj we have the direct sum decomposition

Hj ¼
Msþt

k¼1

Ejk;

such that each Ejk is �; ��1-invariant and �jEjk
’ Ak, identi-

fying Ejk with R or R2.

Let �j ¼ �jHj
.

Let Pj be the canonical projection of Rd onto Hj such that

PjðxÞ ¼ xj; ð17Þ

where x ¼ x1 þ . . .þ xJ and xj 2 Hj with 1 � j � J.

We define aj 2 Hj such that for each 1 � k � d,

ðajÞk ¼
1 if ðj� 1Þmþ 1 � k � jm;
0 else:

�
ð18Þ

We recall the following theorem for the module structure of

the control point sets. From Lemma 6.1 (Lee & Solomyak,

2012), we can readily obtain the property:1

a1; . . . ; aJ 2 �ð CðT ÞÞ ð19Þ

which is used in the proof of Lemma 5.2. So we state Theorem

4.1 (Lee & Solomyak, 2012) in the following form. Let

Q½�
 :¼ fpð�Þ : pðxÞ 2 Q½x
g; Z½�
 :¼ fpð�Þ : pðxÞ 2 Z½x
g:

Theorem 3.1. [Theorem. 4.1 (Lee & Solomyak, 2012)] Let T

be a repetitive primitive substitution tiling on Rd with an

expansion map �. Assume that T has FLC, � is diagonalizable,

and all the eigenvalues of � are algebraically conjugate with

the same multiplicity J. Then there exists an isomorphism

� : Rd
! Rd such that

�� ¼ �� and �ðCðT ÞÞ � Z½�
a1 þ . . .þ Z½�
aJ;

where aj, 1 � j � J, are given in (18), and a1; . . . ; aJ

2 �ðCðT ÞÞ.

Since � is a block diagonal matrix as shown in (16), we can

note that a1; . . . ; aJ are linearly independent over Z½�
.
A tiling T is said to be rigid if T satisfies the result of

Theorem 3.1; that is to say, there exists a linear isomorphism

� : Rd
! Rd such that

�� ¼ �� and �ðCðT ÞÞ � Z½�
a1 þ . . .þ Z½�
aJ;

where aj, 1 � j � J, are given in (18). One can find an example

of a non-FLC tiling that the rigidity property fails in (Frank &

Robinson, 2008; Lee & Solomyak, 2019).

3.1. Construction of a cut-and-project scheme

Consider that � is unimodular and diagonalizable, all the

eigenvalues of � are algebraic integers and algebraically

conjugate with the same multiplicity J, and T is rigid. Since � is

an expansion map and unimodular, there exists at least one

other algebraic conjugate other than eigenvalues of �. Under

this condition, we construct a CPS with a Euclidean internal

space. In the case of multiplicity 1, the CPS was first intro-

duced in Lee et al. (2018). For earlier development, see Siegel

& Thuswaldner (2009).

It is known that if � is a diagonalizable expansion map of a

primitive substitution tiling with FLC, every eigenvalue of � is

an algebraic integer (Kenyon & Solomyak, 2010). So it is

natural to assume that all the eigenvalues of � are algebraic

integers in the assumption. In (16), suppose that the minimal

polynomial of  over Q has e number of real roots and f

number of pairs of complex conjugate roots. Recall that

�01; . . . ; �s ¼ �
0
s; . . . ; �0sþ1; . . . ; �0sþt

are distinct eigenvalues of � from (13) and (21). Let us

consider the roots in the following order:

�1; . . . ; �s; �sþ1; . . . �e; �eþ1; �eþ1; . . . ; �eþt; �eþt; �eþtþ1;

�eþtþ1; . . . ; �eþf ; �eþf ;

for which

�1 ¼ �
0
1; . . . ; �s ¼ �

0
s;

�eþ1 ¼ �
0
sþ1; �eþ1 ¼ �

0
sþ1; . . . ; �eþt ¼ �

0
sþt; �eþt ¼ �

0
sþt;

where �01; . . . ; �0s; �
0
sþ1; �

0
sþ1; . . . ; �0eþt; �

0
sþt are the same as in

(13) and (14).

Let

n ¼ eþ 2f : ð20Þ

We consider a space where the rest of the roots of the minimal

polynomial of  other than the eigenvalues of  lie. Using

similar matrices as in (15) we can consider the space as a

Euclidean space. Let

Gj :¼ Rn�m; 1 � j � J:

For 1 � j � J, define a ðn�mÞ � ðn�mÞ matrix

Dj :¼

Asþ1 � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � Ae 0 � � � 0

0 � � � 0 Aeþtþ1 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � Aeþf

2666666664

3777777775
where Asþ{ is a real 1� 1 matrix with the value �sþ{ for

1 � { � e� s, and Aeþtþ| is a real 2� 2 matrix of the form

aeþtþ| �beþtþ|

beþtþ| aeþtþ|

� �
for 1 � | � f � t. Notice that � and  have the same minimal

polynomial over Q, since � is the diagonal matrix containing J

copies of  . Let us consider now the following algebraic

embeddings:
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�j : Z½�
aj ! Gj;

Pjð�Þaj 7!PjðDjÞb j;

where PjðxÞ is a polynomial over Z and b j :¼ ð1; . . . ; 1Þ 2 Gj.

Note that

�jð�xÞ ¼ Dj�jðxÞ for any x 2 Z½�
aj:

Now we can define a map

� : Z½�
a1 þ . . .þ Z½�
aJ ! G1 � . . .�GJ;

P1ð�Þa1 þ . . .þ PJð�ÞaJ 7! ðP1ðD1Þb1; . . . ;PJðDJÞbJÞ:

ð21Þ

Since a1; . . . ; aJ are linearly independent over Z½�
, the map �
is well defined. Thus �ð�xÞ ¼ D�ðxÞ for

D :¼

D1 � � � O

..

. . .
. ..

.

O � � � DJ

264
375; ð22Þ

where D1 ¼ . . . ¼ DJ. Let G :¼ G1 � . . .�GJ .

Let us construct a CPS:

Rd
 �

1

Rd
�G �!


2
G

[

L  � eLL �! �ðLÞ

x  � ðx;�ðxÞÞ 7�! �ðxÞ;

ð23Þ

where 
1 and 
2 are canonical projections,

L ¼ Z½�
a1 þ . . .þ Z½�
aJ

and eLL ¼ fðx;�ðxÞÞ : x 2 Lg:

It is easy to see that 
1jeLL is injective. We shall show that 
2ð
eLLÞ

is dense in G andeLL is a lattice in Rd
�G. We note that 
2jeLL is

injective, since � is injective. Since � commutes with the

isomorphism � in Theorem 3.1, we may identify CðT Þ and its

isomorphic image. Thus, from Theorem 3.1,

CðT Þ ¼
[
i��

Ci � Z½�
a1 þ . . .þ Z½�
aJ;

where a1; . . . ; aJ 2 CðT Þ. Note that for any k 2 N and

1 � j � J, �kaj 2 CðT Þ. So we can note that

L ¼
[
i��

Ci

* +
: ð24Þ

Lemma 3.2. eLL is a lattice in Rd
�G.

Proof. By the Cayley–Hamilton theorem, there exists a

monic polynomial pðxÞ 2 Z½x
 of degree n such that pð�Þ ¼ id.

Thus every element of Z½�
 is expressed as a polynomial of �
of degree n� 1 with integer coefficients where the constant

term is identified with a constant multiple of the identity

matrix. Therefore L is a free Z-module of rank nJ. Notice that

L and eLL are isomorphic Z-modules so that eLL is also a free

Z-module of rank nJ on Rd
�G. Let us define

cj :¼ ðaj;�ðajÞÞ 2 R
d
�G for any 1 � j � J:

Then, in fact, for any 1 � k � ðeþ f ÞJ,

ðcjÞk ¼

1 if ðj� 1Þmþ 1 � k � jm;
1 if dþ ðj� 1Þðn�mÞ þ 1 � k � dþ jðn�mÞ;
0 else:

8<:
ð25Þ

Define also

� ¼
� 0

0 D

� �
which is a linear map on R

d
�G. Note that

ð
1jeLLÞ�1
ðZ½�
ajÞ¼ Z½�
cj and Z½�
cj is isomorphic to the

image of Zn by multiplication of the n� n matrix

A ¼ ð�k�1
i Þi;k2f1;...;ng. Since A is non-degenerate by the

Vandermonde determinant, fc1; . . . ;�n�1c1; . . . ; cJ; . . . ;
�n�1cJg forms a basis of Rd

�G over R. Thus eLL is a lattice in

Rd
�G. &

Lemma 3.3. �ðLÞ ¼ 
2ð
eLLÞ and 
2ð

eLLÞ is dense in G.

Proof. For simplicity, we prove the totally real case, i.e.

�i 2 R for all i. Since the diagonal blocks of � are all the same,

it is enough to show that �1ðZ½�
a1Þ is dense in G1. By

Theorem 24 (Siegel, 1989), �1ðZ½�
a1Þ is dense in G1 if

Pn
i¼mþ1

xi�
k�1
i 2 Z ðk ¼ 1; . . . ; nÞ

implies xi ¼ 0 for i ¼ mþ 1; . . . ; n. The condition is equiva-

lent to 	A 2 Zn with 	 ¼ ðxiÞ ¼ ð0; . . . ; 0; xmþ1; . . . ; xnÞ 2 R
n

in the terminology of Lemma 3.2. Multiplying by the inverse of

A, we see that the entries of 	 must be Galois conjugates. As 	
has at least one zero entry, we obtain 	 ¼ 0 which shows xi ¼ 0

for i ¼ mþ 1; . . . ; n. In fact, this discussion is using the

Pontryagin duality that the � : Zn
! Rn�m has a dense image

if and only if its dual map b�� : Rn�m
! Tn is injective [see also

Meyer (1972, ch. II, Section 1), Iizuka et al. (2009), Akiyama

(1999)]. The case with complex conjugates is similar. &

Now that we have constructed the CPS (23), we would like

to introduce a special projected set E� which will appear in the

proofs of the main results in Section 5. For �> 0, we define

E� :¼ �ðBG� ð0ÞÞ

¼ 
1ð
2
�1ð�ðLÞ \ BG� ð0ÞÞÞ

¼ fPð�Þa 2 L : �ðPð�ÞaÞ 2 BG� ð0Þg: ð26Þ

In the following lemma, we find an adequate window for a set

�nE� and note that E� is a Meyer set.

Lemma 3.4. For any �> 0 and n 2 N, if E� ¼ �ðBG� ð0ÞÞ, then
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�nE� ¼ fRð�Þa 2 L : �ðRð�ÞaÞ 2 Dn
� BG� ð0Þg

and E� forms a Meyer set.

Proof. Note that

�ðPð�ÞaÞ 2 BG� ð0Þ

()D ��ðPð�ÞaÞ 2 D � BG� ð0Þ

()�ð�ðPð�ÞaÞÞ 2 D � BG� ð0Þ: ð27Þ

Notice that if � is unimodular, then �L ¼ L ¼ ��1L and

��1 2 Z½�
. Thus

�E� ¼ �fPð�Þa 2 L : �ðPð�ÞaÞ 2 BG� ð0Þg

¼ f�Pð�Þa 2 L : �ð�Pð�ÞaÞ 2 D � BG� ð0Þg ð28Þ

¼ fQð�Þa 2 L : �ðQð�ÞaÞ 2 D � BG� ð0Þg: ð29Þ

It is easy to see that the set in (28) is contained in the set in

(29). The inclusion for the other direction is due to the fact

that �L ¼ L and ��1 2 Z½�
. Hence for any n 2 N,

�nE� ¼ fRð�Þa 2 L : �ðRð�ÞaÞ 2 Dn � BG� ð0Þg: ð30Þ

Since (23) is a CPS and BG� ð0Þ is bounded, E� forms a Meyer

set for each �> 0 (see Moody, 1997). &

4. Pure discrete spectrum, Meyer set and Pisot family

Lemma 4.1. [Lemma 4.10 (Lee & Solomyak, 2008)] Let T

be a tiling on Rd. Suppose that ðXT ;R
d; �Þ has pure discrete

dynamical spectrum. Then the eigenvalues for the dynamical

system ðXT ;R
d; �Þ span Rd.

Proposition 4.2. [Proposition 6.6 (Lee & Solomyak, 2019)]

Let T be a primitive substitution tiling on Rd with an

expansion map �. Suppose that all the eigenvalues of � are

algebraic integers. Assume that the set of eigenvalues of

ðXT ;R
d; �Þ is relatively dense. Then CðT Þ is a Meyer set.

We note that ‘repetitivity’ is not necessary for Proposition

4.2. Under the assumption that T is a primitive substitution

tiling on Rd, the following implication holds:

Pure discrete spectrum ¼) Relative dense eigenvalues

¼) Meyer set ¼) FLC:

Definition 4.3. A set of algebraic integers � ¼ f1; . . . ; rg is

a Pisot family if for any 1 � j � r, every Galois conjugate � of

j, with j�j � 1, is contained in �. For r ¼ 1, with 1 real and

j1j> 1, this reduces to j1j being a real Pisot number, and for

r ¼ 2, with 1 non-real and j1j> 1, to 1 being a complex Pisot

number.

Under the assumption of rigidity of T , we can derive the

following proposition from Lemma 5.1 (Lee & Solomyak,

2012) without additionally assuming repetitivity and FLC.

Proposition 4.4. [Lemma 5.1 (Lee & Solomyak, 2012)] Let

T be a primitive substitution tiling onRd with a diagonalizable

expansion map �. Suppose that all the eigenvalues of � are

algebraic conjugates with the same multiplicity and T is rigid.

Then if the set of eigenvalues of ðXT ;R
d; �Þ is relatively

dense, then the set of eigenvalues of � forms a Pisot family.

5. Main result

We consider a primitive substitution tiling on Rd with a

diagonalizable expansion map �. Suppose that all the eigen-

values of � are algebraically conjugate with the same multi-

plicity J and T is rigid. Additionally we assume that there

exists at least one algebraic conjugate � of eigenvalues of � for

which j�j< 1. Recall that

� ¼
[�
i¼1

ðCi � CiÞ;

where Ci is the set of control points of tiles of type i and

1 � i � �. By the choice of the control point set in (10), we

note that L ¼ h�i.

Lemma 5.1. Assume that the set of eigenvalues of � is a

Pisot family. Then � � E� for some �> 0, where E� is given in

(26).

Proof. Since we are interested in � which is a collection of

translation vectors, the choice of control point set CðT Þ does

not really matter. So we use the tile map (8) which sends a tile

to the same type of tiles in T . From Lemma 4.5 (Lee &

Solomyak, 2008), for any y 2 �,

y ¼
PN
n¼0

�nxn; where xn 2 U and U is a finite subset in L:

Since � is an expansive map and satisfies the Pisot family

condition, the maps �j and � are defined with all the algebraic

conjugates of eigenvalues of � whose absolute values are less

than 1. Thus �ð�Þ � BG� ð0Þ for some �> 0. From the definition

of E� in (26), � � E�. &

Lemma 5.2. Assume that T has pure discrete spectrum.

Then for any y 2 h�i, there exists ‘ ¼ ‘ðyÞ 2 N such that

�‘y 2 �.

Proof. Note from (24) that for any k 2 Z�0 and

aj 2 fa1; . . . ; aJg, �kaj is contained in �. Recall that

h�i � Z½�
a1þ . . .þ Z½�
aJ , where a1, . . . ; aJ2 CðT Þ. So

any element y 2 h�i is a linear combination of

a1; �a1; . . . ; �n�1a1; . . . ; aJ; �aJ; . . . ; �n�1aJ over Z. Applying

(11) many times if necessary, we get that for any y 2 h�i,
�‘y 2 � for some ‘ ¼ ‘ðyÞ 2 N. &

Proposition 5.3. Let T be a primitive substitution tiling on

Rd with an expansion map �. Under the assumption of the
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existence of CPS (23), if T has pure discrete spectrum, then

there exists K 2 N such that

�KE� � �: ð31Þ

Proof. We first prove that there exists a finite set F such that

for all x 2 E�, x 2 �� v for some v 2 F. This can be obtained

directly from Lemma 5.5.1 (Strungaru, 2017; Baake & Grimm,

2017), but for the reader’s convenience we give the proof here.

Note that E� is a Meyer set and � � E� for some �> 0. Since

� is relatively dense, for any x 2 E�, there exists r> 0 such that

� \ BR
d

r ðxÞ 6¼ ;. From the Meyer property of E�, the point set

configurations

f� \ BR
d

r ðxÞ : x 2 E�g ð32Þ

are finite up to translation elements of E�. We should note that

if E� has FLC but not the Meyer property, the property (32)

may not hold. Let

F ¼ fu� x : u 2 � \ BR
d

r ðxÞ and x 2 E�g:

Then

F ¼ ð�� E�Þ \ Brð0Þ;

F � L, and F is a finite set. Thus for any x 2 E�,

x 2 �� v for some v 2 F: ð33Þ

From Lemma 5.2 and L ¼ h�i, for any y 2 L, there exists

‘ ¼ ‘ðyÞ 2 N such that �‘y 2 �. By the pure discrete spec-

trum of T and (11), there exists M 2 N such that

�M�� �M� � �: ð34Þ

Applying the containment (34) finitely many times, we obtain

that there exists K0 2 N such that �K0 F � �. Hence together

with (33), there exists K 2 N such that

�KE� � �: ð35Þ

&

In order to discuss model sets and compute the boundary

measures of their windows for substitution tilings, we need to

introduce �-set substitutions for substitution Delone sets

which represent the substitution tilings.

Definition 5.4. For a substitution Delone �-set K ¼ ð�iÞi��
satisfying (2), define a matrix � ¼ ð�ijÞ

�
i;j¼1 whose entries are

finite (possibly empty) families of linear affine transformations

on Rd given by �ij ¼ ff : x 7!�xþ a j a 2 Dijg . We define

�ijðXÞ :¼ [f2�ij
f ðXÞ for X � Rd. For a �-set ðX iÞi�� let

�
�
ðX iÞi��

�
¼

�[�
j¼1

�ijðX jÞ

�
i��
: ð36Þ

Thus �ðKÞ ¼ K by definition. We say that � is a �-set

substitution. Let

Sð�Þ ¼ ðcard �ijÞij

be a substitution matrix corresponding to �. This is analogous

to the substitution matrix for a tile-substitution.

Recall that there exists a finite generating set P such that

C ¼ lim
r!1

�rðPÞ ð37Þ

from Lagarias & Wang (2003), Lee et al. (2003). If the finite

generating set P consists of a single element, we say that C is

generated from one point. Since �ðLÞ is dense in G by Lemma

3.3, we have a unique extension of � to a �-set substitution on

G in the obvious way; if f 2 �ij for which f : L! L,

f ðxÞ ¼ �xþ a, we define f � : �ðLÞ ! �ðLÞ, f �ðuÞ ¼ Duþ a�,

D is given in (22), and a� ¼ �ðaÞ. Since �ðLÞ is dense inG, we

can extend the mapping f � to G. If there is no confusion, we

will use the same notation f � for the extended map.

Note that, by the Pisot family condition on �, there exists

some c< 1 such that jDxj � c � jxj for any x 2 �ðLÞ. This

formula defines a mapping on G and f � is a contraction on G.

Thus a �-set substitution � determines a multi-component

iterated function system �� on G. Let Sð��Þ ¼ ðcard ð��ijÞÞij
be a substitution matrix corresponding to ��. Defining the

compact subsets

Vi ¼ �ðCiÞ for each 1 � i � �

and using (36) and the continuity of the mappings, we have

Vi ¼
[�
j¼1

[
f �2ð��Þij

f �ðVjÞ; i ¼ 1; . . . ; �:

This shows that V1; . . . ;V� are the unique attractor of ��.

Remark 5.5. From Proposition 4.4 (Lee, 2007), if T has pure

discrete spectrum, then there exists R 2 XT such that the

control point set CR :¼ CðRÞ of the tiling R satisfies

CR ¼ lim
n!1
ð�N
Þ

n
ðyÞ and yþ �N�ðRÞ � ðCRÞj

for some y 2 ðCRÞj, j � � and N 2 Zþ. Note that !NðRÞ ¼ R.

Let � ¼ !N . We can consider a rth-level supertiling �rðRÞ of

R. Note that there exists an rth-level supertile �rðSÞ in �rðRÞ

containing the origin in the support which contains the tile

yþ Tj 2 R. Redefining the tile map for the control points of

this supertiling so that the control point of the rth-level

supertile �rðSÞ is at the origin, we can build a substitution tiling

R
0
2 XT for which algebraic coincidence occurs at the origin.

So rewriting the substitution if necessary, we can assume that

y ¼ 0. With this assumption, we get the following proposition.

Proposition 5.6. Let T be a primitive substitution tiling on

Rd with a diagonalizable expansion map � which is uni-

modular. Suppose that all the eigenvalues of � are algebraic

conjugates with the same multiplicity and T is rigid. Suppose

that

C ¼ lim
n!1
ð�N
Þ

n
ðf0gÞ and �N� � Cj ð38Þ
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for some 0 2 Cj, j � � and N 2 Zþ. Assume that CPS (23)

exists. Then each point set

Ci ¼ �ðUiÞ; i � � ð39Þ

is a Euclidean model set in CPS (23) with a window Ui in G

which is open and pre-compact.

Proof. For each i � � and z 2 Ci, there exists n 2 Zþ such

that

f ð0Þ ¼ z and f 2 ð�n
Þij:

From �N� � Cj,

zþ �nþN� � Ci:

By Theorem 2.6 and Proposition 5.3, there exists K 2 N such

that �KE� � �. Thus

Ci ¼
[
z2Ci

ðzþ �Nz E�z
Þ;

where Nz depends on z. From the equality of (30), we let

Ui :¼
[
z2Ci

ðz� þDNz B�z
ð0ÞÞ for any i � �:

Then

Ci ¼ �ðUiÞ where Ui is an open set in G;

for any i � �.
From Lemma 5.1, � � E� for some �> 0. Thus �ð�Þ �

BG� ð0Þ. Since BG� ð0Þ is compact, �ð�Þ is compact. Thus �ðCiÞ is

compact. &

We can assume that the open window Ui in (39) is the

maximal element satisfying (39) for the purpose of proving the

following proposition. In this proposition, we show that the

control point set C is a regular model set using Keesling’s

argument (Keesling, 1999).

Proposition 5.7. Let T be a repetitive primitive substitution

tiling on Rd with a diagonalizable expansion map � which is

unimodular. Suppose that all the eigenvalues of � are alge-

braic conjugates with the same multiplicity and T is rigid.

Under the assumption of the existence of CPS (23), if

C ¼ lim
n!1
ð�N
Þ

n
ðf0gÞ and �N� � Cj ð40Þ

where 0 2 Cj, j � � and N 2 Zþ, then each Euclidean model

set Cj, 1 � j � � has a window with boundary measure zero in

the Euclidean internal space G of CPS (23).

Proof. Let us define Wi ¼ Ui, where Ui is the maximal open

set in G satisfying (39). From the assumption of (40), we first

note that � fulfils the Pisot family condition from Theorem 2.6

and Proposition 4.4. For every measurable set E � G and for

any f � 2 ð��Þij with f �ðuÞ ¼ Duþ a�,

�ðf �ðEÞÞ ¼ �ðDðEÞ þ a�Þ ¼ jdet Dj�ðEÞ;

where � is a Haar measure in G and D is the contraction as

given in (22). Note that jdet Dj< 1. In particular,

�ðf �ðWjÞÞ ¼ jdet Dj�ðWjÞ; 1 � j � �:

We have attractors Wj’s satisfying

Wi ¼
[�
j¼1

[
f �2ð��Þij

f �ðWjÞ:

Let us denote wj ¼ �ðWjÞ for 1 � j � � and w = ½w1; . . . ;w�

T.

Then for any r 2 N,

wi �
P�
j¼1

jdet Djr card ðð��ÞrÞijwj:

Note here that for any 1 � j � �, wj > 0 follows from the fact

that Wj has a non-empty interior. Thus

w � jdet DjrSðð��ÞrÞw � jdet DjrðSð��ÞÞrw for any r 2 N:

Note from Lagarias & Wang (2003) that the Perron eigenvalue

of ðSð��ÞÞr is jdet �jr. From the unimodular condition of �,

det D � det� ¼ �1:

Since ðSð��ÞÞr is primitive, from Lemma 1 (Lee & Moody,

2001)

w ¼ jdet DjrSðð��ÞrÞw ¼ jdet DjrðSð��ÞÞrw for any r 2 N:

By the positivity of w and Sðð��ÞrÞ � ðSð��ÞÞr, Sðð��ÞrÞ =

ðSð��ÞÞr.
Recall that for any r 2 N,

Wi ¼
[�
j¼1

ðð��ÞrÞijWj: ð41Þ

From (3), for any r 2 N,

ðD
r
Þij ¼

[
k1;k2;...;kðr�1Þ��

ðDik1
þ �Dk1k2

þ . . .þ �r�1
Dkr�1jÞ

and

ð�r
ÞijðfxjgÞ ¼ �

rxj þ ðD
r
Þij for any xj 2 Cj:

Note that Wi ¼ Ui ¼ �ðCiÞ and Ui is a non-empty open set. As

r!1, [�j¼1ðD
r
Þij is dense in Wi. SinceG is a Euclidean space,

we can find a non-empty open set V � G such that

V � V � Ui. So there exist M 2 N and a 2 ðDM
Þij such that

a� þDM�ð�Þ � V � V � Ui. Since Wj � �ð�Þ,

a� þDMðWjÞ � a� þDM�ð�Þ:

Thus there exists g� 2 ðð��ÞMÞij such that

g�ðWjÞ � Ui: ð42Þ

Hence

@Ui ¼ Wi\Ui ¼
[�
j¼1

ðð��ÞMÞijðWjÞ \ Ui

�
[�
j¼1

ðð��ÞMÞijðWjÞ
� �

\ ðð��ÞMÞijðUjÞ
� �

ð43Þ
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�
[�
j¼1

ðð��ÞMÞijð@UjÞ: ð44Þ

The inclusion (43) is followed by the maximal choice of an

open set Ui. Let

vj ¼ �ð@UjÞ; 1 � j � �; and v ¼ ½v1; . . . ; v�

T:

Then

v � jdet DjMSð��ÞMv:

From (42), we observe that not all functions in Sðð��ÞMÞ are

used for the inclusion (44). Thus there exists a matrix S0 for

which

0 � v � jdet DjMS0v � jdet DjMSðð��ÞMÞv

� jdet DjMðSð��ÞÞMv;

where S0 � ðSð��ÞÞM and S0 6¼ ðSð��ÞÞM . If v> 0, again from

Lemma 1 (Lee & Moody, 2001), S0 ¼ ðSð��ÞÞM . This is a

contradiction to (42). Therefore vj ¼ 0 for any 1 � j � �. &

The regularity property of model sets can be shared for all

the elements in XT . One can find the earliest result of this

property in the work of Schlottmann (2000) and the further

development in the work of Baake et al. (2007), Keller &

Richard (2019) and Lee & Moody (2006). We state the

property [Proposition 4.4 (Lee & Moody, 2006)] here.

Proposition 5.8. (Schlottmann, 2000; Baake et al., 2007;

Keller & Richard, 2019; Lee & Moody, 2006) Let C be a

Delone �-set in Rd for which �ðVi
�Þ � Ci � �ðViÞ where Vi is

compact and Vi
� 6¼ ; for i � � with respect to some CPS. Then

for any C 2 XC, there exists ð�s;�hÞ 2 Rd
�G so that

�sþ�ðhþ Vi
�Þ � �i � �sþ�ðhþ ViÞ for each i � �:

From the assumption of pure discrete spectrum and

Remark 5.5, we can observe that the condition (40) is fulfilled

in the following theorem.

Theorem 5.9. Let T be a repetitive primitive substitution

tiling on Rd with a diagonalizable expansion map � which is

unimodular. Suppose that all the eigenvalues of � are algeb-

raically conjugate with the same multiplicity. If T has pure

discrete spectrum, then each control point set Cj, 1 � j � �, is

a regular Euclidean model set in CPS (23).

Proof. Under the assumption of pure discrete spectrum, we

know that T has FLC from the work of Lee & Solomyak

(2019) and � fulfils the Pisot family condition (Lee & Solo-

myak, 2012). From Theorem 3.1, we know that T is rigid. Since

� is unimodular, there exists at least one algebraic conjugate �
of eigenvalues of � for which j�j< 1. Thus we can construct

the CPS (23) with a Euclidean internal space. Since T has pure

discrete spectrum and is repetitive, we can find a substitution

tiling S in XT such that

CS ¼ lim
n!1
ð�NÞ

n
ðf0gÞ and �N� � ðCSÞj ð45Þ

where 0 2 ðCSÞj, j � � and N 2 Zþ. The claim follows from

Propositions 5.3, 5.7 and 5.8. &

Corollary 5.10. Let T be a repetitive primitive substitution

tiling on Rd with a diagonalizable expansion map � which is

unimodular. Suppose that all the eigenvalues of � are algeb-

raically conjugate with the same multiplicity. Then T has pure

discrete spectrum if and only if each control point set Cj,

1 � j � �, is a regular Euclidean model set in CPS (23).

Proof. It is known that any regular model sets have pure

discrete spectrum in quite a general setting (Schlottmann,

2000). Together with Theorem 5.9, we obtain the equivalence

between pure discrete spectrum and regular model set in

substitution tilings. &

The next example shows that the unimodularity of � is

necessary.

Example 5.11. Let us consider an example of non-

unimodular substitution tiling which is studied by Baake et al.

(1998). This example is proven to be a regular model set in the

setting of a CPS constructed by Baake et al. (1998) with the

help of 2-adic embedding. In our setting of CPS (23), we show

that this example cannot provide a model set, since we are

only interested in the Euclidean window in this paper.

The substitution matrix of the primitive two-letter substi-

tution

a! aab b! abab

has the Perron–Frobenius eigenvalue � :¼ 2þ ð2Þ1=2 which is

a Pisot number but non-unimodular. We can extend the letter

a to the right-hand side by the substitution and the letter b to

the left-hand side. So we can get a bi-infinite sequence fixed

under the substitution. A geometric substitution tiling arising

from this substitution can be obtained by replacing symbols a

and b in this sequence by the intervals of length ‘ðaÞ ¼ 1 and

‘ðbÞ ¼ ð2Þ1=2. Then we have the following tile-substitution !,

!ðTaÞ ¼ fTa; 1þ Ta; 2þ Tbg;

!ðTbÞ ¼ fTa; 1þ Tb; 1þ 2ð Þ1=2
þTa; 2þ 2ð Þ1=2

þTbg;

where Ta ¼ ð½0; 1
; aÞ and Tb ¼ ð½0; ð2Þ
1=2

; bÞ. Considering

return words fa; abg for a, and fba; baag for b, we can check

L ¼ h�i. We choose left end points �a;�b of corresponding

intervals as the set of control points. Then they satisfy

�a ¼ ��a þ f0; 1gð Þ
[

��b þ f0; 1þ
ffiffiffi
2
p
g

� �
�b ¼ ��a þ f2gð Þ

[
��b þ f1; 2þ

ffiffiffi
2
p
g

� �
;

by Lagarias–Wang duality (Lagarias & Wang, 2003). Applying

the Galois conjugate � which sends ð2Þ1=2
!�ð2Þ1=2, we

obtain a generalized iterated function system
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Xa ¼ �Xa þ f0; 1gð Þ
[

�Xb þ f0; 1�
ffiffiffi
2
p
g

� �
Xb ¼ �Xa þ f2gð Þ

[
�Xb þ f1; 2�

ffiffiffi
2
p
g

� �
;

with � ¼ 2� ð2Þ1=2, Xa ¼ �ð�aÞ and Xb ¼ �ð�bÞ. We can

easily confirm that

Xa ¼ ½0; 1þ ð2Þ1=2

;Xb ¼ ½ð2Þ

1=2; 2þ ð2Þ1=2



are the unique attractors of this iterated function system. Since

Xa \ Xb ¼ ½ð2Þ
1=2; 1þ ð2Þ1=2


 contains an inner point, it is

unable to distinguish them by any window in this setting.

6. Further study

We have mainly considered unimodular substitution tilings in

this paper. Example 5.11 shows a case of non-unimodular

substitution tiling which is studied by Baake et al. (1998). It

cannot be a Euclidean model set in the cut-and-project scheme

(23) that we present in this paper, but it is proven to be a

regular model set in the setting of a cut-and-project scheme

constructed in the work of Baake et al. (1998), which suggests

non-unimodular tilings require non-Archimedean embeddings

to construct internal spaces. It is an intriguing open question to

construct a concrete cut-and-project scheme in this case.
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