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The recent advent of tensor tomography techniques has enabled tomographic

investigations of the 3D nanostructure organization of biological and material

science samples. These techniques extended the concept of conventional X-ray

tomography by reconstructing not only a scalar value such as the attenuation

coefficient per voxel, but also a set of parameters that capture the local

anisotropy of nanostructures within every voxel of the sample. Tensor

tomography data sets are intrinsically large as each pixel of a conventional

X-ray projection is substituted by a scattering pattern, and projections have to

be recorded at different sample angular orientations with several tilts of the

rotation axis with respect to the X-ray propagation direction. Currently

available reconstruction approaches for such large data sets are computationally

expensive. Here, a novel, fast reconstruction algorithm, named iterative

reconstruction tensor tomography (IRTT), is presented to simplify and

accelerate tensor tomography reconstructions. IRTT is based on a second-rank

tensor model to describe the anisotropy of the nanostructure in every voxel and

on an iterative error backpropagation reconstruction algorithm to achieve high

convergence speed. The feasibility and accuracy of IRTT are demonstrated by

reconstructing the nanostructure anisotropy of three samples: a carbon fiber

knot, a human bone trabecula specimen and a fixed mouse brain. Results and

reconstruction speed were compared with those obtained by the small-angle

scattering tensor tomography (SASTT) reconstruction method introduced by

Liebi et al. [Nature (2015), 527, 349–352]. The principal orientation of the

nanostructure within each voxel revealed a high level of agreement between the

two methods. Yet, for identical data sets and computer hardware used, IRTTwas

shown to be more than an order of magnitude faster. IRTT was found to yield

robust results, it does not require prior knowledge of the sample for initializing

parameters, and can be used in cases where simple anisotropy metrics are

sufficient, i.e. the tensor approximation adequately captures the level of

anisotropy and the dominant orientation within a voxel. In addition, by greatly

accelerating the reconstruction, IRTT is particularly suitable for handling large

tomographic data sets of samples with internal structure or as a real-time

analysis tool during the experiment for online feedback during data acquisition.

Alternatively, the IRTT results might be used as an initial guess for models

capturing a higher complexity of structural anisotropy such as spherical

harmonics based SASTT in Liebi et al. (2015), improving both overall

convergence speed and robustness of the reconstruction.

1. Introduction

Information about micro- or nanoscopic structural organiza-

tion within a macroscopic sample is often of great importance.

For example, in material science, alignment of carbon nano-

tubes strongly influences the resistivity of nanotube films

(Behnam et al., 2007; Shekhar et al., 2011) and molecular

anisotropy in an additive manufacturing process is shown to
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be crucial to controlling structure and morphology (Ivanova et

al., 2013). In biology, structure is often optimized for its

function (Fratzl & Weinkamer, 2007), and significant nano-

structural alignment is found in many biological materials and

tissues (Fratzl, 2012; Lichtenegger et al., 1999; Meek & Boote,

2009; Masic et al., 2015; Deymier-Black et al., 2014). For

instance, the orientation of mineralized collagen fibers in bone

tissue determines its local mechanical properties (Martin &

Ishida, 1989; Granke et al., 2013), and is abnormal in different

bone pathologies (Giannini et al., 2012). Similarly, in the brain,

the direction of the neuronal axons is used to infer structural

connectivity (Johansen-Berg & Rushworth, 2009), and aber-

ration in structural and functional networks is associated with

neuropathologies (Sundgren et al., 2004; Xie & He, 2011;

Bakshi et al., 2008; Grefkes & Fink, 2014; Cao et al., 2015). A

variety of techniques to investigate 3D tissue organization

have been developed over the past few years (Georgiadis,

Müller et al., 2016). However, most of them are restricted

either to the analysis of tissue sections such as polarized light

imaging (Axer et al., 2011; Bromage et al., 2003) and 3D

scanning small-angle X-ray scattering (Georgiadis et al., 2015),

or to very small sample volumes such as in volume light and

electron microscopy (Helmstaedter et al., 2008; Briggman &

Bock, 2012; Reznikov et al., 2013).

Methods that can be used to retrieve the 3D orientation of

micro- and nanostructure in tissue sections can be extended to

volumetric analyses if multiple contiguous sections are

scanned and then stacked together, as was shown by Geor-

giadis et al. (2015) and Georgiadis, Müller et al. (2016), in

which the 3D orientation of collagen fibers was represented

with a 3D vector for each voxel in the entire bone trabecula.

However, not all sample studies are amenable to thin

sectioning, either because it limits further studies or because

of potential artifacts introduced by physically cutting the

sample.

Large sample volumes can be studied with SAXS- (small-

angle X-ray scattering) or XRD- (X-ray diffraction) CT

(computed tomography) (Birkbak et al., 2015; Poulsen, 2012;

Jensen et al., 2011), although the orientation-dependent scat-

tering is not fully accounted for. Thus, these methods can only

provide a statistical description of the nanostructure orienta-

tion, and not a 3D orientation map, as in Skjønsfjell et al.

(2016), Mürer et al. (2018). An alternative method for exam-

ining large samples is diffusion-weighted magnetic resonance

imaging (DWI), which assesses the anisotropic diffusivity of

tissue water as a proxy for tissue structural organization

(Alexander et al., 2007), e.g. of the orientation of white matter

fibers in the brain, or of collagenous fibers in muscles, tendons

or ligaments. However, DWI is limited to the study of the

diffusion of molecules with high overall mobility, e.g. water

molecules in tissue. Also, since diffusion is only a proxy for

assessing microstructure, structural interpretation may be

ambiguous (Jones et al., 2013), resulting in a constant need for

validation (Hubbard & Parker, 2009; Dell’Acqua & Catani,

2012).

Alternatively, information on structural organization can be

derived from X-ray small-angle scattering tensor tomography

(SASTT). Recently, three tensor reconstruction techniques

based on directional data from X-ray scattering were intro-

duced (Malecki et al., 2014; Liebi et al., 2015; Schaff et al.,

2015). These techniques extend X-ray tomography, yielding

not only a scalar value, but also a set of parameters char-

acterizing 3D local anisotropic nanostructure in every voxel.

Analogous to CT, data are acquired by rotating the sample

around a tomography axis. Yet, in addition, the rotation axis is

tilted at various angles resulting in a distributed coverage of

sample orientations relative to the incident X-ray beam (Liebi

et al., 2018).

Tensor reconstruction approaches are based on 2D

projections of the sample from different orientations, where

for each point in the projection 2D information about the

structure orientation has been collected. These approaches

work for imaging in different orientation-sensitive contrast

modalities such as grating interferometry (Malecki et al.,

2014), light (Gandjbakhche et al., 1994; Girasole et al., 1997),

neutron (Hongladarom et al., 1996) or X-ray scattering

(Gourrier et al., 2010; Georgiadis et al., 2015; Liebi et al., 2015;

Bünger et al., 2010).

In the approach of Malecki et al., a grating interferometry

setup is used. In this case, grating interferometry is sensitive to

the micro- or nanostructure oriented perpendicular to the

grating orientations; thus, projections need to be acquired with

different relative orientations between the gratings and the

sample around the beam direction (Malecki et al., 2014). In

contrast, for small-angle scattering the information on 2D

orientation is measured directly on the 2D scattering pattern.

The SASTT reconstruction technique presented by Liebi et al.

modeled anisotropy in every voxel by a superposition of

spherical harmonics (Liebi et al., 2015, 2018). Model para-

meters were optimized by minimizing the error between the

intensities predicted by the model and experimental values for

all projections measured. The procedure yields two direction

angles, which represent the nanostructure principal orienta-

tion, and the coefficients of the spherical harmonics that

describe the shape of the reciprocal-space map for every

voxel. Schaff et al. (2015) define a virtual axis of rotation a

posteriori for each direction of the 3D reciprocal-space map

that is to be reconstructed and then find the projection angles

and 2D scattering orientation that would align to this ‘virtual

axis’; as there will be no perfect match to the required

orientations, an error threshold for the sample orientation

angles is introduced. Finally, they invoke the principle of

rotation invariance (Feldkamp et al., 2009) to reconstruct

these components of the 3D reciprocal-space map using

standard tomography algorithms. This process is repeated for

each virtual axis in 3D space. After reconstruction, the 3D

reciprocal-space map in each voxel is fitted to an ellipsoid

tensor model to parametrize the local nanostructure aniso-

tropy and orientation in 3D. Both tensor tomography recon-

struction techniques suffer from limitations: first, they are

computationally intense, resulting in a time- and resource-

consuming reconstruction process. In addition, the approach

based on spherical harmonics (Liebi et al., 2015) requires an

educated guess to improve convergence speed and avoid local
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minima, to which gradient descent methods are prone. The

method based on virtual rotation axes (Schaff et al., 2015)

requires a dense angular sampling of projection orientations

for identifying the rotationally invariant component of the

nanostructure in each voxel, potentially leading to an unne-

cessary trade-off between measurement time and accuracy.

Hence, a reconstruction algorithm with significantly reduced

computational time and without the above limitations is highly

attractive.

We present a method for tomographic reconstruction of the

3D nanostructure organization, iterative reconstruction tensor

tomography (IRTT), which is fast, efficient and robust. For

IRTT reconstruction we use a symmetric second-rank tensor

to model tissue anisotropy in every voxel, similar to the model

widely used in diffusion tensor imaging (DTI) (Mori, 2014),

and previously used for X-rays (Malecki et al., 2014; Seidel et

al., 2012). An iterative method similar to the algebraic

reconstruction technique (ART) (Gordon et al., 1970) is

introduced. The method is fast and efficient due to the use of

the symmetric second-rank tensor, which only needs six

parameters to describe local 3D structure anisotropy, and the

introduction of a linearized reconstruction strategy. In order

to extend ART from scalars to a six-

parameter tensor model, the method

of iterative error backpropagation

(Rumelhart et al., 1986), inspired by the

training process of artificial neural

networks (Hecht-Nielsen, 1989, 1992), is

applied in the reconstruction. In this

article, the IRTT method is presented in

detail. The feasibility and accuracy of

IRTT reconstruction are demonstrated

with three samples exhibiting different

properties: a knot made from carbon

fibers, a human bone trabecula and a

fixed mouse brain. The results are

both qualitatively and quantitatively

compared with those obtained with the

SASTT method (Liebi et al., 2015,

2018).

2. Methods

2.1. Experimental setup for data
acquisition

X-ray scattering experiments were

performed in the coherent small-angle

X-ray scattering (cSAXS) beamline of

the Swiss Light Source, Paul Scherrer

Institute (PSI), Villigen, Switzerland,

which is fitted for fast position-resolved

scanning SAXS and SASTT experi-

ments. In the experimental setup, shown

in Fig. 1, the sample is mounted on a

computer-controlled stage that can

translate in two directions (x, y) in the

plane of the detector and rotate around two axes corre-

sponding to rotation angle � and tilt angle �. The sample is

scanned through the beam and a Pilatus photon-counting

detector (Henrich et al., 2009), positioned downstream,

records the SAXS patterns. The detector position and angular

coverage determine the investigated q range in reciprocal

space; illustrated with a red arrow in the detector plane of

Fig. 1 is a particular q vector, while a possible q range to

investigate is enclosed between two red circles. The q range

defines the characteristic range of d spacing in physical space

according to the relation d ¼ 2�=q.

Each scattering pattern corresponds to the cumulative

scattering from all voxels along the X-ray beam path through

the sample, as shown in Fig. 1. To capture a full 2D projection,

the sample needs to be raster-scanned in two directions ðx; yÞ

across the beam. At the same time, the sample transmission is

recorded by a photodiode that also acts as a beamstop to

prevent damage to the detector by the directly transmitted

beam. The translation step size is typically matched to the

beam size and desired resolution. After scanning all the points

in the defined field of view (FOV), the sample is rotated to the

next projection angles ð�; �Þ.
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Figure 1
IRTT experimental setup, similar to that in Liebi et al. (2015), Schaff et al. (2015). The sample is
raster-scanned ðx; yÞ by a pencil-beam for different rotation and tilt angles � and �. Best practice is
to distribute the angles � and � homogeneously on the hemisphere of sample orientations (Liebi et
al., 2018), as shown on the inset sphere. The red arrow on the detector indicates a q vector in
reciprocal space, and the two red circles enclose an example q range.

Figure 2
Scattering patterns from the three samples. Red circles represent the analyzed q ranges. (a) The
carbon fiber knot, (b) trabecular bone, (c) fixed mouse brain.



To record 2D projections from all possible directions, and

probe the 3D volume of the sample, the stage is controlled in

the following way: for a tilt angle � of the tomographic axis,

the sample is rotated around the axis and the angle � takes

values 0� � �< 360�. At � = 0�, only rotations for � in the

range of 0 to 180� are required, similar to parallel-beam CT.

The range of rotation from 0� to 360� for the non-zero tilt

angles makes negative tilt angles redundant (Liebi et al., 2018).

The total number of projections and their distribution, i.e. the

total number of rotation and tilt angle sets ð�; �Þ, depends on

the sample diameter, structural complexity, desired spatial

resolution and available scan time. Best practice is to distri-

bute all projection angles in a uniformly distributed angular

grid about the hemisphere of directions (Liebi et al., 2018), as

shown in the inset sphere in Fig. 1.

2.2. Samples

The reconstruction algorithm was applied to three samples:

carbon fibers tied into a knot, a bone trabecula extracted from

a human vertebra and a fixed mouse brain. Details concerning

sample preparation and experiments can be found in

Appendices A and B.

Typical scattering patterns from the three samples are

shown in Fig. 2; the red circles indicate the analyzed q range.

Numerical values for the q ranges used for analysis can be

found in Table 1 (see Appendix B).

2.3. Symmetric intensity reconstruction and segment analysis

The first step of IRTT is the reconstruction of the 3D

geometry of the sample using a scalar quantity. Either the

projection of the absorption coefficient or the azimuthally

averaged scattering intensity can be used for this purpose. The

simplest approach for reconstructing either of the two quan-

tities is to use filtered back-projection, given enough projec-

tions at � = 0�, and then use this initial 3D sample model to

align all projections, as shown in Fig. 3: since the sample is in

practice not perfectly aligned in the rotation center of both

rotation and tilt axes, each measured projection with �> 0 is

registered to the 3D scalar model similar to the procedure of

Liebi et al. (2018). This is achieved by computing 2D projec-

tions from the 3D scalar model for every ð�; �Þ as a

template for the registration of experimental projections for

the same orientation using a 2D subpixel image registration

algorithm (Guizar-Sicairos et al., 2008), as exemplified in Fig.

3(b).

In-plane nanostructure orientation is derived from the

azimuthal intensity variation in each scattering pattern. The

anisotropy of each pattern is analyzed by dividing the detector

frame into angular segments (Bunk et al., 2009). We have used

16 segments to discretize the azimuthal intensity, but in prin-

ciple any number sufficient to capture the in-plane anisotropy

can be chosen for this purpose. We then select a q range that

corresponds to characteristic dimensions of the structure of

interest, as shown in Fig. 4(a), and the scattering intensity of

each of the 16 segments at this specific q range is visually

depicted in Fig. 4(b). Furthermore, the number of segments

can be averaged and reduced to eight by exploiting the center

symmetry of SAXS patterns, and the resulting intensity

distribution per segment is shown in Fig. 4(f). These eight

intensity values for every point of each projection constitute

the input for the IRTT algorithm, as described in the following

sections.

The orientation-encoded maps, for example as shown in

Fig. 4(e), serve in this article as 2D visualizations of the data.

To calculate these maps, we use a method similar to that

presented by Bunk et al. (2009). Specifically, for each

diffraction pattern, the azimuthal segment intensity values are

analyzed using a discrete Fourier transform to extract the 2D

orientation and the isotropic and anisotropic intensity

components (Bunk et al., 2009). When performed for all the

points in one projection, this yields a 2D fiber orientation map

that is shown in Fig. 4(e), where the orientation, degree of

orientation and intensities are visualized using a hue-

saturation-value representation (Fratzl et al., 1997). In the

latter each measured point of the sample is represented by a

pixel which is assigned a color corresponding to the main fiber

orientation according to the inset color wheel.
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Figure 3
Scalar projections of the signal intensity and corresponding reconstruc-
tion, from which a 3D support for the reconstruction can be obtained. (a)
Projections for different angles � and � = 0�. (b) 2D registration of the
measured projection to the one derived from the 3D model for a specific
set of angles ð�; �Þ.



2.4. Tensor model for each voxel

In SAXS experiments, anisotropic scattering is related to

anisotropy of the sample structure (Klug & Alexander, 1954).

For example, for the carbon knot sample, the anisotropic

intensity of the scattering signal mainly originates from edge

scattering at the interface between the carbon fibers and air, so

that the main scattering is oriented perpendicular to the fiber

bundle, as shown in Fig. 4(f).

The relationship between the direction of the beam, the

sample and the detector segment is illustrated in Fig. 5(a),

where v̂vx is the direction unit vector of the incoming X-ray

beam, v̂vs the direction unit vector of a detector segment i,

which is defined by its bisector, and v̂vb the unit vector of the

corresponding direction of the nanostructure orientation

distribution function (ODF), which generates scattering in

that segment. Here, we assume that the maximum intensity

observed in the angular segment i is generated by sample

nanostructure with its principal orientation v̂vb perpendicular

to the direction, as is the case for the samples and q ranges

used in this study.

Without loss of generality we can assume that the coordi-

nate frame is fixed to the sample. Then, for each projection

ð�; �Þ the beam and detector are rotated and tilted around it,

as exemplified in Fig. 5(b), i.e. the IRTT method as presented

employs object-centric coordinates. Given the above-

mentioned perpendicularity between 2D scattering and

nanostructure for the measured samples, one can calculate the

structure orientation as1

v̂vb �; �; ið Þ ¼ v̂vxð�; �Þ � v̂vsð�; �; iÞ: ð1Þ

IRTT assumes that the local nanostructure ODF can

be described by an ellipsoid, or in mathematical terms, by a

second-rank 3� 3 tensor T
$

. The measured intensity Ið�; �; iÞ,

along v̂vbð�; �; iÞ, can be expressed as

Ið�; �; iÞ ¼ v̂v
T
b ð�; �; iÞ � T

$

� v̂vbð�; �; iÞ; ð2Þ

where v̂vbð�; �; iÞ is given by equation (1) for any value i.

Given enough projections well distributed around the

hemisphere of sample orientations, as shown in the inset

sphere of Fig. 1, the tensor T
$

that best fits the data can be

found.

Because the scattering patterns are center symmetric, the

tensor T
$

is symmetric (Tij ¼ TjiÞ, comprising six independent

components only,

T
$

¼

Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

0
@

1
A: ð3Þ

If the three components of v̂vbð�; �; iÞ are written as

ðbx; by; bzÞ ¼ ½bxð�; �; iÞ; byð�; �; iÞ; bzð�; �; iÞ�, then equation

(2) can be expanded:
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Figure 4
Anisotropy analysis of scattering patterns. (a) The scattering pattern is
divided into 16 azimuthal segments and the desired q range is chosen for
investigation. (b) The intensity of each segment is integrated and
subsequently reduced to eight segments, exploiting the center symmetry
of the scattering pattern. (c) 3D scalar model of the carbon fiber knot. (d)
Intensity map displaying the average intensity from all eight segments for
the (0�, 0�) projection. (e) Analysis of anisotropic intensity across
segments for all the points of one projection yields a 2D orientation-
encoded map, in which each pixel is assigned a color corresponding to the
main fiber orientation according to the inset color wheel. (f) 2D scattering
intensity maps of the eight segments for the (0�, 0�) projection. The
segment and corresponding fiber orientation are depicted as insets. The
fiber orientation, shown in red, is assumed to be perpendicular to the
bisector of the angular segment.

1 It should be noted that, although IRTT, as presented in this article, is used to
model and reconstruct the nanostructure ODF, it can also be used to
reconstruct the reciprocal-space sample scattering from each voxel, similar to
SASTT (Liebi et al., 2015, 2018), by simply using v̂vb ¼ v̂vs instead of equation
(1), with the rest of the steps remaining the same.



Ið�; �; iÞ ¼ ðbx by bzÞ �

Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

0
B@

1
CA �

bx

by

bz

0
B@

1
CA

¼ B �; �; ið Þ � T ð4Þ

where B ¼ ðb2
x b2

y b2
z 2bxby 2bxbz 2bybzÞ incorporates all the

terms related to the experimental geometry, and T ¼

ðTxx Tyy Tzz Txy Txz TyzÞ
T incorporates all the tensor compo-

nents related to the sample nanostructure.2

Treating the individual segments separately allows us to

define the intensity vector Ið�; �Þ,

Ið�; �Þ ¼

Ið�; �; 1Þ

Ið�; �; 2Þ

..

.

Ið�; �; 8Þ

2
6664

3
7775 ¼

Bð�; �; 1Þ

Bð�; �; 2Þ

..

.

Bð�; �; 8Þ

2
6664

3
7775 � T ¼ Bð�; �Þ � T;

ð5Þ

where I comprises the intensity information for all segments,

and B all vectors related to the measurement geometry in

equation (1).

2.5. Tensor tomography reconstruction

For SASTT (Liebi et al., 2015; Schaff et al., 2015), the

scattering pattern from each pixel of a 2D projection is the

result of the beam passing through multiple voxels, i.e. probing

a complex combination of nanostructure at different orienta-

tions. Hence, each scattering pattern is composed of the sum

of contributions from all the voxel-associated tensors along

the beam path:

I �; �; r
*

2D

� �
¼
P

path B �; �ð Þ � Tð r
*

3DÞ: ð6Þ

Here, r
*

2D is the position vector of the point in the projection

plane, and r
*

3D is the position vector of each voxel in

the sample. Since Bð�; �Þ only depends on the projection

angles, it can be moved outside of the sum, and we can replace

the sum along the beam path with the sum over the whole

volume using a Dirac delta function, �VðpathÞ, which selects all

voxels in the beam path,

Ið�; �; r
*

2DÞ ¼ B �; �ð Þ �
P

volume �VðpathÞ � Tð r
*

3DÞ: ð7Þ

In practice, contributions from all voxels along the beam path

are summed according to the proximity of their center to the

beam using trilinear interpolation.

Equation (7) constitutes the basis of the reconstruction

algorithm. The array Ið�; �; r
*

2DÞ represents experimental

data for different segments, Bð�; �Þ is the predefined matrix

that relates segment intensities to the tensor in each voxel

depending solely on the projection angle set ð�; �Þ, and

Tð r
*

3DÞ is the tensor model to be reconstructed.
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Figure 5
Scattering based on a tensor model for sample nanostructure organiza-
tion (scattering patterns shown are from the brain sample, further
discussed in Section 3.3). (a) Relationship between the X-ray propagation
direction v̂vx, nanostructure orientation distribution function (ODF) and
measurement orientations v̂vs. (b) The direction v̂vxð�; �Þ of the incident
X-ray beam and the segment vectors v̂vsð�; �; iÞ on the detector plane
perpendicular to the beam direction are defined by the angles � and �.
The measured scattering pattern depends on the projection angles, and
the measurement is described by an elliptical section of the ODF in a
plane parallel to the detector plane. For a cross section for which the long
ellipsoid axis is larger than its short axis, such as the red elliptical section
in the ODF, there will be a highly anisotropic intensity distribution along
the azimuthal direction in the detector for the corresponding q radius. On
the other hand, for a section with both axes of similar length (green
elliptical section) the azimuthal intensity distribution on the scattering
pattern will be almost isotropic. (c) As there is one ODF tensor per voxel,
the measured scattering pattern constitutes the sum of contributions of
the individual ODF tensors along the path of the X-ray beam through the
sample.

2 This is analogous to the equations describing the orientation-dependent
signal intensity in diffusion MRI (Mori, 2014), with Ið�; �Þ ¼ f fbð�; �Þ �Dg,
where bð�; �Þ comprises the experimental parameters including the direc-
tional angles ð�; �Þ under which the diffusion process is interrogated, while the
diffusion tensor D corresponds to T.



In order to find the appropriate tensor T for each voxel, we

need to minimize the difference between the simulated 3D

model projections Isimð�; �; r
*

2DÞ, calculated using equation

(7), and the measured projections, Imeasð�; �; r
*

2DÞ. Different

optimization algorithms, such as gradient descent, can be used

to perform such an error minimization. Here, in order to

enhance the convergence speed, we applied an approach

similar to the ART, a class of iterative reconstruction methods

commonly used in tomographic reconstructions (Kak &

Slaney, 1988). In ART, the model is reconstructed iteratively

by back-projecting the difference between the measured

projections and those obtained from the current 3D model.

Yet, in tensor tomography, a back-projection cannot be

performed without considering the B term which encodes the

effects of directional scattering. In IRTT, the solution for this

problem was inspired by error backpropagation (Hecht-

Nielsen, 1992, 1989), a method that originated in the field of

artificial neural networks (Zell et al., 1993).

The method is schematically described in Fig. 6(a). If we

treat equation (8) as a double-layer neural network, Fig. 6(b),

the Dirac delta function, i.e. the input layer, selects the tensors

Tð r
*

3DÞ of voxels along the path, giving a computational

intermediate result, shown as the hidden layer. This result

propagates to the output layer, comprising the scattering

intensities, through Bð�; �Þ, which selects the corresponding

terms in the tensor ODF to be reflected in the scattering

intensity of these projection angles ð�; �Þ. The objective is to

optimize Tð r
*

3DÞ, i.e. the connection weights between input

and hidden layer. This is achieved by taking the error in the

output layer of scattering intensity, comparing it with the

measured intensity, and propagating their difference back-

wards through the second layer of connections Bð�; �Þ by

taking its transpose B
T

ð�; �Þ. The backpropagated error is

used to correct the first layer of connections Tð r
*

3DÞ, shown in

Fig. 6(b) as the backward direction. Tensor tomographic

reconstruction is achieved based on this error back-

propagation through an iterative ART scheme.

Before starting the iterative procedure, an initial tensor

model is assigned to all the voxels of the structure. For this

initial tensor model, we have tried to use all-zeros, random

numbers and isotropic tensors scaled by the symmetric

intensity information retrieved as described in Section 2.3.

With numerous trials we found that all these different initial

models converge consistently to the same solution, i.e. with a

coefficient of variation, defined as the ratio of standard

deviation to mean value, of less than 0.04 for non-air voxels. In

view of the method’s robustness to the initial model, we have

chosen the simplest, all-zero model T0 as the default starting

point for all reconstructions.

In every iteration a random set of angles ð�; �Þ is chosen

from the experimental set of angles. A simulated projection

Isimð�; �; r
*

2DÞ is then computed from the 3D sample model,

compared with the measured projection, Imeasð�; �; r
*

2DÞ,

and their difference �Ið�; �; r
*

2DÞ = Imeasð�; �; r
*

2DÞ �

Isimð�; �; r
*

2DÞ calculated.

In order to make a correction on the reconstructed model T

based on the error �Ið�; �Þ, the update function, �T, is

obtained by solving for T in equation (7), namely:

�T r
*

3D

� �
¼

�

Lð�; �; r
*

2DÞ
B

T

�; �ð Þ ��I �; �; r
*

2D

� �
ð8Þ

where � is the so-called ‘correction ratio’ that denotes the

percentage of the error �Ið’; #Þ that is propagated back to the

model (Hecht-Nielsen, 1989). While the exact value of �
influences the final result, a value around � ¼ 1% proved to

be very robust and was used for all samples in this study.

Lð�; �; r
*

2DÞ is the number of sample voxels in the beam path

in equation (7).

Using equation (8), all tensors in the sample volume can be

corrected along the angles (�; �). The deviation of the simu-

lated values from the measured ones is minimized in an

iterative way, each time with a new, randomly selected single

projection from the set of (�; �).

In order to evaluate the goodness of reconstruction of

reconstructed models, an error parameter " was defined as the
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Figure 6
(a) Flow chart illustration of the iterative reconstruction method. (b)
Illustration of a double-layer artificial neural network, as applied in IRTT.



root-mean-square of the difference between modeled and

measured intensity values of all experimental projections

ð�; �Þ:

" ¼

( P
�;�; r

*
2D

h
Imeasð�; �; r

*

2DÞ

� Isimð�; �; r
*

2DÞ

i2

)1=2

: ð9Þ

All the codes used for the reconstruction algorithm described

in this article are available at https://doi.org/10.5281/zenodo.

1480589.

3. Results and discussion

3.1. Carbon fiber knot

The carbon fiber knot has a highly anisotropic scattering, as

shown in Fig. 2(a), which mainly arises from surface scattering

of individual fibers, i.e. it originates from their ‘macroscale’

arrangement. The degree of scattering anisotropy is signifi-

cantly higher for such a sample than is typically encountered

for structured biological samples such as mineralized collagen

fibrils in bone or myelinated axons in the nervous system.

However, as the fiber orientation in the carbon fiber knot is

known at a macroscopic scale, it serves as a test sample for

method validation.

The optical photograph of the fiber knot, Fig. 7(a), reveals

the macroscopic carbon fiber arrangement. Experimentally

determined orientation-encoded images are shown in Fig. 7(c)

(upper panels) for two sample orientations ð�; �Þ, and a video

containing images for all the orientations can be found in the

supporting information. The area of reduced intensity in the

projection ð�; �Þ = (0�, 0�), indicated by a red arrow in Fig.

7(c), is due to less dense, loosened fibers. Fig. 7(b) shows the

second-rank tensor ODF obtained with IRTT for every voxel,

visualized by an ellipsoid. Each tensor represents the local

nanostructure ODF; the eigenvectors of the tensor matrix

define the orientation of the axes of the ODF ellipsoid, and

therefore carry information about the main orientation

directions of the nanostructure. The associated eigenvalues, �i,

define the length of the major axes of the ellipsoid, such that

the total scattering is proportional to �1 � �2 � �3 and the

degree of orientation is encoded in how different these values

are, i.e. the eccentricity of the ellipsoid. Most tensors in the

carbon knot reconstruction are very anisotropic, with the first

eigenvalue an order of magnitude larger than the other two,

owing to the very dominant direction of the fibers and the

resulting strong scattering streaks in the scattering patterns. To

evaluate the quality of the fit, we compared the simulated

projections, i.e. projections computed using the reconstructed

model, shown in the lower panels of Fig. 7(c), with the

experimentally measured results for the same values of (�; �),

shown in the upper panels of Fig. 7(c). At a first glance, there is

a high level of correspondence regarding both the degree of

anisotropy and the fiber orientation. A more careful obser-

vation reveals subtle differences. For instance, the simulated

projections show a higher background signal compared with

the experimental data. We attribute this discrepancy to the

high degree of orientation of the sample. The model based on

ellipsoid tensors can only account for variations with cosine

dependence with respect to the azimuthal angle. This

approximation fails for nanostructures with a very high degree

of anisotropy such as aligned carbon fibers, and a more

complex model such as higher orders of spherical harmonics

may be needed to capture more precisely this level of aniso-

tropy. Another possible explanation for the background signal

might be the ‘missing wedge’ artifact, analogous to that

observed in transmission electron microscope tomography

(Kováčik et al., 2014; Tam & Perez-Mendez, 1981; Carazo,

1992), due to the fact that not all rotation angles � are

accessible for measurement because of physical constraints of

the experimental setup, i.e. the rectangular frame supporting

the knot.

Fig. 7(d) shows the evolution of the error given in

equation (9) versus the iteration number, and the corre-

sponding reconstructed signal from all segments at selected

iteration numbers for the ð�; �Þ = (0�, 0�) projection. The

measured projection is shown for reference. The error

quickly drops during the first 1000 iterations, and the knot

shape clearly appears. Thereafter, the rate of improvement

slows down until, at around 10 000 iterations, the algorithm

essentially reaches convergence. Typically, good reconstruc-

tion quality was achieved at around 10 000 iterations for

most samples. We note that one iteration is defined as every

time a single 2D projection is used to update the tensors via

equation (9). The residual error can be attributed to (i) the

noise in the experimental data, (ii) the inability of the

tensor model to fully capture the scattering anisotropy,

(iii) other sources of error introduced in the data analysis

procedure, e.g. slight errors in registration or inaccuracies in

scanning positions.

Overall, the IRTT algorithm provided a fast and accurate

reconstruction that agrees with our prior knowledge of the

carbon fiber knot sample. The reconstruction of 38 686 voxels

took 67 s for 10 000 iterations on a single thread of an Intel

Xeon Gold 6140 CPU @ 2.30 GHz processor.

The data set and reconstruction results for the carbon fiber

knot sample are available at https://doi.org/10.5281/zenodo.

1480589.

3.2. Human trabecular bone

Mineralized collagen fibers in bone have a complex orga-

nization, the 3D structure of which has become the topic of

recent studies (Reznikov et al., 2014; Georgiadis, Guizar-

Sicairos et al., 2016; Liebi et al., 2015) due to its relevance to

micromechanical properties and bone pathologies (Martin &

Ishida, 1989; Granke et al., 2013; Giannini et al., 2012; Gourrier

et al., 2010). Given the high electron-density differences

between the mineral crystals and the surrounding medium,

pronounced anisotropy can be observed in the scattering

signal from bones, cf. Fig. 2(b). The IRTT reconstruction

results for the trabecular bone specimen of a human vertebra,
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the same sample shown in Liebi et al. (2018), are displayed in

Fig. 8. A volume-rendered view of the trabecular structure is

shown in Fig. 8(a). The experimental and reconstructed

orientation-encoded intensity maps of two projections at

different sample orientations are shown in Fig. 8(c), and a

video of all experimental projections can be found in the

supporting information. The measured projections reveal a

complex nanostructure organization with many domains of

tens of micrometres in size, as expected from previous studies

of human trabecular bone (Georgiadis, Guizar-Sicairos et al.,

2016; Georgiadis et al., 2015). Fig. 8(b) shows a line rendering,

in which for each voxel we show a line in the direction of the
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Figure 7
IRTT reconstruction of the carbon fiber knot. (a) Optical image of the fiber knot, where regions of loose fiber packing are visible. (b) Results of the
tensor reconstruction visualized as 3D ellipsoids. The color bar indicates the tensor magnitude in linear scale and arbitrary units. (c) Experimental and
IRTT-derived orientation-encoded maps are shown in the upper and lower panels, respectively, for two sample orientations. The red arrow points to a
region of loosened fibers. Orientation is color-coded by the color wheel. (d) Error evolution versus iteration number, and orientation-encoded
reconstructed projections for selected iteration numbers. The measured projection is also shown as an inset.



first eigenvector corresponding to the largest eigenvalue, and

hence of the main orientation of the nanostructure, with the

color indicating the length of that eigenvalue. We choose this

representation, instead of the ellipsoids of Fig. 7(b), for visual

clarity, due to the larger number of reconstructed tensors in

the sample. The 3D fiber direction map reveals domains with

strong and weak main fiber orientation. Fiber direction

apparently follows the trabecular microstructure, especially

regions exhibiting high curvature as has been shown for

trabecular bone (Georgiadis, Guizar-Sicairos et al., 2016). The

goodness of fit can be visually assessed by comparing the

simulated and measured projections, shown in Fig. 8(c) in the

lower and upper panels, respectively. Similar to the carbon

knot results, these show a high degree of similarity, although

small differences can be observed. These differences likely

originate from the limitations of the second-rank tensor model

to fully describe an arbitrary 3D degree of orientation. The

evolution of the residual error as a function of the number of

iterations, Fig. 8(d), shows a similar trend as for the carbon

fiber knot case; in both cases the larger structures and their

directionality become apparent within the first few hundred

iterations. In the next few thousand iterations features are

optimized, and smaller spatial domains are revealed. The

time required for the reconstruction of 228 150 voxels from

240 projections with 10 000 iterations was 5.6 min on a

single thread of an Intel Xeon Gold 6140 CPU @ 2.30 GHz

processor.

The data set and reconstruction results for the human

trabecular bone sample are available at https://doi.org/

10.5281/zenodo.1480589.
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Figure 8
IRTT reconstruction result of trabecular bone specimen from human vertebral body. (a) Volume-rendered model of 3D sample geometry. (b) 3D
representation of the principal eigenvector of the ODF. The color bar indicates the corresponding eigenvalue in linear scale and arbitrary units. (c)
Experimental and IRTT-derived orientation-encoded maps are shown in the upper and lower panels, respectively, for two sample orientations.
Orientation is color-coded by the color wheel. (d) Error evolution with iterations and corresponding reconstructed orientation-encoded maps for (�, �) =
(0�, 0�). Note the improved edge definition as the number of iterations increases. For reference, the corresponding experimental orientation-encoded
map is shown as an inset.



3.3. Reconstructing the orientation of myelinated fibers in
mouse brain

Structural connectivity in the brain is based on myelinated

fibers connecting distinct brain areas (Azevedo et al., 2009).

The study of these connections has recently become the

subject of extensive ‘connectomics’ research (Sporns et al.,

2005). Because of its relative simplicity, i.e. the lack of cortical

gyration, the rodent brain has become an attractive subject for

studying structural and functional connectivity (Grandjean et

al., 2017). Myelin exhibits a characteristic scattering peak in

SAXS, as shown in Fig. 2(c), which corresponds to a physical

period or d spacing of 	17 nm, and which allows both its

spatial distribution and orientation to be mapped (Jensen et

al., 2011; Georgiadis, Gao, Zingariello et al., 2017; Georgiadis,

Gao, Liebi et al., 2017). Mapping the myelin distribution in the

mouse brain reveals the major myelinated brain areas, i.e. the

brain white matter, as shown in a surface-rendered view in

Fig. 9(a). Two projections from the experimental data reveal a

highly complex white matter fiber orientation [see the upper

panel of Fig. 9(c)]. For comparison, the simulated projections

from the IRTT reconstruction are depicted for the same

azimuthal and tilt angles in the lower panels of Fig. 9(c). The

directions of the eigenvectors corresponding to the largest

eigenvalues of the ODF tensors from each voxel are shown in

Fig. 9(b) and indicate the principal orientation of the nano-
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Figure 9
IRTT reconstruction of a fixed mouse brain. (a) Volume-rendered model displaying the distribution of the structure of interest, i.e. myelin, within the
brain specimen. (b) 3D representation of the ODF principal eigenvector. The color bar indicates the corresponding eigenvalue in linear scale and
arbitrary units. (c) Experimental and IRTT-derived orientation-encoded maps are shown in the upper and lower panels, respectively, for two sample
orientations. (d) Error evolution as a function of iteration number and corresponding reconstructed projection for (�, �) = (0�, 0�). Note that edge
definition increases with the number of iterations. For reference, the corresponding experimentally measured orientation-encoded projection is shown as
an inset.



structure. These directions are consistent with the known

neural fiber directions in the mouse brain, e.g. with fibers

running along the olfactory tracts, the optic tracts and the

corpus callosum (Georgiadis, Gao, Zingariello et al., 2017;

Georgiadis, Gao, Liebi et al., 2017). The goodness of fit can be

evaluated by visually comparing simulated and measured

projections as shown in Fig. 9(c). It should be noted that IRTT

is by default unable to truthfully reconstruct nanostructure

ODF in voxels comprising fibers of different directionality,

such as fiber crossings, for which more complex models such as

a set of spherical harmonics are required (Liebi et al., 2015,

2018). This is analogous to diffusion MRI-based approaches,

where limitations of tensor-based approaches become obvious

for certain brain regions, and more complex model functions

have been suggested to capture the heterogeneity of the

anisotropy of water diffusion (Tuch, 2004; Fernandez-

Miranda, 2013; Farquharson et al., 2013; Novikov et al., 2018).

Similar to samples shown in the previous sections, the

principal structural features of the brain and their orientations

have been reconstructed using less than 1000 iterations, see

Fig. 9(d). The reconstruction of 514 500 voxels with 267

projections converges after approximately 10 000 iterations,

which were achieved in 15.7 min on a single thread of an Intel

Xeon Gold 6140 CPU @ 2.30 GHz processor.

3.4. Comparison of IRTT with SASTT

IRTT and SASTT (Liebi et al., 2015) differ with regard to

the model used for representing nanostructure organization in

each voxel and the reconstruction algorithm. In SASTT, the

spatial anisotropy within a voxel can be obtained from the

reciprocal-space map, which is modeled using a set of spherical

harmonics and a vector representing a principal orientation of

the nanostructure. In contrast, the model used by IRTT

consists of a second-rank tensor with six independent para-

meters, which constitutes a simple way of representing the

distribution of nanostructure orientations within one voxel,

including secondary anisotropy perpendicular to the dominant

direction. Yet, the model is limited in its representation of

complex nanostructure arrangements such as multiple fiber

directions, as occur for example with crossing or kissing fibers

within one voxel. In contrast, spherical harmonics provide a

complete basis that can be used to represent any anisotropy

distribution, provided terms of sufficiently high order are

included in the set. It is noteworthy that the SASTT method

demonstration in Liebi et al. (2015) employs only even-order

spherical harmonics, similar to advanced diffusion MRI

methods (Frank, 2001; Tuch et al., 2002; Tuch, 2004) with

l ¼ 0; 2; 4; 6; however, in Liebi et al. (2015) only ml ¼ 0 were

used, thereby assuming cylindrical symmetry. Accordingly, in

its demonstrations thus far SASTT utilizes six independent

parameters, equal to the tensor model: the four coefficients for

the spherical harmonics plus two angles defining the principal

orientation of the nanostructure in 3D space. The assumption

of cylindrical symmetry in Liebi et al. (2015) limits the possi-

bility to model a secondary anisotropy in the plane perpen-

dicular to the dominant direction; this in principle could be

alleviated by optimization of higher m orders. However, this

would increase the number of unknowns in the reconstruction

and remains to be tested. On the other hand, including

spherical harmonics to the sixth order allows for a more

complex representation of anisotropy along the principal

direction, which can capture for instance sharper peaks, as

shown in Fig. 6 in Liebi et al. (2018), or complex scattering

features as shown in Fig. 7 in Liebi et al. (2018) for the q value

corresponding to the collagen peak.

The second important difference between IRTT and

SASTT is the reconstruction algorithm. SASTT uses a

gradient descent method (Cauchy, 1847). Six independent

parameters are updated in every iteration by a gradient

descent algorithm that minimizes an error function, which

quantifies the difference between the current model predic-

tion and the experimental data. However, gradient descent’s

linear search can be slow, in particular if the problem is ill-

conditioned (Greenstadt, 1967; Akaike, 1998), and is also

susceptible to converging to local minima. In contrast, the

IRTT algorithm is based on the concept of error back-

propagation (Rumelhart et al., 1986) which can quickly iden-

tify the structural components that need to be corrected. It

also uses an iterative procedure: in every iteration step the

model is adjusted considering one randomly chosen experi-

mental projection only. This allows reconstruction of the

whole 3D model by a simple process and faster convergence is

achieved. In SASTT, the initial model needs to be defined with
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Figure 10
Comparison of IRTT and SASTT in reconstructing anisotropy of the
trabecular bone specimen, for two representative projection angles. (a)–
(b) Experimental projections showing orientation-encoded maps of the
bone trabecular sample. (c)–(d) SASTT-reconstructed projection
displaying intensities for the same orientations. (e)–(f) IRTT-recon-
structed projections. 2D nanostructure orientation can be interpreted by
the color wheel.



the symmetric intensity and an additional regularization step

is used to improve convergence and to avoid stagnation in

local minima (Liebi et al., 2015, 2018). These steps are not

necessary for IRTT, which shows a robust convergence

towards a unique solution.

The fact that the reconstruction is completely linearized,

along with the robustness of the tensor model, renders the

algorithm robust and significantly faster than previous

methods (Liebi et al., 2015, 2018).

A comparison of the reconstruction results of IRTT and

SASTT is shown in Fig. 10, where the experimental and

reconstructed projections for the trabecular bone specimen

for two angle sets (�; �) are displayed. Overall, both methods

reproduce the main features of the projection anisotropy

reasonably well: the physical dimensions, the directionality

and the degree of anisotropy of the individual sample domains

are captured by both SASTT and IRTT. However, it appears

that spherical harmonics shows better performance in repro-

ducing fine details. This visual observation is also supported by

the quantitative overall error (") as given in equation (9). The

final error was 2.27 for SASTT, 2% lower than the error of

2.32 given for IRTT.

For more detailed comparison between the direction results

from IRTT and SASTT, the dot product of the first eigen-

vector v
*

E1 results reconstructed by IRTT and the vector

v
*

SASTT pointing along the principal direction of anisotropy

derived from SASTT was computed for the trabecular bone

specimen. For reference, a dot product equal to one signifies a

perfect correspondence of the directions reconstructed by the

two methods. Visual inspection of the orientation-encoded

maps shown in Figs. 11(a) and 11(b) reveals good qualitative

agreement. The dot product histogram across all sample

voxels, excluding voxels in air, shown in Fig. 11(c), is skewed

towards v
*

b1 � v
*

SASTT ¼ 1, showing a high level of agreement

between results of the tissue anisotropy analysis from the two

methods. The agreement becomes stronger when considering

only voxels with pronounced nanostructure anisotropy,

defined here as the ratio between the largest and second

largest eigenvalue being 
 2 (Fig. 11d). Computing the dot

product of this subset of voxels results in a distribution highly

skewed towards 1.

3.5. Comparison of reconstruction time

The trabecular bone specimen was used to benchmark and

compare the new IRTT method against SASTT non-linear

optimization reconstruction. Reconstructions were carried

out in one node of the Ra cluster at the Paul Scherrer Institut.

The node has 12 dual-core Intel Xeon E5-2690v3 processors

(2.60 GHz) and 256 GB of RAM. The reconstruction time for

SASTT was 128 min, including all the steps outlined in Liebi et

al. (2015, 2018), i.e. optimization of the symmetric intensity, of

the initial values of the two angles defining the principal

orientation, and jointly the coefficients of the spherical

harmonics and the aforementioned angles using regulariza-

tion, each with 50 iteration steps. It should be noted that the

procedure currently used for determining the regularization

constant using an L curve (Liebi et al., 2018) is time

consuming, 38 min for this case, which in total adds up to

166 min for the SASTT reconstruction of the trabecular bone
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Figure 11
Quantitative comparison of IRTT and SASTT for the trabecular bone specimen. (a)–(b) 3D visualization of the main anisotropy direction: first
eigenvector v

*

E1 reconstructed by IRTT (a), and v
*

SASTT points along the principal direction of anisotropy from SASTT (b). (c) Histogram of the dot
product of unit vectors v̂vE1 � v̂vSASTT across the whole sample. (d) Histogram of the dot product for voxels displaying clear directionality
�1 
 2 �maxð�2; �3Þ.



sample. In contrast, IRTTreconstruction with 10 000 iterations

took 4.5 min, which is a remarkable speed-up of more than

one order of magnitude. Values in this range have also been

confirmed for other test samples.

3.6. Limitations and outlook

The novel IRTT reconstruction method is an efficient tool

for reliably capturing anisotropic tissue structure. Never-

theless, there are some limitations inherent to the model and

algorithms used. Firstly, the second-rank tensor model,

which can be represented by an ellipsoid, is not ideally

suited for capturing complex anisotropy distributions within

a single voxel, e.g. fibers crossing or kissing or a very high

level of anisotropy such as the parallel aligned carbon fibers.

In such cases, more complex models based on multiple

orders of spherical harmonics can be better suited. Higher

nanostructure complexity may require the use of spherical

harmonics of azimuthal orders �l � m � l; in that case we

would give up the cylindrical symmetry approximation while

retaining the center symmetry assumption, similar to DWI

approaches (Frank, 2001; Tuch et al., 2002; Tuch, 2004).

Concerning the number of iterations needed for conver-

gence, in the current study we have selected a number

(10 000) which yielded good results for all samples tested.

Further studies are needed to develop strategies for finding

an optimal iteration number, which will probably be sample

dependent. Also, no regularization strategies have been used

so far, which however might be required when going to

higher iteration numbers, since we expect semi-convergence

phenomena known to iterative reconstruction techniques

(Tommy et al., 2014). Future studies will investigate this.

Concerning reconstruction time, since computations for

error backpropagation are calculated independently along

each beam trajectory, the speed of both methods could be

significantly enhanced by using graphical processing units

(GPU), a step planned for the future.

The method of iterative error backpropagation, which

here is used for the rank-2 tensor representation, could in

principle be applied to reconstruction methods using a

spherical harmonics model, such as SASTT. This would

provide an alternative to the gradient descent approach and

potentially enhance its computation and convergence speed;

work in this direction is currently ongoing.

Although IRTT has been used in this article for modeling

and reconstructing the nanostructure ODF directly, it could

also be used to model and reconstruct the reciprocal-space

sample scattering in each voxel, similar to SASTT, as

explained in the footnote in Section 2.4.

IRTT has been proven to be fast and robust in recovering

the principal orientation of nanostructures, a very time-

consuming step in SASTT (Liebi et al., 2018), which in part

relies on a priori knowledge or assumptions on the sample

structure (Liebi et al., 2018). Based on the methodological

differences between the two methods, it becomes very

attractive to combine them, e.g. using IRTT as a first-line

analysis followed by SASTT to refine the results. For this

reason, IRTT may become particularly useful not only as a

fast and robust stand-alone reconstruction method, but also

in (i) providing an initial guess for SASTT or other recon-

struction algorithms, thereby reducing the overall computa-

tional load, and (ii) enabling online reconstructions for

feedback on data quality and completeness during an

experiment.

4. Conclusion

IRTT is introduced here as a novel, fast and robust method

for tomographic reconstruction of the anisotropic nano-

structure organization inside materials and tissues. IRTT

uses experimental 2D anisotropy information in projections

measured for multiple sample orientations (�; �). The

reconstruction is based on a tensor model for describing the

ODF within each voxel. Model parameters are optimized by

iterative backpropagation of the difference between

experimental and reconstructed data for all voxels for a

randomly chosen projection at each iteration step. IRTT has

been shown to be more than an order of magnitude faster

compared with previously described reconstruction algo-

rithms (Liebi et al., 2015, 2018). This is due to (i) the use of a

simpler physical model characterizing the structural aniso-

tropy, i.e. a second-rank tensor versus spherical harmonics

used in SASTT, and (ii) an optimization algorithm that

employs linearization and error backpropagation to update

the model based on a single projection for each iteration cycle.

IRTT might be used as a robust tensor tomography recon-

struction method, for examining anisotropic nanostructure in

materials and tissues. Additionally, its speed makes it suitable

for use as a quick first-line reconstruction method for identi-

fying the main nanostructure orientation within each voxel,

which can then be used as a starting point for a more refined or

general reconstruction such as SASTT. This would signifi-

cantly reduce the overall reconstruction time by eliminating

the multiple steps needed for SASTT and by significantly

reducing the number of iterations required to refine the

solution.

Feasibility studies with different samples such as a highly

oriented artificial material, as well as hard and soft tissue

specimens, revealed that IRTT yields accurate and robust

reconstructions in an efficient manner. A complete tensor

tomography pipeline based on the IRTT algorithm described

in this article might constitute an attractive tool for studying

microstructural anisotropy in material sciences and in

biomedical research.

APPENDIX A
Sample preparation

Sample A consists of a bundle of carbon fibers (CF-Roving HT

24 K, from Suter-Kunststoffe AG) tied into a knot. Both ends

of the fibers were fixed onto a rectangular metal frame to

expose the knot in the middle.

Sample B is a trabecula from a T12 human vertebra from a

73-year-old man, also described in Liebi et al. (2018). It was
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extracted and all soft tissue removed before embedding into

polymethylmethacrylate (PMMA). The vertebra specimen

was obtained from the Department of Anatomy, Histology

and Embryology at the Innsbruck Medical University,

Innsbruck, Austria, with the written consent of the donor

according to Austrian law.

Sample C is a fixed whole brain specimen from a 5-month-

old female C57BL/6 mouse. All procedures were carried

out according to the Swiss Federal Law for Animal Protection

and approved by the Veterinary Authorities of the Kanton of

Zurich. After the mouse was anesthetized, it was trans-

cranially perfused with phosphate-buffered saline (PBS) and

4% paraformaldehyde (PFA) in PBS, and the brain was

extracted, PFA-fixed overnight at 4�C (277 K), and stored in

PBS at 4�C. For the SAXS scan, the fixed brain was embedded

in PBS-based 1% agarose gel inside a Kapton tube (1 cm in

diameter, 140 mm wall thickness, Goodfellow Cambridge Ltd,

Huntingdon, UK).

APPENDIX B
Experiments

Measurements were performed at the cSAXS beamline

(X12SA) of the Swiss Light Source, Paul Scherrer Institute,

Switzerland. The X-ray beam was monochromated by a fixed-

exit double-crystal Si(111) monochromator, and focused

horizontally, i.e. sagittally, by bending the second mono-

chromator crystal and vertically, i.e. meridionally, by bending a

Rh-coated mirror. To minimize air scattering and X-ray

absorbance a 7 m (for samples A and B) or 2 m (for sample C)

evacuated flight tube was positioned between the sample and

detector. The X-ray scattering was measured with a Pilatus 2M

detector (Henrich et al., 2009) and the transmitted beam

measured simultaneously by a diode mounted on a beamstop

placed inside the flight tube.

Experimental details for the three samples can be found in

Table 1. For sample A, a few rotation angles around � = �90�

had to be excluded due to the supporting metal frame

blocking the view onto the sample. For retrieving the myelin-

specific signal in sample C, the background scattering was

subtracted by fitting an inverse power-law function

IB ¼ a=ðxþ bÞ
�c
þ d. Then, the peak height from Gaussian

peak fitting at q = 0.74 � 0.04 nm�1, the q range of the

strongest myelin peak, was used in order to retrieve the

scattering of myelin, a procedure similar to that described by

Agrawal et al. (2009) and Jensen et al. (2011). Fig. 2 depicts one

representative scattering pattern from each sample, together

with its analyzed q range, also indicated in Table 1.

Acknowledgements

The authors wish to acknowledge Dr Oliver Bunk from the

Paul Scherrer Institute, Switzerland, for valuable discussions,

and Dr Giovanna Ielacqua from the Institute for Biomedical

Engineering of ETH Zurich, Switzerland, for preparing the

brain sample. The Ra cluster is supported by the Data

Analysis Service (142-004) project of the Swiss Universities

SUC P-2 program.

Funding information

This work was partially funded by the Swiss National

Science Foundation (SNSF) (grant Nos. 200021_178788 and

P2EZP3_168920).

References

Agrawal, D., Hawk, R., Avila, R. L., Inouye, H. & Kirschner, D. A.
(2009). J. Struct. Biol. 168, 521–526.

Akaike, H. (1998). Selected Papers of Hirotugu Akaike, edited by E.
Parzen, K. Tanabe & G. Kitagawa, pp. 37–52. New York: Springer.

Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. (2007).
Neurotherapeutics, 4, 316–329.
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