research papers

Received 17 April 2020 Accepted 20 July 2020

Edited by A. Altomare, Institute of Crystallography - CNR, Bari, Italy

Keywords: translation lattices; parallelohedra; cone of positive quadratic forms; Sigma classes.

On the Σ classes in E^6

P. Engel*

Jupiterstrasse 3, CH-3015 Berne, Switzerland. *Correspondence e-mail: pengel@bluewin.ch

In E^6 , the cone of positive definite quadratic forms is subdivided into Σ_s subcones and its equivalence classes \mathcal{E}_{Σ_s} are determined for s = 0-3, and 18–21.

1. Introduction

The discovery of quasicrystals, the structure of which can be viewed as projected from higher-dimensional translation lattices, has greatly stimulated the investigation of lattices and parallelohedra in arbitrary dimensions. The classification of the combinatorial types of primitive parallelohedra P induces a structure on the cone of positive definite quadratic forms C^+ .

In a series of papers, the shape of C and its subdivision into Φ and Σ subcones were discussed (Baburin & Engel, 2013; Engel, 2015, 2019).

Ryshkov (1973) defined the S subcone which contains all parallelohedra that have the same set of facet vectors \mathcal{F} , but without characterizing its boundary. The complete subcone was determined by Engel (2015) by the half-space intersection

$$\Sigma(\mathsf{P}) := \bigcap_{h=1}^{3N_b} \mathsf{H}_h.$$
 (1)

The investigation of translation lattices becomes most attractive in E^6 because many new phenomena appear for the first time in dimension 6.

In the report by Engel (2019), minimal and maximal Σ_s classes in E^6 , \mathcal{E}_{Σ_0} and $\mathcal{E}_{\Sigma_{21}}$, were investigated. The subscript 's' is an invariant of the class and denotes the number of closed zones of P [see Engel (2019), equations (12)–(13)]. This classification is continued for the Σ_s classes, s = 0, 1, 2, 3 and 18, 19, 20, 21.

The infinite family of Σ cones generate a face-to-face tiling of the cone C [see Engel (2019), equation (17) *ff*.]. In this tiling, for each class representative Σ_s^i are determined all the neighbouring Σ 's adjacent to Σ_s^i by a common wall, in order to find new Σ_r^j . Proceeding in this way, for each class $\mathcal{E}_{\Sigma_s^k}$ can be found at least one representative Σ_s^k along a finite path of adjacent Σ 's.

As a main result we obtain by this adjacency procedure: For s = 0, 1, 2, 3 there exist 1, 1, 6, 58 Σ_s classes, and for s =

18, 19, 20, 21 there exist 15, 3, 1, 1 Σ_s classes in C.

2. Determination of the Σ_s classes

Most concepts used in what follows were described by Engel (2019).

Beginning with Σ_0 as a representative of its class \mathcal{E}_{Σ_0} , and its subdivision into combinatorial Φ types, the Σ_s classes for s = 0, 1, 2, 3 are successively determined. Recall that Σ_0 has 216 walls $W_i^{\Sigma_0}$, $i = 1, \dots, 216$, which all are equivalent under the

© 2020 International Union of Crystallography

Table 1 Wall normals n_i for the wall classes of Σ_1 in E^6 .

Class	Order	$n_{11}, \ldots, n_{16} / n_{22}, \ldots, n_{26} / n_{33}, \ldots / n_{66}$	Neighbour
1	1	0 -1 1 0 0 1 / 0 0 -1 1 -1 / 0 1 -1 1 / 0 0 1 / 0 -1 / -1	Σ_0
2	5	$0 -1 \ 1 \ -1 \ 1 \ / \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	Σ_1
3	30	0 0 0 0 0 / 0 0 0 0 / 0 1 0 0 / 0 0 0 / 0 /	Σ_2^1
4	40	0 0 0 0 0 1 / 0 0 0 0 0 / 0 0 0 0 / 0 0 0 / 0 0 / 0 0 / 0	$\Sigma_2^{\tilde{2}}$
5	10	01000/00/0000/000/000/00/00/0	$\Sigma_2^{\tilde{3}}$
6	20	0 0 0 0 0 0 / 0 -1 0 0 0 / 1 0 0 1 / 0 0 0 / 0 0 / 0	$\Sigma_2^{\tilde{4}}$
7	60	0 0 0 0 0 / 0 0 0 0 / 0 0 0 / 0 0 0 / 0 0 0 / 0 1 / 0	$\Sigma_2^{\overline{5}}$

group $\mathcal{G}_{E_6^*}$ (see Engel, 2019). The neighbouring Σ_s adjacent to Σ_0 are equivalent too, and were determined along the following steps:

Step S1: Within the class of equivalent walls, one wall $W_l^{\Sigma_0}$, $1 \le l \le 216$, is selected, and for any $\Phi_j \subset \Sigma_0$ leaning on $W_l^{\Sigma_0}$, the neighbouring Φ_k opposite to that wall is taken. Let $Q \in \Phi_k^+$. The determination of $\Sigma_s(Q)$ requires first the computation of the primitive parallelohedron,

$$\mathsf{P}(\mathsf{Q}) := \bigcap_{\forall t \in \Lambda^d \setminus \{O\}} \mathsf{H}_t.$$
 (2)

Note that in E^6 every primitive parallelohedron has 126 facet vectors. The set of facet vectors of P is denoted by

$$\mathcal{F}_{\mathsf{P}} := \{\mathbf{f}_1, \cdots, \mathbf{f}_{126}\}.$$
 (3)

This shows that P(Q) has one closed zone with zone vector $z^* = (0, 0, 0, 0, 0, 1)$, and thus it belongs to $\Sigma_1(Q)$. Because of symmetry, for each equivalent wall an equivalent result will be obtained.

Step S2: Next all triplets $\mathbf{f}_i, \mathbf{f}_j, \mathbf{f}_k \in \mathcal{F}_{\mathsf{P}}$ that fulfil the belt condition

$$\mathbf{f}_i + \mathbf{f}_j + \mathbf{f}_k = 0, \tag{4}$$

are determined. Their number is $N_b = 371$, and thus,

$$\Sigma_1(\mathsf{Q}) := \bigcap_{h=1}^{3N_b} \mathsf{H}_h, \tag{5}$$

is obtained. Because of the large number of halfspaces H_h , the direct calculation of Σ_1 is not practicable. Instead, the calculation of the Φ subcones inside Σ_1 will reveal the walls $W_i^{\Sigma_1}$. Recall that Q is interior to Σ_1 if

$$\mathsf{Q} \in \mathsf{H}_h^+, \quad h = 1, \cdots, 3N_b. \tag{6}$$

This allows the calculation of all $\Phi_k \subset \Sigma_1$ without explicitly knowing Σ_1 , and for the walls of Σ_1 it holds that:

A wall $W_j^{\Phi_k}$ of $\Phi_k \subset \Sigma_1$ is a wall of Σ_1 if there exists a wall H_h^0 , $1 \le h \le 3N_b$, such that

$$\mathsf{W}_{i}^{\Phi_{k}} = \mathsf{H}_{h}^{0}. \tag{7}$$

By calculating a sufficiently large number of $\Phi_k \subset \Sigma_1$, most of the walls of Σ_1 can be determined. The process converts relatively quickly.

Step S3: In order to verify the result, the *induced symmetry* of Σ_1 is applied:

For any $Q \in \Sigma_1$ the induced symmetry of Σ_1 is defined by

$$\mathcal{G}_{\Sigma_1} := \left\{ \mathsf{S}_i \mid \mathsf{Q}_i = \mathsf{S}_i \mathsf{Q} \mathsf{S}_i^t \in \Sigma_1, \quad \forall \, \mathsf{S}_i \in \mathcal{G}_{E_6^*} \right\}.$$
(8)

The centre

Σ₀

$$\mathsf{C} := \sum_{\forall \mathsf{Q}_i \in \Sigma_1} \mathsf{Q}_i,\tag{9}$$

is invariant under the group \mathcal{G}_{Σ_1} and lies in Σ_1 . Applying the symmetry \mathcal{G}_{Σ_1} to the walls of Σ_1 proves that there are 166 walls which belong to seven classes under \mathcal{G}_{Σ_1} , and these are shown in Table 1. The neighbouring Σ_s , s = 0, 1, 2, are given in Table 2.

Shortest paths among the Σ_s classes for levels s = 0-3 in E^6 .

Figure 1

research papers

Table 2 Σ classes for levels 0–3 in E^6 .

s	Class	Subcone	Order	Neighbours
0	2	216	103860	[216] 2
1	Σ_0	210 166	480	$[210] \mathcal{L}_1$ Σ_2 [5] Σ_2 [30] Σ_1^1 [40] Σ_2^2 [10] Σ_3^3 [20] Σ_4^4 [60] Σ_2^5
2	Σ_1^1	129	32	$ \begin{array}{c} \mathcal{L}_{0}, [5]\mathcal{L}_{1}, [53]\mathcal{L}_{2}, [43]\mathcal{L}_{2}, [13]\mathcal{L}_{2}, [23]\mathcal{L}_{2}, [43]\mathcal{L}_{2}, [43]\mathcal{L}_{2},$
2	Σ_2^2	129	24	$ [2]\Sigma_{1}, [2]\Sigma_{2}^{2}, [2]\Sigma_{2}^{4}, [6]\Sigma_{5}^{5}, [12]\Sigma_{2}^{2}, [3]\Sigma_{3}^{4}, [6]\Sigma_{3}^{5}, [12]\Sigma_{3}^{8}, [6]\Sigma_{3}^{14}, [6]\Sigma_{3}^{15}, [6]\Sigma_{3}^{16}, [6]\Sigma_{3}^{17}, [6+6]\Sigma_{3}^{18}, [6]\Sigma_{3}^{19}, [6]\Sigma_{3}^{29}, [6]\Sigma_{3}^{21}, [6]\Sigma_{3}^{19}, [6]\Sigma_{3}^{19}, [6]\Sigma_{3}^{21}, [6]\Sigma_{3}^{10}, [6]\Sigma_{3}^{1$
	Σ_2^3	138	96	$[2]_{\Sigma_1}$, $[6]_{\Sigma_1}$, $[4]_{\Sigma_2}$, $[2]_{\Sigma_2}$, $[2]$
	$\Sigma_2^{2\over 4}$	134	48	$[2]\Sigma_{1}, [4]\Sigma_{2}^{2}, [6]\Sigma_{2}^{5}, [2]\Sigma_{2}^{6}, [24]\Sigma_{3}^{7}, [6]\Sigma_{3}^{9}, [12]\Sigma_{3}^{11}, [3]\Sigma_{3}^{12}, [6]\Sigma_{3}^{15}, [12]\Sigma_{3}^{19}, [12]\Sigma_{3}^{20}, [6]\Sigma_{3}^{21}, [3]\Sigma_{3}^{24}, [6]\Sigma_{3}^{26}, [6]\Sigma_{3}^{27}, [12]\Sigma_{3}^{28}, [6]\Sigma_{3}^{29}, [6]\Sigma_{3}^{21}, [2]\Sigma_{3}^{20}, [6]\Sigma_{3}^{21}, [2]\Sigma_{3}^{21}, [2]\Sigma_{3}^{20}, [6]\Sigma_{3}^{21}, [2]\Sigma_{3}^{21}, [2]\Sigma_{3}^$
	5 5	105	16	$[2]\Sigma_3^{40}, \Sigma_3^{48}, [3]\Sigma_3^{49}$
	Σ_2^2	125	10	$ [2]_{21}, [4]_{22}, [2]_{22}, [4]_{22}, [6]_{23}, [4]_{23}, [2]_{23}, [6]_{23}, [6]_{23}, [4]_{23}^{-2}, [6]_{23}^{-2}, [4]_{23}^{-2}, [6]_{23}^{-2}, [4]$
	Σ_2^6	105.256280	12	$ \begin{bmatrix} 1 \\ 2_3 \\ 2_4 \\ 2_5$
3	Σ_2^1	129	4	$[0_1 \mathbb{Z}_3]$ $\Sigma_{2_1}^1 [2] \Sigma_{2_2}^5, [2] \Sigma_{2_3}^1, \Sigma_{2_3}^2, [2] \Sigma_{2_3}^2, [2] \Sigma_{2_3}^2, [115] \Sigma_4$
	Σ_3^2	103.497315	4	$[2]\Sigma_{2}^{2}, \Sigma_{3}^{1}, [2]\Sigma_{2}^{2}, [2]\Sigma_{4}^{4}, [2]\Sigma_{1}^{2}, [2]\Sigma_{3}^{8}, [2]\Sigma_{2}^{22}, [90]\Sigma_{4}$
	Σ_3^3	99.344740	8	$[2]\Sigma_{1}^{1}, [4]\Sigma_{5}^{5}, [2]\Sigma_{9}^{0}, [2]\Sigma_{1}^{12}, [89]\Sigma_{4}$
	Σ_3^4	100.361510	4	$\Sigma_{2}^{1}, \Sigma_{2}^{5}, [2]\Sigma_{1}^{1}, [2]\Sigma_{2}^{2}, \Sigma_{3}^{4}, \Sigma_{3}^{11}, [2]\Sigma_{1}^{13}, \Sigma_{3}^{14}, [1+1]\Sigma_{3}^{22}, [87]\Sigma_{4}$
	Σ_{3}^{5}	105.390562	4	$\Sigma_{2}^{1}, \Sigma_{3}^{2}, [1+1]\Sigma_{3}^{3}, [1+1]\Sigma_{3}^{5}, \Sigma_{3}^{5}, \Sigma_{3}^{9}, \Sigma_{3}^{10}, \Sigma_{3}^{24}, [2]\Sigma_{3}^{36}, \Sigma_{3}^{3}, [89]\Sigma_{4}$
	$\Sigma_{\frac{3}{2}}^{6}$	107.485226	8	$\Sigma_{2}^{1}, \Sigma_{2}^{3}, [2]\Sigma_{3}^{3}, [2+2]\Sigma_{3}^{10}, \Sigma_{3}^{12}, \Sigma_{3}^{24}, [2]\Sigma_{3}^{28}, \Sigma_{3}^{22}, [94]\Sigma_{4}$
	Σ'_3	103.401973	2	$\Sigma_{2}^{1}, \Sigma_{2}^{2}, \Sigma_{2}^{3}, \Sigma_{2}^{1}, \Sigma_{2}^{2}, [1+1]\Sigma_{2}^{1}, [1+1+1+1]\Sigma_{3}^{6}, \Sigma_{1}^{11}, \Sigma_{2}^{13}, \Sigma_{2}^{13}, \Sigma_{2}^{13}, \Sigma_{3}^{13}, \Sigma_{3}^{13}, [87]\Sigma_{4}$
	Σ_3°	98.307538	2	$\Sigma_{2}^{i}, \Sigma_{2}^{i}, \Sigma_{2}^{i}, \Sigma_{3}^{i}, \Sigma_{2}^{i}, [1+1+1)\Sigma_{3}^{i}, [1+1]\Sigma_{3}^{i}, \Sigma_{3}^{i}, \Sigma_{3}^{i}, \Sigma_{3}^{i}, \Sigma_{3}^{i}, \Sigma_{3}^{i}, [84]\Sigma_{4}$
	Σ_3 Σ^{10}	99.282678	8	$[2]\Sigma_2, \Sigma_2, [2]\Sigma_2, [2]\Sigma_2, \Sigma_3, [2]\Sigma_3, \Sigma_3, [88]\Sigma_4$
	Σ_{3}^{10} Σ_{3}^{11}	99.311/30	4	$[1 + 1]\Sigma_2, \Sigma_2, \Sigma_3, \Sigma_3, [1 + 1]\Sigma_3, \Sigma_3, [1 + 1]\Sigma_3^*, \Sigma_3^*, [8]\Sigma_4$
	Σ_{3} Σ^{12}	109.4/101/	0 16	L_2 , $[2]L_2$, $[2]L_3$, $[4]L_3$, $[2]L_3$, L_2 , $[2]L_3$, $[2]L_3$, $[2]L_3$, $[2]L_4$, $[3\pi]$
	Σ_{3}^{13}	95 226124	4	$[2]_{22}, 2_2, [2]_{22}, [2]_{23}, [3]_{23}, [2]_{23}, [2]_{23}, [2]_{23}, [2]_{24}$
	Σ_{2}^{14}	98.258158	8	Σ_2 , $[2]\Sigma_2$, $[2]\Sigma_3$, $[2]\Sigma_3$, $[2]\Sigma_3$, $[2]\Sigma_3$, $[2]\Sigma_3$, $[2]\Sigma_3$, $[2]\Sigma_4$, $[2]\Sigma_4$
	Σ_{2}^{3}	108.550026	8	2_2 , $(-1)_2$, $(-1)_3$, $(-1)_3$, $(-1)_2$, $(-1)_3$, $(-1)_4$
	Σ_{2}^{16}	94.214427	4	$\Sigma_{2,1}^{2}$ [+ 1] $\Sigma_{2,1}^{2}$ [1 + 2] $\Sigma_{1,0}^{1,0}$ [1 + 1] $\Sigma_{2,1}^{3,0}$ [2] $\Sigma_{2,1}^{3,0}$ $\Sigma_{2,1}^{3,0}$ $\Sigma_{2,1}^{3,0}$ [2] $\Sigma_{2,1}^{3,0}$ [7] $\Sigma_{4,1}$
	$\Sigma_3^{\frac{3}{17}}$	96.285460	4	$\Sigma_{2,1}^2$ [2] $\Sigma_{2,1}^5$ [2] $\Sigma_{2,1}^{17}$ [2] $\Sigma_{2,1}^{18}$ [2] $\Sigma_{2,1}^{21}$ [2] $\Sigma_{2,2}^{23}$ [2] $\Sigma_{2,3}^{20}$ [7] $\Sigma_{2,4}^{20}$
	Σ_3^{18}	98.321970	4	$[1+1]\Sigma_{2}^{2}, \Sigma_{5}^{5}, \Sigma_{4}^{15}, [1+1]\Sigma_{4}^{16}, [2]\Sigma_{4}^{17}, \Sigma_{3}^{18}, \Sigma_{3}^{20}, [1+1]\Sigma_{4}^{21}, [2]\Sigma_{2}^{23}, \Sigma_{3}^{26}, [2]\Sigma_{3}^{20}, [81]\Sigma_{4}$
	Σ_3^{19}	112.567544	4	$\Sigma_2^2, \Sigma_3^3, \Sigma_4^2, [2]\Sigma_3^7, [2]\Sigma_3^8, \Sigma_3^{11}, \Sigma_3^{14}, \Sigma_3^{19}, [1+1]\Sigma_3^{22}, [2]\Sigma_3^{25}, \Sigma_3^{11}, \Sigma_3^{23}, \Sigma_3^{24}, \Sigma_3^{27}, \Sigma_4^{11}, [93]\Sigma_4$
	Σ_3^{20}	103.395491	4	$\Sigma_2^2, \Sigma_2^4, \Sigma_5^5, \Sigma_3^{15}, \Sigma_3^{16}, [1+1]\Sigma_3^{18}, \Sigma_3^{20}, \Sigma_3^{21}, [2]\Sigma_3^{23}, \Sigma_3^{26}, [2]\Sigma_3^{28}, \Sigma_3^{29}, [2]\Sigma_3^{30}, \Sigma_3^{34}, \Sigma_3^{43}, [84]\Sigma_4$
	Σ_{3}^{21}	103.387689	8	$[2]\Sigma_{2}^{2},]\Sigma_{2}^{4}, [4]\Sigma_{3}^{17}, [2+2]\Sigma_{3}^{18}, [2]\Sigma_{3}^{20}, [2]\Sigma_{3}^{21}, [2]\Sigma_{3}^{28}, \Sigma_{3}^{29}, [2]\Sigma_{3}^{51}, [83]\Sigma_{4}$
	Σ_{3}^{22}	108.531296	4	$\Sigma_{2}^{\circ}, \Sigma_{2}^{\circ}, \Sigma_{2}^{\circ}, [2]\Sigma_{1}^{\circ}, [2]\Sigma_{2}^{\circ}, [1+1]\Sigma_{2}^{\circ}, [1+1]\Sigma_{1}^{\circ}, \Sigma_{2}^{\circ}, [2]\Sigma_{2}^{\circ}, \Sigma_{2}^{\circ}, \Sigma_{3}^{\circ}, \Sigma$
	Σ_{3}^{25}	99.343145	4	$[2]\Sigma_{2}^{*}, \Sigma_{2}^{*}, [2]\Sigma_{4}^{*}, [2]\Sigma_{4}^{*}, [2]\Sigma_{4}^{*}, [2]\Sigma_{3}^{*}, [2]\Sigma_{3}^{*}, [2]\Sigma_{3}^{*}, [2]\Sigma_{3}^{*}, \Sigma_{3}^{*}, [81]\Sigma_{4}$
	Σ_{3}^{24} Σ_{5}^{25}	114.572071	16	$[2]Z_2, Z_2, [2]Z_3, [4]Z_3, [4]Z_2, [4]Z_3^2, [2]Z_3^2, [2]Z_3^2, [95]Z_4$
	Σ_{3}^{20} Σ_{3}^{20}	104.30/039	4	Σ_2 , $[2]\Sigma_2$, $[2]\Sigma_3$, $[2]\Sigma_3^*$, $[2]\Sigma_3^*$, $[2]\Sigma_3^*$, Σ_3^* , $[2]\Sigma_3^*$, $[2]\Sigma_3^*$, $[30]\Sigma_4$ Σ_4^4 (a) Σ_5^4 (a) Σ_5^4 (a) Σ_5^{10} (a) Σ_5^{10} (a) Σ_5^{10} (a) Σ_5^{10}
	Σ_{3}^{27}	98.293300 111 /0080/	0 16	$\mathcal{L}_2, [2]\mathcal{L}_2, [2]\mathcal{L}_3, [2]\mathcal{L}_3, [2]\mathcal{L}_3, [2]\mathcal{L}_3, [2]\mathcal{L}_3, \mathcal{L}_3, [4]\mathcal{L}_3, [00]\mathcal{L}_4$
	Σ_{3}^{28}	99 298816	4	$[2]_{22}, 2_2, [7]_{23}, [7]_{23}, [7]_{23}, [2]_{23}, [2]_{23}, [2]_{23}, [2]_{23}, [2]_{23}, [2]_{23}, [0]_{24}$
	Σ_{2}^{29}	113.641446	24	Σ_2^* (1) Σ_2^* (6) Σ_2^{01} (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
	Σ_{2}^{30}	90.184843	4	$[2 + 1]^{5}, [2]^{-1}, [2]^{1}, [2]^{1}, [2]^{5}, [2]^{5},,,,,,,, .$
	Σ_3^{31}	86.61862	4	$\Sigma_{2}^{6}, \Sigma_{3}^{19}, \Sigma_{3}^{24}, [2]\Sigma_{3}^{26}, \Sigma_{3}^{27}, \Sigma_{3}^{28}, \Sigma_{3}^{25}, \Sigma_{3}^{26}, [77]\Sigma_{4}$
	Σ_3^{32}	86.59029	4	$\Sigma_{2,1}^{6}[2]\Sigma_{3,3}^{3,7},\Sigma_{3,7}^{1,7},\Sigma_{3,1}^{1,1},\Sigma_{3,5}^{5,6},\Sigma_{3,7}^{5,7},\Sigma_{3,8}^{1,9},\Sigma_{3,8}^{3,8},[77]\Sigma_{4}$
	$\Sigma_3^{\overline{3}3}$	78.36807	2	$\Sigma_{2}^{6}, \Sigma_{3}^{7}, \Sigma_{3}^{25}, \Sigma_{3}^{32}, \Sigma_{3}^{33}, \Sigma_{3}^{36}, \Sigma_{3}^{37}, [71]\Sigma_{4}$
	Σ_3^{34}	84.57367	4	$\Sigma_{2}^{6}, \Sigma_{2}^{19}, \Sigma_{2}^{30}, [2]\Sigma_{3}^{40}, \Sigma_{3}^{41}, [1+1]\Sigma_{3}^{43}, \Sigma_{5}^{51}, [75]\Sigma_{4}$
	Σ_{3}^{35}	90.79939	8	$\Sigma_{2}^{6}, \Sigma_{2}^{24}, \Sigma_{3}^{22}, \Sigma_{3}^{35}, [2]\Sigma_{3}^{39}, [1+1]\Sigma_{4}^{42}, \Sigma_{3}^{22}, [81]\Sigma_{4}$
	Σ_{3}^{50}	78.36807	2	$\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j$
	Σ_{3}^{57} Σ_{38}^{38}	86.61862	4	$\Sigma_2, \Sigma_3^*, \Sigma_3^*, \Sigma_3^*, \Sigma_3^*, [2]\Sigma_3^*, \Sigma_3^*, [2]\Sigma_3^*, \Sigma_3^*, [2]\Sigma_4$
	Σ_{3}^{39}	80.37313	4	$L_2, L_3^*, L_3^*, [2]L_3^*, L_3^*, L_3^*, L_3^*, [76]L_4$ $\nabla^6 \nabla^5 \nabla^5 \nabla^{15} \nabla^{35} (1+1)\nabla^{35} \nabla^{42} [76]\nabla^7$
	Σ_{3}^{40}	73 25013	2	$\mathcal{L}_{2}, \mathcal{L}_{3}, \mathcal{L}_{3}, \mathcal{L}_{3}, [1+1]\mathcal{L}_{3}, \mathcal{L}_{3}, [10]\mathcal{L}_{4}$ $\mathcal{S}^{6}, \mathcal{S}^{2}, \mathcal{S}^{28}, \mathcal{S}^{44}, [1+1]\mathcal{L}^{40}, \mathcal{S}^{41}, \mathcal{S}^{51}, [6d]\Sigma.$
	Σ_{2}^{3}	89.74566	4	2_{2} , 2_{3} , 2_{3} , 2_{3} , 2_{3} , 1_{1} , 1_{1} , 2_{3} , 2_{3} , 2_{3} , (0^{+}) , 2_{4} , (0^{+}) , 2_{5} , (0^{+}) ,
	Σ_{2}^{42}	89.73349	8	$\Sigma_{2}^{0}, \Sigma_{2}^{0}, \Sigma_{2}^{23}, [12]_{24}^{34}, [1+1]_{25}^{53}, [1+1]_{25}^{52}, [80]\Sigma_{4}$
	Σ_3^{33}	84.57367	4	$\Sigma_{2}^{5}, \Sigma_{2}^{30}, \Sigma_{2}^{32}, [1+1]\Sigma_{3}^{34}, [2]\Sigma_{4}^{40}, \Sigma_{4}^{41}, \Sigma_{5}^{51}, [75]\Sigma_{4}$
	Σ_3^{44}	113.559629	32	$\Sigma_{2}^{1}, [2]\Sigma_{2}^{3}, [2]\Sigma_{4}^{44}, [4]\Sigma_{3}^{50}, [104]\Sigma_{4}$
	Σ_3^{45}	93.276584	8	$\Sigma_{2}^{2}, [2]\Sigma_{2}^{5}, [2+2]\Sigma_{3}^{45}, [2]\Sigma_{3}^{46}, [2]\Sigma_{3}^{47}, [2+2+4]\Sigma_{3}^{49}, [74]\Sigma_{4}$
	Σ_3^{46}	99.399178	24	$[2]\Sigma_{2}^{2}, \Sigma_{2}^{4}, [6]\Sigma_{3}^{45}, [1+2]\Sigma_{3}^{46}, [2]\Sigma_{3}^{47}, \Sigma_{3}^{48}, [3]\Sigma_{3}^{49}, [81]\Sigma_{4}$
	Σ_{3}^{47}	99.417350	72	$[3]\Sigma_{2}^{2}, [9]\Sigma_{3}^{43}, [6]\Sigma_{3}^{46}, [81]\Sigma_{4}$
	Σ_{3}^{48}	102.398634	144	$[3]\Sigma_{2}^{*}, [6]\Sigma_{3}^{*0}, [9]\Sigma_{3}^{*0}, [84]\Sigma_{4}$
	Σ_{3}^{49}	96.338198	16	$\Sigma_{2}^{*}, [2]\Sigma_{2}^{*}, [4+4]\Sigma_{3}^{*}, [2]\Sigma_{3}^{*0}, \Sigma_{3}^{*0}, [2+2]\Sigma_{3}^{*9}, [78]\Sigma_{4}$
	Σ_{3}^{50} Σ_{51}^{51}	89.80/19	8	$\Sigma_{2}^{\circ}, \Sigma_{3}^{\circ}, \Sigma_{3}^{\circ}, \Sigma_{3}^{\circ}, \Sigma_{3}^{\circ}, \Sigma_{3}^{\circ}, [83]\Sigma_{4}$ $\Sigma_{2}^{6}, \Sigma_{2}^{21}, \Sigma_{2}^{22}, \Sigma_{3}^{24}, [0]\Sigma_{4}^{41}, \Sigma_{4}^{43}, \Sigma_{2}^{51}, [70]\Sigma_{4}^{51}$
	Σ_{3}^{52}	81.41301 83.25422	4 Q	$\mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_3, \mathcal{L}_3, [2]\mathcal{L}_3^{-}, \mathcal{L}_3^{-}, \mathcal{L}_3^{-}, [2]\mathcal{L}_4$ $\Sigma^{12}, \Sigma^{27}, \Sigma^{35}, [1+1]\Sigma^{42}, \Sigma^{52}, [77]\Sigma$
	Σ^{53}	03.33433 73 14453	0 8	
	Σ^{54}	73.14433	0 4	$\lfloor 2 \rfloor \omega_3, \lfloor 2 \rfloor \omega_3, \lfloor 2 \rfloor \omega_3, \lfloor 0 / \rfloor \omega_4$ $\Sigma^{37} [1 + 1] \Sigma^{41} \Sigma^{53} [67] \Sigma.$
	\sum_{55}^{3}	78.28445	16	$[2]\Sigma_{23}^{55}$ $[2]\Sigma_{20}^{50}$ $[2+2]\Sigma_{20}^{58}$ $[70]\Sigma_{4}$
	Σ_{2}^{56}	69.13979	8	$[2]\Sigma_{3}^{31}, [2]\Sigma_{3}^{32}, [2]\Sigma_{3}^{57}, [63]\Sigma_{4}$
	$\Sigma_{3}^{\frac{2}{57}}$	68.12463	4	$\Sigma_3^{56}, \Sigma_3^{38}, \Sigma_3^{32}, \Sigma_3^{37}, [64]\Sigma_4$
	Σ_3^{58}	75.21855	8	$\Sigma_{3}^{55}, \Sigma_{4}^{52}, \Sigma_{3}^{50}, [1+1]\Sigma_{3}^{55}, [70]\Sigma_{4}$

Table 3 Σ classes for levels 21–18 in E^6 .

S	Class	Subcone	Types	Order	Neighbours
21	Σ_{21}	21.21	1	10080	$[21]\Sigma_{20}$
20	Σ_{20}	21.21	1	480	$\Sigma_{21}, [10]\Sigma_{19}^1, [10]\Sigma_{19}^2$
19	$\Sigma_{19}^{\overline{1}}$	25.22	1/2	48	$[2]\Sigma_{20}, [8]\Sigma_{18}^1, [12]\Sigma_{18}^2, [3]\Sigma_{18}^3$
	$\Sigma_{19}^{\hat{2}}$	21.21	1	48	$\Sigma_{20}, \Sigma_{19}^2, \Sigma_{19}^3, [4]\Sigma_{18}^1, [6]\Sigma_{18}^2, [4]\Sigma_{18}^4, [4]\Sigma_{18}^5$
	Σ_{19}^{3}	21.21	1	96	$[2]\Sigma_{19}^2, \Sigma_{18}^6, [6]\Sigma_{18}^7, [8]\Sigma_{18}^8, [4]\Sigma_{18}^9$
18	$\Sigma_{18}^{\hat{1}}$	21.21	1	12	$\Sigma_{19}^1, \Sigma_{19}^2, \Sigma_{18}^1, \Sigma_{18}^{10}, [17]\Sigma_{17}$
	Σ_{18}^2	25.23	3/3	8	$\Sigma_{19}^{\hat{1}}, \Sigma_{19}^{\hat{2}}, \Sigma_{18}^{\hat{2}}, \Sigma_{18}^{\hat{7}}, [21]\Sigma_{17}$
	Σ_{18}^{3}	33.25	2/12	16	$[3]\Sigma_{19}^1, [30]\Sigma_{17}$
	Σ_{18}^{40}	25.22	2/2	24	$[2]\Sigma_{19}^2, [2]\Sigma_{18}^5, [2]\Sigma_{18}^8, [19]\Sigma_{17}$
	Σ_{18}^{5}	21.21	1	24	$[2]\Sigma_{19}^2, [2]\Sigma_{18}^4, \Sigma_{18}^{11}, [16]\Sigma_{17}$
	Σ_{18}^{6}	21.21	1	96	$\Sigma_{19}^3, [2]\Sigma_{18}^6, [18]\Sigma_{17}$
	Σ_{18}^{7}	27.24	4/5	16	$\Sigma_{19}^3, [2]\Sigma_{18}^2, [24]\Sigma_{17}$
	Σ_{18}^{8}	21.21	1	12	$\Sigma_{19}^3, \Sigma_{18}^4, \Sigma_{18}^{12}, [19]\Sigma_{17}$
	Σ_{18}^9	21.21	1	24	$\Sigma_{19}^3, \Sigma_{18}^{13}, [19]\Sigma_{17}$
	Σ_{18}^{10}	21.21	1	24	$[2]\Sigma_{18}^1, \Sigma_{18}^{12}, [18]\Sigma_{17}$
	Σ_{18}^{11}	21.21	1	24	$\Sigma_{18}^5, [2]\Sigma_{18}^{13}, [18]\Sigma_{17}$
	Σ_{18}^{12}	21.21	1	24	$[2]\Sigma_{18}^8, \Sigma_{18}^{10}, [18]\Sigma_{17}$
	Σ_{18}^{13}	21.21	1	12	$\Sigma_{18}^9, \Sigma_{18}^{11}, \Sigma_{18}^{14}, [18]\Sigma_{17}$
	Σ_{18}^{14}	21.21	1	24	$[2]\Sigma_{18}^{13}, \Sigma_{18}^{15}, [18]\Sigma_{17}$
	Σ_{18}^{15}	21.21	1	72	$[3]\Sigma_{18}^{14}, [18]\Sigma_{17}$

Step S4: For each Σ_s obtained, we proceed analogously to steps S1 to S3 in order to get further Σ_s . For each new Σ_s we have to check their equivalence:

 Σ_s^k and Σ_s^l are arithmetically equivalent and belong to the same equivalence class $\mathcal{E}_{\Sigma_s^k}$ if there exists $A \in GL_d(\mathbb{Z})$ such that for any $Q_i \in \Sigma_s^l$ it holds that

$$\mathsf{Q}_i = \mathsf{A}\mathsf{Q}_i\mathsf{A}^t \in \Sigma_s^k. \tag{10}$$

Because $GL_d(\mathbb{Z})$ is of infinite order, the above equation is not practicable. However, if optimal bases are admitted to the forms Q only, then the number of transformations A that have to be taken into account becomes finite. It was discovered for every Σ_s at maximal path length 5 from Σ_0 (see Fig. 1) that it is sufficient to consider $A \in \mathcal{G}_{E_6^*}$ only, in order to verify equivalence. If equivalence is proved for any Q_j then it holds for all $Q \in \Sigma_s^l$.

Alternatively, the combinatorial equivalence of parallelohedra may be compared:

 Σ_s^k and Σ_s^l are equivalent and belong to the same equivalence class if there exist $Q_i \in \Sigma_s^k$ and $Q_i \in \Sigma_s^l$ such that

$$\mathsf{P}(\mathsf{Q}_i)^{\text{comb}}_{\simeq} \mathsf{P}(\mathsf{Q}_i). \tag{11}$$

The latter procedure requires a sufficiently large number of Φ cones to be determined in order to find at least one equivalent pair.

Analogously, using the procedures described in steps S1 to S4 the Σ_s cones, s = 21, 20, 19, 18, were successively determined starting with Σ_{21} as a representative of its class $\mathcal{E}_{\Sigma_{21}}$. Recall that Σ_{21} has 21 walls $W_i^{\Sigma_{21}}$, $i = 1, \dots, 21$, which all are equivalent under the group $\mathcal{G}_{A_6^*}$ (see Engel, 2019).

3. Results

In Table 2 are given the Σ_s classes, s = 0, 1, 2, 3, under the general linear group $GL_d(\mathbb{Z})$. Each equivalence class $\mathcal{E}_{\Sigma_s^i}$ is

given by its representative Σ_s^i . $\Sigma_s^i(Q)$ is chosen such that Q becomes optimal. Under the heading 's' is given the number of closed zones. Under the heading 'Subcone' is stated the number of walls of Σ_s^i . In cases where the complete Σ_s cone was calculated, the numbers of walls and edges are indicated

Figure 2 Shortest paths among the Σ_s classes for levels s = 21-18 in E^6 .

as $N_{\rm w}$ and $N_{\rm e}$, respectively. Under the heading 'Order' is given the order of the induced symmetry under $\mathcal{G}_{E_6^*}$. Under the heading 'Neighbours' are stated the neighbouring Σ_s^i , each of them preceded, in brackets, by the number of equivalent subcones under the group $\mathcal{G}_{\Sigma_s^i}$. If more than one number is given, it means that they are equivalent under $\mathcal{G}_{E_6^*}$. Remarkably, Σ_r^i has neighbours with s = r - 1, r, r + 1 only. Note that Σ_4 cones were not determined and the preceding number gives an upper bound for the number of equivalent subcones only. In Fig. 1 are drawn the shortest paths from Σ_0 to each other Σ_s^i .

In Table 3 are given the Σ_s classes, s = 21, 20, 19, 18. Under the heading 'Subcone' are given the numbers of walls N_w and edges N_e . Most of the cones are simple with Φ and Σ cones identical. In cases where the cone is not simple, two numbers are shown as '*a/b*' under the heading 'Types', where '*a*' indicates the number of Φ types and '*b*' gives the total number of Φ cones in Σ_s^i . The numbers of Φ types for s = 21, 20, 19, 18 correspond to the numbers given by Baburin & Engel (2013). All these Φ types correspond to principal primitive parallelohedra. Under the heading 'Order' is given the order of the induced symmetry under $\mathcal{G}_{A_b^*}$. Under the heading 'Neighbours' are listed the neighbouring Σ_s^i which are preceded, in brackets, by the number of equivalent types under the group $\mathcal{G}_{\Sigma_s^i}$. Note that the Σ_{17} cones were not determined and the preceding number gives an upper bound for the number of equivalent types only. In Fig. 2 are drawn the shortest paths from Σ_{21} to each other Σ_s^i .

References

Baburin, I. A. & Engel, P. (2013). Acta Cryst. A69, 510–516. Engel, P. (2015). Cryst. Res. Technol. 50, 929–943. Engel, P. (2019). Acta Cryst. A75, 574–583. Ryshkov, S. S. (1973). Sov. Math. Dokl. 14, 1314–1318.