
694 https://doi.org/10.1107/S2053273319010593 Acta Cryst. (2019). A75, 694–704

research papers

XGANDALF – extended gradient descent algorithm
for lattice finding

Yaroslav Gevorkov,a,b* Oleksandr Yefanov,a Anton Barty,a Thomas A. White,a

Valerio Mariani,a Wolfgang Brehm,a Aleksandra Tolstikova,a Rolf-Rainer Grigatb

and Henry N. Chapmana,c,d

aCenter for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg,

Germany, bInstitute of Vision Systems, Hamburg University of Technology, Harburger Schloßstraße 20, 21079 Hamburg,

Germany, cDepartment of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany, and dThe

Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.

*Correspondence e-mail: yaroslav.gevorkov@desy.de

Serial crystallography records still diffraction patterns from single, randomly

oriented crystals, then merges data from hundreds or thousands of them to form

a complete data set. To process the data, the diffraction patterns must first be

indexed, equivalent to determining the orientation of each crystal. A novel

automatic indexing algorithm is presented, which in tests usually gives

significantly higher indexing rates than alternative programs currently available

for this task. The algorithm does not require prior knowledge of the lattice

parameters but can make use of that information if provided, and also allows

indexing of diffraction patterns generated by several crystals in the beam. Cases

with a small number of Bragg spots per pattern appear to particularly benefit

from the new approach. The algorithm has been implemented and optimized

for fast execution, making it suitable for real-time feedback during serial

crystallography experiments. It is implemented in an open-source C++ library

and distributed under the LGPLv3 licence. An interface to it has been added to

the CrystFEL software suite.

1. Introduction

Serial crystallography (SX) experiments (Chapman et al.,

2011; Schlichting, 2015) record a sequence of diffraction

patterns, each from a different crystal in a random and

unknown orientation. Measurements from hundreds or many

thousands of crystals are used to build up a complete data set.

Experiments usually aim to measure not more than one crystal

per diffraction pattern, although the contribution of multiple

crystals in a single diffraction measurement is not uncommon.

The difference in the measurement approach compared with

conventional rotation crystallography has necessitated the

development of new software for processing SX data, with

several software packages now available including CrystFEL

(White et al., 2012), DIALS (Winter et al., 2018) and nXDS

(Kabsch, 2014). The main steps in analysis involve Bragg spot

detection, indexing diffraction patterns, integration of

detector counts in Bragg reflections, and merging of data from

all individual crystals into a common data set. A key step is

indexing the Bragg spots observed in a pattern, which is

required to integrate and scale Bragg intensities into a

common lattice and to predict the locations of other Bragg

spots to be included in this merging process. Several

automatic indexing algorithms have been developed and

implemented in widely used software like MOSFLM (Powell,

1999), XDS (Kabsch, 1993, 2010), DirAx (Duisenberg, 1992)

ISSN 2053-2733

Received 29 May 2019

Accepted 26 July 2019

Edited by A. Altomare, Institute of

Crystallography - CNR, Bari, Italy

Keywords: indexing; XGANDALF; CrystFEL;

multiple lattices; serial crystallography.

http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273319010593&domain=pdf&date_stamp=2019-08-30


and LABELIT (Sauter & Zwart, 2009). Although originally

devised for rotation-series data, these algorithms are also

capable of indexing snapshot diffraction patterns. Other

algorithms have been devised specifically for snapshot data

(Ginn et al., 2016; Gildea et al., 2014).

In our SX experiments we often observe crystal diffraction

patterns which appear to correspond to crystal lattices but

nonetheless cannot be indexed by the existing approaches.

Even when several different indexing algorithms are applied

to each pattern, only a fraction of the frames can be indexed.

Patterns with small numbers of Bragg spots, large amounts of

background noise that lead to spurious peaks in the Bragg

peak detection stage, or with multiple overlapping crystal

diffraction patterns (‘multiple hits’) are particularly proble-

matic and often cannot be indexed by current algorithms. In

principle, it should be possible to index every diffraction

pattern provided that Bragg spot locations are consistent with

a true crystal diffraction pattern rather than spurious noise. It

thus appears advantageous to deviate from previous approa-

ches adapted from indexing rotation data and instead develop

an algorithm for the express purpose of indexing SX crystal

diffraction patterns. We set out to develop such a new and

computationally efficient algorithm for indexing SX crystal

diffraction patterns with the aim of maximizing the indexing

rate while being robust to outliers.

Indexing involves identifying the diffraction order of all

Bragg spots measured in a diffraction pattern, equivalent to

determining the crystal orientation. In most indexing algo-

rithms, the process begins by mapping the positions of Bragg

spots found on the detector to radiation scattering momentum

transfer vectors q in the three-dimensional (3D) reciprocal

space using prior information about the detector geometry

(including sample-to-detector distance) and the wavelength of

the incident beam. The resulting points in 3D reciprocal space

approximate the points of the reciprocal lattice, which is

initially unknown. We call these points ‘nodes’ to abstract the

problem from crystallographic indexing to the more general

problem of fitting a lattice to noisy locations. One possible

approach to indexing is to detect maxima in the Fourier

transform of the pattern of nodes (Steller et al., 1997). Such

maxima mark the directions with maximum periodic repeti-

tion, which can form the basis vectors of the wanted lattice.

This approach is taken in DIALS (Gildea et al., 2014) and

MOSFLM (Powell, 1999). The related DirAx algorithm finds

principal repeat directions by searching for frequently occur-

ring repeats perpendicular to triplets of nodes (Duisenberg,

1992). Another popular indexing approach is to search for

frequently occurring difference vectors between the nodes, as

is done in XDS (Kabsch, 2010) and TakeTwo (Ginn et al.,

2016). The FELIX indexer (Beyerlein et al., 2017) uses a

different approach which is to map the set of possible crystal

orientations that are consistent with particular Bragg spots to

lines in Rodrigues–Frank space to find a consensus orientation

for all peaks.

Our algorithm can be considered as a modified version of

the Fourier methods. To improve noise tolerance, we replace

the Fourier transform by a similar transform that uses periodic

basis functions combined with a non-linear weighting scheme.

To achieve fast execution, the algorithm employs a multi-step

heuristic, i.e. an approximate but efficient method, based on an

research papers

Acta Cryst. (2019). A75, 694–704 Yaroslav Gevorkov et al. � XGANDALF 695

Figure 1
Overall structure of the XGANDALF algorithm.



extended gradient approach to identify maxima in the trans-

formed pattern of nodes corresponding to points on the real-

space crystal lattice. The real-space lattice basis is then formed

from these maxima, while maximizing the number of the

observed nodes that are consistent with that basis choice and

minimizing the distances between those nodes and their

closest lattice point. An overview of the main steps of the

proposed algorithm is provided in Fig. 1.

We call our algorithm XGANDALF, eXtended GrAdieNt

Descent Algorithm for Lattice Finding.

2. Algorithm description

2.1. Overview

The indexing algorithm determines the Miller indices of a

number of observed Bragg peaks in a snapshot diffraction

pattern, given knowledge of the experiment geometry and

optionally the unit-cell parameters of the crystal. It consists of

the following key steps:

(i) Bragg spot locations on the detector are mapped to

positions in reciprocal space. We call the location of the

momentum transfer vector of a Bragg spot a node, to distin-

guish it from the exact reciprocal-lattice points, the locations

of which are initially unknown.

(ii) Each node in reciprocal space is used to define a set of

equidistant parallel planes in 3D real space, as shown in Fig. 2.

Intersections of parallel planes generated from different nodes

are solutions to the indexing problem. The rest of the algo-

rithm is devoted to finding these intersections in the presence

of noise, spurious peaks and multiple lattices.

(iii) Continuous ‘proximity functions’ based on distance to

each node’s parallel planes are defined and summed to create

a score function to find the points of intersection. Intersections

of planes become maxima of the score function, with the

continuous score function serving to suppress the effect of

experiment noise and inaccuracies. A series of progressively

sharper and steeper proximity functions are used with the

result that spurious nodes corresponding to falsely identified

Bragg peaks or reflections belonging to competing lattices are

removed from the set of Bragg reflections that are used to

generate the nodes.

(iv) A heuristic (a fast technique for finding approximate

solutions) is used to find maxima of the score function.

Sharper proximity functions require more computations to

find maxima, hence we choose more computationally efficient

proximity functions to reduce the search space early in the

computation. An extended gradient descent method is applied

to migrate the starting points to the maxima of the score

function and avoid otherwise slow convergence due to zigzag

optimization trajectories.

(v) The bases of the found lattices provide the indexing

solutions once the maxima of the score function have been

found. A refinement step is then performed to minimize the

mean Euclidean distance between the observed and predicted

nodes using a gradient descent approach.

2.2. Relation between nodes and the indexing solution

The Laue equations for a node q, the crystal lattice basis

vectors a, b, c, and the Miller indices h, k, l, are defined as

q � a ¼ h

q � b ¼ k

q � c ¼ l: ð1Þ

The nodes are the known observables, defined by the Bragg

spots and the experimental parameters. The basis as well as

the Miller indices need to be identified. Finding a solution to

the above equation is equivalent to finding three linear inde-

pendent solutions to the equation

q � t ¼ n j n 2 Z ð2Þ

with a lattice basis vector t. Enforcing all K nodes found in the

pattern to be on the reciprocal lattice by combining the nodes

q into a matrix Q yields the following over-determined system

of equations:

QTt ¼ n j Q 2 R3�K; n 2 ZK

, qk � t ¼ nk j 8k : k 2 ½1; 2; . . . ;K�; nk 2 Z: ð3Þ

Each node qk forms through equation (3) a series of equi-

distant parallel planes in the 3D space of t vectors distin-

guished and enumerated by the integers nk. These are the

planes of the real-space lattice of the crystal associated with

the node. Any point on any of the planes is a solution to the

equation formed by this node. The planes are orthogonal to qk

and their spacing is given by 1=kqkk. Different nodes form

different sets of real-space planes; their intersections corre-

spond to the real-space lattice, which are thus the points that

solve equation (3). In an equivalent two-dimensional (2D)

model, every node would form a series of equidistant parallel

lines, as depicted in Fig. 2.

To solve equation (3), three linearly independent vectors

must be found, where each vector points to one of the planes

of each and every node (that is, to their intersections). Under

real conditions, there are usually more than three nodes,

making the problem over-determined. However, due to noise,

the planes corresponding to these nodes will generally not all

696 Yaroslav Gevorkov et al. � XGANDALF Acta Cryst. (2019). A75, 694–704

research papers

Figure 2
Line series in real space (green and purple, right panel) generated by two
nodes a and b in the 2D reciprocal space (left). The distances between
adjacent parallel lines are given by the familiar reciprocal of the distance
of magnitude of the momentum transfer of the node. A third node
(aþ bþ noise, red) is shown, along with a corresponding set of lines in
the right panel, to show that in the presence of noise there usually are no
points where all sets of lines intersect.



intersect at common points in real space (see the red node in

Fig. 2), so an exact solution usually will not exist. The optimal

solution t for equation (3) is therefore one that minimizes

the average distance to one of the planes of each node. To

find this solution we introduce a score function defined as a

sum of proximity functions which themselves encapsulate the

distance of the assumed solution from these geometrical

planes.

2.3. Continuous proximity function for noise tolerance

Every node defines a series of real-space parallel planes

according to equation (3) and as sketched in Fig. 2 for the 2D

case. Since the nodes are assumed to be noisy, the locations of

the parallel planes also must be assumed to be noisy. This

implies that the best estimate of the lattice basis vectors t (the

optimal solution) might not exactly lie on the planes, but may

instead lie close to the planes. Thus we define a 3D real-space

proximity function c, that indicates how close a real-space

vector is to a plane. This function is chosen to equal its

maximum value at points on the planes, and is equal to its

minimum value at points equidistant between two planes. A

score function is then constructed for the entire arrangement

of nodes as a normalized weighted sum of proximity functions

given by

fðtÞ ¼
1

N

XN

k¼1

wk cðqk � tÞ: ð4Þ

The weighting wk can depend on the intensities of the nodes,

their norms, or other properties. The maxima of this score

function are the feasible solutions of equation (3),

corresponding to real-space lattice points. From these we

obtain three linearly independent vectors to describe that

lattice.

An example for the 2D case can be seen in Figs. 3 and 4.

Fig. 3 shows the interpolation of the lines in Fig. 2 using

proximity functions that vary linearly from their minimum to

maximum values. Fig. 4 shows the score function of a sample

arrangement of 13 nodes with this same choice of linear

proximity functions.

As mentioned above, the proximity function indicates

the distance from sets of parallel planes of equal spacing.

While it is defined in 3D real space, it is a function only

of distance along lines orthogonal to those planes. It is

reasonable to define the proximity function to equal 1 on

the planes, �1 midway between two planes, and to vary

monotonically between these values. Combining these

considerations, a proximity function of the following form

is reasonable:

cðq � tÞ ¼

1; if q � t ¼ m;m 2 Z

�1; if q � t ¼ m� 0:5;m 2 Z

monotonic in between:

8<
: ð5Þ

Many different functions are suitable for use as proximity

functions. The execution time and thus the complexity of the

function evaluation must be considered in its selection. The

proximity function is periodic with a period of 1, so it

can be defined in the interval [�0.5, 0.5] with

cðxÞ :¼ cðx� roundðxÞÞ. The following proximity functions

are available in a tool-kit for further exploration and

development of the program:

(a) c1ðxÞ ¼ cossð2�xÞ j s 2 f2n� 1 j n 2 Nþg.

(b) c2ðxÞ ¼ 1� 4jxj.

(c) c3ðxÞ ¼ 32x4 � 16x2 þ 1.

research papers

Acta Cryst. (2019). A75, 694–704 Yaroslav Gevorkov et al. � XGANDALF 697

Figure 4
Score function for a set of 13 nodes that were generated by adding noise
to the position of randomly chosen points on a lattice grid. For each node,
positions on the lines are assigned a proximity of 1 and positions in the
middle between two lines are assigned the proximity �1. The rest of the
proximity function for a single node is a linear interpolation of these
values. The score function is formed by the sum of the proximity functions
of each node.

Figure 3
Score function for the lines from vectors a and b in Fig. 2. For each node,
positions on the lines are assigned a proximity of 1 and positions in the
middle between two lines are assigned the proximity �1. The rest of the
proximity function for a single node is a linear interpolation of these
values. The score function is formed by the normalized sum of the
proximity functions of each node.



(d) c4ðxÞ ¼ �8x2 þ 1.

(e) c5ðxÞ ¼ �32x4 þ 1.

(f) c6ðxÞ ¼ �sgnðjxj � w=2Þ jw 2 ð0; 1Þ.

(g) c7ðxÞ ¼ 8ðjxj � 0:5Þ2 � 1.

(h) c8ðxÞ ¼ 2ð1� 2jxjÞs � 1 j s � 1.

The proximity functions are visualized in Fig. 5. In the

implemented heuristic we use only c1 and c8.

It can be noted that using cosð2�xÞ as a proximity function

turns the score function [equation (4)] into the real part of the

Fourier transform. Assuming that the geometry of the

experiment is accurately known, the locations of the reflec-

tions in reciprocal space are centrosymmetric and so, if

symmetrized, the Fourier transform of the arrangement of

reflections would indeed be real. That is, the score function

using c1ðxÞ with s ¼ 1 produces the Fourier transform of the

given arrangement of reflections. Such a score function is used

in the Fourier indexing methods, where lattice vectors are

found by searching for maxima in the Fourier transform of a

given arrangement of reflections. Our approach generalizes

the use of a Fourier transform to that of an arbitrary proximity

function. This extension provides a means to tune the proxi-

mity function to either achieve a greater noise tolerance (with

a narrowly peaked function) or larger convergence radius for

the search (with a broad function).

Not every Bragg spot found belongs to the same lattice.

There may be false positives in the peak finding algorithm

or peaks from different crystals in the same diffraction

pattern. Such spurious peaks should ideally have as little

impact as possible on the maxima of the score function.

Their contribution can be removed by introducing a toler-

ance parameter "> 0. Nodes that generate planes that are

too far away from the inspected vector are excluded from

the computation of the score function. This distance of

inclusion is given by ", so the smaller ", the more resistant the

score function is to spurious peaks. The drawback of this

method is that the score function can be discontinuous. The

resulting score function is given by

fðtÞ ¼

PN
k¼1 �ðqk � tÞwk cðqk � tÞPN

k¼1 �ðqk � tÞ
; ð6Þ

with

�ðqk � tÞ ¼
1 if jqk � t� roundðqk � tÞj � "
0 if jqk � t� roundðqk � tÞj>":

�
ð7Þ

The solution to the indexing problem requires finding maxima

of the score function. This is done by a local search in the 3D

real space of the t vectors, which we aim to carry out efficiently

to reduce computational time. The search must be started

from a diverse number of starting points to ensure that more

than one maximum is found. However, the search need only

be conducted within a volume of the real space which can

feasibly contain the real-space lattice vectors of the crystal. If

the lattice parameters are not known in advance, then this

volume can be restricted to a shell centred on the origin

ranging in radius from the minimum to maximum possible

lattice vector magnitudes, given reasonable assumptions. If the

lattice parameters are known, then this search volume can be

restricted considerably further, to spherical shells, each with a

mean radius given by each of the real-space lattice parameters,

as done by Gildea et al. (2014). The width of the shells is set to

a tolerance that is dependent on the uncertainty of the lattice

parameters.

The search is started simultaneously from a large number of

evenly spaced points within the search volume that later

migrate to the maxima of fðtÞ by a gradient descent approach.

A typical number of starting points is 50 000. We achieve a set

of starting points that are approximately uniformly separated

and distributed throughout the volume of the spherical shell

by first obtaining positions of points on a spherical surface that

are approximately equally spaced from each other. This is

done by minimizing a generalized electrostatic potential

energy of a system of charged particles (Semechko, 2015).

Since such computations can take a very long time, we use a

set of pre-computed distributions of points on the unit sphere.

This distribution is then scaled to several spherical surfaces

that span the desired search shell. The radial increment of

neighbouring surfaces is chosen to equal the average distance

of neighbouring points on the sphere. To avoid systematic

alignment of the points on each sphere, each point set is

rotated about the origin in a random way.

While in theory it is sufficient to find the primary lattice

vectors (i.e. the vectors of the reduced real-space lattice basis

with Miller indices 100, 010 and 001), in the presence of

spurious Bragg spots or multiple lattices we find that it is often

beneficial to also search for the lattice vectors with Miller

indices 110, 011 or 101. This is because spurious Bragg spots or

spots from other lattices can significantly diminish some peaks

in the score function. The use of additional lattice vectors adds

redundancy and allows one to handle cases where the peaks in

the score function belonging to the primary lattice basis

vectors of a lattice are not detected. This procedure increases

the execution time but improves the success rate of the

algorithm, and is therefore provided as an option in our

implementation of the algorithm.

Using even proximity functions cðq � tÞ, the score function

fðtÞ is centrosymmetric about the origin. We exploit this

symmetry which allows the use of only half of the starting

points.

698 Yaroslav Gevorkov et al. � XGANDALF Acta Cryst. (2019). A75, 694–704

research papers

Figure 5
Plotted proximity functions c1 (top) to c8 (bottom).



2.4. Gradient descent extension

We use an extended gradient descent method to let the

starting points migrate to the maxima of fðtÞ.1 Empirical

analysis shows that, for typical score functions fðtÞ that we

have employed, the gradient is often large at locations close to

the maximum (see Fig. 4). The ordinary gradient descent

method uses large step sizes for large gradients, which here is

counterproductive. Instead, we generate a step size using a

combination of the previous step length, the change in step

direction, the value of fðtÞ, the number of well-fitted nodes, a

parameter � (as it is used in the ordinary gradient descent to

regulate the relative step length), and clipping to a minimum

and maximum step size. The parameters for the choice of the

step size are empirically optimized and are not visible to the

user.

As with the ordinary gradient descent algorithm, the

problem occurs that convergence is often severely slowed

down by zigzag migration trajectories (Wang, 2008). A

common approach to overcome this problem is to use the

conjugate gradient method (Hestenes & Stiefel, 1952). Given

the known composition of our score function we instead use a

different method. For every step we check whether the

direction of the current step is nearly opposite that of the

previous step. If this is the case, a zigzag path is probable and

the current step direction is replaced by the sum of the unit-

length vector pointing in the current direction and the unit-

length vector pointing in the previous direction. This takes the

search in a direction almost orthogonal to the previous ones,

helping to overcome zigzag paths while being computationally

very cheap.

2.5. Heuristic algorithm for locating maxima in the score
function

The goal of the heuristic is to find peaks in the score

function, and hence probable lattice vectors, quickly and

precisely. A large radius of convergence is required, but at the

same time a very precise detection of the maxima is important.

We therefore use a custom, empirically tuned algorithm with a

multi-step design to home in on the maxima in stages. In this

method, the earlier stages use smoother proximity functions,

whereas in the later stages one with a sharper peak is used to

achieve a more precise determination of the maxima:

(i) Gradient descent: proximity function c1ðxÞ j s ¼ 1, score

function from equation (4), inverse radial weighting. [See Fig.

6(d) for visualization of the score function.]

The first stage is responsible for bringing the sampling

positions close to the peak maximum without getting stuck in

the local maxima. This is accomplished by using the Fourier

transform proximity function c1ðxÞ in conjunction with a

weighting of the nodes proportional to 1=kqkk
2. The radius-

dependent weighting ensures a smooth score function by

reducing weights of short-period proximity functions from

high-resolution Bragg peaks, that otherwise would cause many

local maxima. This stage is the most computationally

expensive one, since it contains many gradient descent steps

and operates on a large number of sampling points to ensure

capturing the peak within the radius of convergence.

(ii) Gradient descent: proximity function c1ðxÞ, score func-

tion from equation (6). [See Fig. 6(e) for visualization of the

score function.]

This and all subsequent stages bring the sampling points

closer to their corresponding local maximum. These stages use

the noise-tolerant and computationally expensive score func-

tion from equation (6), and unity weighting.

(iii) Gradient descent: proximity function c8ðxÞ j s ¼ 4,

score function from equation (6), few steps. [See Fig. 6(f) for

visualization of the score function.]

The third stage uses the very local and computationally

expensive proximity function c8ðxÞ j s ¼ 4. Using finer

research papers

Acta Cryst. (2019). A75, 694–704 Yaroslav Gevorkov et al. � XGANDALF 699

Figure 6
Score functions for a set of 13 simulated nodes that were generated by
adding noise to the position of randomly chosen points on a lattice grid.
For images (b)–(f) an additional seven spurious nodes were added, i.e.
nodes not lying on the lattice. (a) Proximity function c2, no spurious
nodes. (b) Proximity function c2. (c) Proximity function c1. (d) Proximity
function c2 with inverse radial weighting. (e) Proximity function c2 with
score function from equation (6). (f) Proximity function c8 j s ¼ 4 with
score function from equation (6).1 Strictly, we minimize the negative of the score function by gradient descent.



gradient descent steps, it is responsible to bring the sampling

points close enough to the maxima to be able to identify even

very sharp maxima by the score function evaluation at these

sampling points.

(iv) Sparse peak finding on the sampling points.

Only the 50 sampling points with the highest score function

evaluation in their respective local environment are kept. This

drastically reduces the number of sampling points.

(v) Gradient descent: proximity function c8ðxÞ j s ¼ 4, score

function from equation (6), many steps. [See Fig. 6(f) for

visualization of the score function.]

This last stage uses many fine gradient descent steps with

the local and computationally expensive proximity function

c8ðxÞ j s ¼ 4, and with the score function of equation (6). This

ensures that the sampling points migrate extremely close to

the maxima, yet maintains an affordable computational effort

due to the small number of sampling points used in this

stage.

The numbers of steps for each stage can be chosen by a flag

to the program.

A visualization of the employed score functions can be seen

in Fig. 6, which shows score functions for a set of 13 simulated

nodes that were generated by adding noise to the position of

randomly chosen points on a lattice grid. For images (b)–(f) an

additional seven spurious nodes were added, i.e. nodes not

lying on the lattice. Despite the noise in the positions of the

nodes, image (a) shows a high degree of periodicity. The

additional seven spurious peaks significantly diminish some of

the maxima in image (b). Image (c) shows slightly better

contrast than image (b) at the expense of a more computa-

tionally expensive proximity function. Image (d) has a high

radius of convergence for the gradient descent approach, but

does not provide exact peak locations. Case (e) provides more

accurate peak locations, but has a small convergence radius for

the gradient descent approach. Case (f) uses a computation-

ally expensive proximity function and suffers from a small

convergence radius, but provides better noise-suppression

capabilities and accurate peak locations.

2.6. Selection of lattice bases

Once the maxima of the score function have been found,

the bases of the found lattices can be formed. As a first step, all

possible lattice bases are selected that each correctly predict at

least five nodes. In theory, five nodes (given that they span the

R
3) are more than what is minimally required to define a

single lattice, but this increases the noise tolerance. The

selection of candidate bases is computationally expensive,

since there are N
3

� �
basis choices for N found peaks in the score

function. To reduce computation time, as a first step all those

vectors that predict less than five nodes are excluded. The next

steps check for a reasonably high determinant of the basis and

the number of correctly predicted nodes using two vectors and

afterwards using three vectors. If the lattice parameters are

known, the candidate lattices not fitting to these parameters

are excluded as well. Finally, the basis vectors are sorted by the

sum of each vector’s score function and the best 500 are kept.

Each kept candidate basis is reduced (to find the shortest

vectors) using an efficient algorithm described by Semaev

(2001). Afterwards, for each reduced basis the absolute defect

(mean distance between the nodes and their positions

predicted by the basis) and the relative defect (mean differ-

ence between the Miller indices of the nodes and the frac-

tional Miller indices of the predicted nodes) are computed.

From the 500 candidate lattices, 15 with the largest score

function evaluation and 50 with the smallest relative defects

are kept for the final stage.

In the final stage, the bases which best predict the nodes are

selected. For this, the candidate bases are sorted in descending

order by the number of nodes they correctly predict. Starting

with the basis predicting the most nodes, it is considered as

generating a true lattice if it either predicts at least five points

that were not predicted by any other basis or if it has signifi-

cantly smaller defects than a previously accepted basis. In the

latter case, the newly found basis replaces the previous one. To

avoid supercells in cases with unknown lattice parameters,

bases with smaller determinants are preferred.

XGANDALF thus can detect several lattices in a diffrac-

tion pattern in one pass. This allows fast data processing

despite the presence of several lattices in the pattern. If

processing time is not of concern, employing the delete-and-

retry technique (i.e. detect the strongest lattice in a pattern,

delete the corresponding peaks and retry the indexing) can

lead to better results. However, only this latter method is

implemented in the interface to CrystFEL 0.8.0 (White et al.,

2012).

2.7. Refinement

After the identification of the bases, a refinement step is

performed. The lattice bases are refined to minimize the mean

Euclidean distance between the nodes and the predicted

nodes using a gradient descent approach. Only the nodes close

to the predicted nodes are used for refinement to improve

noise tolerance.

3. Evaluation of the algorithm

3.1. Indexing rate

Indexing solutions of measured diffraction patterns are

often tested for correctness by comparing the locations of

Bragg spots predicted by the lattice basis with those of the

observed spots. If the pattern contains a large number of

Bragg spots (say, 50) then this test usually yields a reliable

estimate of correctness. If, on the other hand, the number of

found spots is small then there can be several incorrect

orientations of a crystal that predict the found spots, often

giving a false indication of correctness. A reliable evaluation

of the algorithm to index patterns as a function of the number

of Bragg spots therefore requires ground truths, but ones

which are as close as possible to real data. We generated our

ground truths from a set of diffraction patterns which all had

large numbers of Bragg spots, and as such were reliably

indexed using MOSFLM (giving more than 50 correctly

700 Yaroslav Gevorkov et al. � XGANDALF Acta Cryst. (2019). A75, 694–704

research papers



predicted peaks). The patterns were chosen from serial

femtosecond crystallography data of crystals from serotonin

receptor 5-HT2B bound to ergotamine, publicly available from

the CXIDB (Maia, 2012) entry 21 (Liu et al., 2013). Patterns

with fewer spots were created by simply deleting spots from

these previously indexed patterns. This way we obtained

realistic patterns with five to 50 spots, all with a known crystal

orientation. We created two sets of patterns: one with the

spots randomly distributed throughout the pattern, and the

other with only low-resolution spots generated by removing

Bragg spots from the original patterns at high scattering

angles.

To compare our indexing algorithm with others, the patterns

from the two data sets were indexed using the indexamajig

program from CrystFEL (White et al., 2012). The use of

CrystFEL allows a fair comparison of several (although not

all) indexing algorithms with limited effort. The employed

indexers are MOSFLM (Powell, 1999), XDS (Kabsch, 1993,

2010), DirAx (Duisenberg, 1992), TakeTwo (Ginn et al., 2016),

and two different modes of XGANDALF. One of these modes

implemented many starting points and many gradient descent

steps while the other mode used fewer starting points and

fewer gradient descent steps. These are labelled, respectively,

‘XGANDALF_precise’ and ‘XGANDALF_fast’ in Fig. 7. In

all cases the lattice parameters were specified to the indexing

algorithm. No additional tuning of the indexing algorithms

was performed. The indexing results were compared with the

ground truths obtained from the original indexing of the

patterns with MOSFLM. This comparison was accomplished

by applying the Kabsch algorithm (Kabsch, 1976) to compute

the angle needed to rotate one lattice basis onto another.

Indexing solutions that required rotations of no more than 3	

to bring them into coincidence with the ground-truth solution

of MOSFLM (prior to removing spots) were counted as

correct. For this test, all CrystFEL optimizations were turned

off by using the options --no-retry --no-refine --no-

check-cell. Only one indexing solution per pattern was

accepted (using the option --no-multi). Although 3	 is a

significant deviation, this value is usually good enough for the

subsequent refinement. For patterns with few peaks and a

significant amount of noise, large deviations are anyway

unavoidable. The results of the comparison are displayed in

Fig. 7.

In a previous paper we remarked that XDS had a low

success rate when indexing snapshot diffraction patterns

(White, 2019), but due to parameter tuning and other

improvements in the interface between CrystFEL and XDS,

its success rate has been greatly improved with CrystFEL

version 0.8.0 to be comparable with other algorithms, as

indicated in Fig. 7.

The most practical test of indexing is the quality of the final

merged data, as detailed in Section 3.3. Before that data can

be merged, the full data set must be indexed. We used

diffraction of beta-lactamase crystals from CXIDB ID 83

(Wiedorn et al., 2018) for comparison. This data set consists of

a total of 14 445 patterns identified as containing crystal

diffraction, which were indexed by a variety of algorithms –

the results are summarized in Tables 1 and 2. No additional

tuning of the indexing algorithms was performed. Most

research papers

Acta Cryst. (2019). A75, 694–704 Yaroslav Gevorkov et al. � XGANDALF 701

Figure 7
Comparison of the success rates of algorithms in indexing patterns as a
function of the numbers of Bragg spots N in those patterns. The patterns
were generated by selecting N Bragg spots from real diffraction patterns:
(a) the N low-resolution Bragg spots were selected, (b) random N Bragg
spots were selected. XGANDALF was used with ‘precise’ and with ‘fast’
settings. XGANDALF outperforms the other tested indexers over the
whole range of Bragg spot counts in both (a) and (b).

Table 1
Numbers of crystals of CXIDB ID 83 indexed without prior unit-cell
knowledge.

Indexer (no prior
cell information)

Total
indexed

Indexed with
correct unit cell

DirAx 28 832 3553
MOSFLM 18 346 11 742
XGANDALF fast mode 26 040 14 631
XGANDALF precise mode 24 748 10 899



patterns contained multiple hits, resulting in a total number of

indexed crystals that for many indexers was higher than the

number of patterns. Based on the experiment setup, the

quality of the prediction and the quality of the merge results, it

is most likely that these patterns really arose from multiple

crystals. Although the unit-cell parameters were known,

the indexing was processed in one case without providing

that knowledge (only MOSFLM, DirAx and XGANDALF

provided reasonably high indexing rates) and another with

these parameters provided. Table 1 shows results for the case

where the unit-cell parameters were not provided to the

algorithms. In this case the indexers often report unit cells that

differ from the known ones. For a fair comparison, the

numbers of correctly identified unit cells are also listed. Table 2

presents the case using known unit-cell parameters.

As seen from Tables 1 and 2, XGANDALF outperforms all

the other state-of-the-art indexers with and without prior cell

information. Surprisingly, without prior cell information

XGANDALF performs better in fast mode than in precise

mode for this data set. It is likely that in the ‘precise’ mode

more local maxima are found, making the choice for the basis

selection algorithm more difficult.

3.2. Execution time

For comparison of execution time, we took 1000 random

patterns from the same data set of CXIDB ID 21 as described

above in Section 3.1 and indexed them in the same fashion

using the CrystFEL software suite on an Intel E5-2698 v4

CPU. Here, however, we did not remove spots from any of the

patterns, nor did we select patterns only with a high number of

Bragg peaks to create ground truths. The average number of

Bragg peaks per pattern was 49. As before, the test was carried

out for the two modes of XGANDALF – ‘XGANDALF_-

precise’ and ‘XGANDALF_fast’ – where parameters are

chosen to either maximize the indexing success or maximize

the indexing speed. Settings in between are also possible. The

mean times to index the patterns are given in Table 3.

As can be seen in Table 3, again XGANDALF has the

highest indexing rate among all tested indexers (in agreement

with Fig. 7), while having an execution time of the same order

of magnitude as the fastest-tested indexer. The high execution

time for the TakeTwo algorithm reflects its mode of operation:

if it does not find a solution, it will keep searching in the hope

of eventually finding one, hence maximizing its indexing rate.

Most patterns could be indexed by TakeTwo in a very short

time, but several resulted in a long search. CrystFEL imposes a

maximum running time on the indexing routines, and as a

result the execution time shown for TakeTwo reflects this

maximum time rather than the performance of the algorithm.

3.3. Final merged data quality

After indexing, the next stage in the processing pipeline is

the merge of the measured Bragg spots of all patterns into a

set of structure factors. Better indexing results should

presumably lead to better statistics of the merged data, so the

quality of the merge can be used as a measure of the quality of

the indexing results. Here we merged the indexed data of

702 Yaroslav Gevorkov et al. � XGANDALF Acta Cryst. (2019). A75, 694–704

research papers

Table 3
Comparison of mean execution times (per pattern) and indexing results
for a data set consisting of 1000 patterns.

Indexer name
Indexed
patterns

Mean execution
time (ms)

MOSFLM 452 17
XDS 400 22
DirAx 394 12
TakeTwo 545 662
XGANDALF fast mode 724 19
XGANDALF precise mode 725 106

Figure 8
Comparison of the achieved Rsplit (White et al., 2013) (lower is better)
for XGANDALF and current state-of-the-art indexers. XGANDALF
outperforms the other indexers in all significant resolution shells.

Table 2
Numbers of crystals of CXIDB ID 83 indexed with prior unit-cell
knowledge.

Indexer Indexed

XDS 13 922
MOSFLM 16 120
MOSFLM DirAx XDS 17 433
TakeTwo 18 808
XGANDALF ‘fast’ mode 19 914
XGANDALF ‘precise’ mode 21 171

Figure 9
Comparison of the achieved CC* (Karplus & Diederichs, 2012) (higher is
better) for XGANDALF and current state-of-the-art indexers. XGAN-
DALF outperforms the other indexers in all significant resolution shells.



CXIDB ID 83 that were summarized in Tables 1 and 2. Apart

from the indexing algorithm selection, all parameters to

CrystFEL were the same for all tests. For comparison of the

merge results we used the figures of merit CC* (Karplus &

Diederichs, 2012) and Rsplit (White et al., 2013). As shown in

Figs. 8 and 9, XGANDALF significantly outperforms the

other indexers in both of these figures of merit.

For each indexed pattern CrystFEL (White et al., 2012)

estimates a profile radius of the Bragg spots. This is defined as

the maximum distance of a reciprocal-lattice point to the

Ewald sphere that still gives rise to a Bragg reflection, and can

be considered as a property of the crystal, influenced by

mosaicity for example. CrystFEL estimates this measure from

the detected Bragg spots and the reciprocal-lattice points that

predict them best. A similar metric, called the Ewald proximal

volume, was used by Lyubimov et al. (2016) in their software

IOTA. Errors in the indexing solution generally increase the

estimated profile radius. A comparison of the profile radius

estimation for MOSFLM and XGANDALF is depicted in

Fig. 10. The estimated profile radii for patterns indexed by

XGANDALF are generally smaller than the ones of

MOSFLM, indicating that the indexing solution is more

precise.

4. Availability

XGANDALF is implemented as an open-source C++ library,

which can be used directly from applications written in C or

C++, or from a Python program using a Cython interface.

XGANDALF has been implemented in CrystFEL (White et

al., 2012) and is available from version 0.8.0 onwards. The

XGANDALF implementation provides the tools for

programmers to adjust the heuristic by defining their own

high-level heuristic stages based upon optimized low-level

implementations. The library is distributed under the LGPLv3

licence, and the source code can be downloaded from https://

stash.desy.de/users/gevorkov/repos/xgandalf/browse.

5. Conclusion

A new indexing algorithm, XGANDALF, has been presented

which was designed specifically for indexing still diffraction

patterns for snapshot serial crystallography experiments. As

such, it outperforms the current state-of-the-art indexers that,

although commonly used in serial crystallography, were mostly

created for the indexing and analysis of rotation crystal data.

Compared with those programs, XGANDALF gives higher

indexing rates and higher indexing precision, and can be used

both with and without prior unit-cell parameters. The execu-

tion time of the implementation is of the same order of

magnitude as currently used indexing algorithms and, with

mean indexing times of about 20 ms, is fast enough to allow

real-time feedback in experiments. Compared with the avail-

able indexers, the algorithm successfully indexes more

patterns in test serial crystallography data sets and is more

robust to multiple lattices in a single image. The program has

already been used in serial crystallography experiments by

several other groups with very positive results. We therefore

anticipate that XGANDALF will be a valuable addition to the

collection of software tools for serial crystallography.

Funding information

We acknowledge financial support through the ‘X-probe’

project funded by the European Union’s 2020 Research and

Innovation Program under the Marie Skłodowska-Curie

Grant Agreement 637295; the German Ministry of Education

and Research (BMBF) project 05K18CHA; and the German

Research Foundation (DFG) through the Gottfried Wilhelm

Leibniz Program and Clusters of Excellence ‘Center for

Ultrafast Imaging’ (CUI, EXC 1074, ID 194651731) and

‘Advanced Imaging of Matter’ (AIM, EXC 2056, ID

390715994).

References

Beyerlein, K. R., White, T. A., Yefanov, O., Gati, C., Kazantsev, I. G.,
Nielsen, N. F.-G., Larsen, P. M., Chapman, H. N. & Schmidt, S.
(2017). J. Appl. Cryst. 50, 1075–1083.

Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A.,
Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U.,
Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb,
L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles,
D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G.,
Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S.,
Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L.,
Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner,
D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S.,
Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messersch-
midt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y.,
Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N.,
Seibert, M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M.,
Stern, S., Nass, K., Andritschke, R., Schröter, C.-D., Krasniqi, F.,

research papers

Acta Cryst. (2019). A75, 694–704 Yaroslav Gevorkov et al. � XGANDALF 703

Figure 10
Comparison of the estimated profile radii of MOSFLM and XGAN-
DALF. The estimated radii for patterns indexed by XGANDALF are
generally smaller than the ones of MOSFLM, which means that the
indexing solution is more precise.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2


Bott, M., Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M.,
Barends, T. R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb,
S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann,
H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. H.
(2011). Nature, 470, 73–77.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
Gildea, R. J., Waterman, D. G., Parkhurst, J. M., Axford, D., Sutton,

G., Stuart, D. I., Sauter, N. K., Evans, G. & Winter, G. (2014). Acta
Cryst. D70, 2652–2666.

Ginn, H. M., Roedig, P., Kuo, A., Evans, G., Sauter, N. K., Ernst, O. P.,
Meents, A., Mueller-Werkmeister, H., Miller, R. J. D. & Stuart, D. I.
(2016). Acta Cryst. D72, 956–965.

Hestenes, M. R. & Stiefel, E. (1952). J. Res. Natl Bur. Standards, 49,
409.

Kabsch, W. (1976). Acta Cryst. A32, 922–923.
Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800.
Kabsch, W. (2010). Acta Cryst. D66, 125–132.
Kabsch, W. (2014). Acta Cryst. D70, 2204–2216.
Karplus, P. A. & Diederichs, K. (2012). Science, 336, 1030–

1033.
Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., Nelson,

G., Weierstall, U., Katritch, V., Barty, A., Zatsepin, N. A., Li, D.,
Messerschmidt, M., Boutet, S., Williams, G. J., Koglin, J. E., Seibert,
M. M., Wang, C., Shah, S. T. A., Basu, S., Fromme, R., Kupitz, C.,
Rendek, K. N., Grotjohann, I., Fromme, P., Kirian, R. A., Beyerlein,
K. R., White, T. A., Chapman, H. N., Caffrey, M., Spence,
J. C. H., Stevens, R. C. & Cherezov, V. (2013). Science, 342, 1521–
1524.

Lyubimov, A. Y., Uervirojnangkoorn, M., Zeldin, O. B., Brewster,
A. S., Murray, T. D., Sauter, N. K., Berger, J. M., Weis, W. I. &
Brunger, A. T. (2016). J. Appl. Cryst. 49, 1057–1064.

Maia, F. R. N. C. (2012). Nat. Methods, 9, 854–855.
Powell, H. R. (1999). Acta Cryst. D55, 1690–1695.
Sauter, N. K. & Zwart, P. H. (2009). Acta Cryst. D65, 553–559.
Schlichting, I. (2015). IUCrJ, 2, 246–255.
Semaev, I. (2001). Lecture Notes in Computer Science, pp. 181–193.

Berlin, Heidelberg: Springer.
Semechko, A. (2015). Suite of functions to perform uniform

sampling of a sphere. https://de.mathworks.com/matlabcentral/
fileexchange/37004-suite-of-functions-to-perform-uniform-sampling-
of-a-sphere.

Steller, I., Bolotovsky, R. & Rossmann, M. G. (1997). J. Appl. Cryst.
30, 1036–1040.

Wang, X. (2008). IEEE Microwave Wireless Components Lett. 12, 24–
26.

White, T. A. (2019). Acta Cryst. D75, 219–233.
White, T. A., Barty, A., Stellato, F., Holton, J. M., Kirian, R. A.,

Zatsepin, N. A. & Chapman, H. N. (2013). Acta Cryst. D69, 1231–
1240.

White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,
A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335–341.

Wiedorn, M. O., et al. (2018). Nat. Commun. 9, 4025.
Winter, G., Waterman, D. G., Parkhurst, J. M., Brewster, A. S., Gildea,

R. J., Gerstel, M., Fuentes-Montero, L., Vollmar, M., Michels-
Clark, T., Young, I. D., Sauter, N. K. & Evans, G. (2018). Acta Cryst.
D74, 85–97.

704 Yaroslav Gevorkov et al. � XGANDALF Acta Cryst. (2019). A75, 694–704

research papers

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5071&bbid=BB26

