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How should we represent rotations? Orthonormal (3 � 3) matrices? Euler angles (pitch,

yaw and roll)? Axis and angle? Gibbs vector? Pauli (2 � 2, complex) spin matrices?

Cayley–Klein (complex) parameters? Euler–Rodrigues parameters? Hamilton’s

quaternions? Why are there so many choices (Goldstein, 1980; Varshalovich et al., 1988;

Shuster, 1993)? We don’t see this variety when it comes to translation: we just use vectors.

The big difference is that translations live in a Euclidean vector space. Rotations do not,

and so all the nice linear algebra machinery that we use for manipulating translations

seems not to apply.

Why does it matter how we represent rotation? Solving problems often depends on

finding the ‘right’ representation. Sometimes a good notation can make it possible to

solve a problem in closed form. Without a notion of the ‘space of rotations’ many

problems are hard to formulate and solve.

Spoiler alert: unit quaternions provide ‘the’ way to represent rotations. Why? Unit

quaternions allow a clear visualization (see Hanson, 2006) of the space of rotations as the

unit sphere S3 in four dimensions (with antipodal points identified). Unit quaternions

make it possible to differentiate an expression ‘with respect to rotation’. Unit quaternions

make it possible to find extrema of expressions by setting that derivative equal to zero!

Unit quaternions make it easy to compose rotations (unlike, e.g., axis-and-angle

notation). Unit quaternions do not suffer from singularities (as do, e.g., Euler angles

when two axes line up – see gimbal lock). Unit quaternions, while redundant (four

parameters for three degrees of freedom), have only one constraint on their components

(unlike orthonormal matrices, which have six non-linear constraints on the rows or

columns – plus one on the determinant). Unit quaternions make it possible to compute

averages, to interpolate, to sample in the space of rotations and to represent densities

over orientations. And, as demonstrated in Andrew Hanson’s (2020) article in the

previous issue of Acta Crystallographica Section A, they also make possible insightful

illustrations relating to orientations.

Which came first, the vector or the quaternion? Mathematicians extended algebra

from real number to complex numbers. We can add, subtract, multiply and divide these.

The question that obsessed Hamilton was whether there would be further generalizations

to algebras with three components. His big breakthrough came when he realized it was

not possible with three components – but it was possible with four (Hamilton, 1844)! That

is how the quaternion was born – on 16 October 1843.

Hamilton showed that for some applications in physics it was convenient to split the

quaternion into a ‘scalar’ and a ‘vector’ part. For a few decades, quaternions were used in

physics to represent spatial quantities, often with the scalar part set to zero. Maxwell used

both notations in some of his work (Maxwell, 1873). Some got tired of using four

components to represent positions in space which clearly only need three, and so lopped

off the scalar component and switched to using just vectors. Gibbs and Heaviside were

the main propagandizers of this approach (Crowe, 1967).

The price they paid was that there is no algebra for vectors (e.g., no inverses with

respect to multiplication). Some critics called vector analysis a ‘hermaphrodite monster’

because it ‘compounded the notations of Hamilton and Grassmann’ (Tait, 1867; Prichard,

1998). After an acrimonious war of words, the proponents of vectors finally won, and the

rest is history.
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Sadly, when quaternions were abandoned, ‘the baby was

thrown out with the bathwater’ so to speak, since the inherent

advantages of using unit quaternions to represent rotations

were forgotten (Lambek, 1995). In the intervening years, unit

quaternions, and their use in solving real problems involving

rotations, have been independently rediscovered a number of

times in a variety of fields, as shown by Professor Hanson. In

crystallography, e.g., the orientation distribution function

(ODF) – the volume fraction of grains with certain orientation

– can be treated as a function of a unit quaternion (Kunze &

Schaeben, 2004; Mason & Schuh, 2008).

The problem of best-fit alignment of points comes up in

several disciplines, including aerospace, photogrammetry,

machine vision, molecular chemistry, cryo-electron micro-

scopy and crystallography. A simple example of the point

alignment problem is illustrated in Fig. 1 (from an old paper:

Horn, 1987). Here points on an object are measured by two

instruments, each with its own coordinate system. The

problem is to determine the transformation between the two

systems. An equivalent problem is one where two objects are

measured in a common coordinate system. In that case, one is

to determine the transformation that brings one into align-

ment with the other. There are many variants of these

problems, e.g., the ‘two objects’ may be the same object before

and after rotation, or two instances (e.g., molecules) from the

same object class. In his lead article, Andrew Hanson, for the

first time, traces back the parallel development of the elegant

quaternion-based solution methods to these problems.

Duplication of effort, without cross reference, is, of course,

not unique to the alignment problem, and presents an inter-

esting challenge: How can we detect such parallel efforts

across disciplines early enough to avoid a lot of redundant

work? What search method can overcome the differences in

notation, application, research methodology and underlying

philosophy to ferret out such connections?

The repeated rediscovery of important methods is, of

course, not uncommon. In the second edition (1973) of

Numerical Methods for Scientists and Engineers, Hamming

starts an introduction to the fast Fourier transform (FFT) with

wording that may seem a bit odd:

The fast Fourier transform was rediscovered and adequately

publicized by Cooley & Tukey (1965), though it had been

discovered a number of times before, and was to some extent

understood in the general literature.

To his chagrin, apparently nobody had noticed that

Hamming had already taught how to do the fast Fourier

transform for cyclical data of length 6, 8 and 12 in the first

edition of this book (Hamming, 1962). He must have assumed

that it would have been obvious how his method could be used

for other, larger composite numbers. (The real problem may

have been that he did not give his method a snazzy name!)

Since then it has become known that FFT-like methods had

actually been re-invented numerous times and can be traced

back even further, perhaps as far as Gauss (Heideman

et al., 1984; Blahut, 1985; Brandt, 2014; Goldstine, 1977;

Brendel, 1900a). [A relevant aside: Gauss also may have

predated Hamilton in discovering quaternions (Altmann,

1989; Brendel, 1900b).]

Being unaware of existing solutions of problems can happen

to the best of us. In The Elastica: a Mathematical History, Raph

Levien (2008) writes

In spite of the fairly rich literature available on the elastica, at

least one researcher, B. K. P. Horn in 1981, seems to have

independently derived the rectangular elastica from the

principle of minimizing the strain energy (Horn, 1983), going

through an impressive series of derivations, and using the full

power of elliptic integral theory, to arrive at exactly the same

integral as Bernoulli had derived almost three hundred years

previously.

Good thing I didn’t end up with a different integral!

Andrew Hanson presents the fascinating story of multiple

discoveries of the formulation and solution of the alignment

problem. He draws particular attention to those that noticed

that closed-form solutions are possible. This is because finding

the eigenvalues of a 4 � 4 matrix involves determining the

roots of a quartic, and equations up to fourth order do have

closed-form solutions. In the process, he gives a delightful

account of the history of the solution of quartics as well. As is

common, having a closed-form solution exposes features of

the problem not obvious when only numerical solutions are

possible. Finally, in his tour de force, he further extends the

problem from spatial alignment of points to alignment of

orientation frames.

Hanson’s article should be of great interest to crystal-

lographers, since spatial orientation is an important topic

there, and so unit quaternions can play a significant role in,

e.g., analysis of crystallographic orientation, crystallographic

lattices, crystallographic texture, microstructure and aniso-

tropy (Kunze & Schaeben, 2004; Mason & Schuh, 2008; King,

1996; Ozturk & Rollett, 2016). It is also a most entertaining

read.
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Figure 1
One version of the absolute orientation problem in photogrammetry. The
circled points are measured in two coordinate systems. The task is to find
the relationship between the coordinate systems.
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