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To date X-ray protein crystallography is the most successful technique available

for the determination of high-resolution 3D structures of biological molecules

and their complexes. In X-ray protein crystallography the structure of a protein

is refined against the set of observed Bragg reflections from a protein crystal.

The resolution of the refined protein structure is limited by the highest angle at

which Bragg reflections can be observed. In addition, the Bragg reflections alone

are typically insufficient (by a factor of two) to determine the structure ab initio,

and so prior information is required. Crystals formed from an imperfect packing

of the protein molecules may also exhibit continuous diffraction between and

beyond these Bragg reflections. When this is due to random displacements of the

molecules from each crystal lattice site, the continuous diffraction provides the

necessary information to determine the protein structure without prior

knowledge, to a resolution that is not limited by the angular extent of the

observed Bragg reflections but instead by that of the diffraction as a whole. This

article presents an iterative projection algorithm that simultaneously uses the

continuous diffraction as well as the Bragg reflections for the determination of

protein structures. The viability of this method is demonstrated on simulated

crystal diffraction.

1. Introduction

The diffraction of coherent radiation from an object onto a

detector placed far from the object gives rise to smoothly

varying diffraction features that are bandwidth limited by the

size of the object. The detector measures the intensity, the

mean-squared value of the electric field amplitude, but not the

phases of the scattered radiation. If the phases were known,

then one could synthesize an image of the object directly by

numerical propagation of the wavefront of the coherent field

from the detector back to the sample. This image would be

proportional to the electron density or scattering strength of

the object. However, without the phases, the numerical

transformation of the measured intensities only yields a map

of the pair correlations, also known as the autocorrelation of

the object density, of the point scatterers in the object.

Despite the missing phase information, it is often the case

that an image of a single object of finite extent can be

reconstructed from the diffraction intensities without prior

knowledge if those smoothly varying diffraction intensities of

the object are sufficiently sampled according to the Nyquist–

Shannon sampling criterion (Nyquist, 2002; Shannon, 1949;

Bates & McDonnell, 1986). Such a reconstruction can be

achieved using a class of iterative projection algorithms (IPAs)
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to solve for the missing phases where only the intensities have

been measured (Marchesini et al., 2003; Dronyak et al., 2009;

Marchesini, 2007). If many copies of the object are packed into

a periodic array, for example in a crystal, then the diffraction

intensities are greatly enhanced at specific scattering angles

corresponding to Bragg reflection angles. The enhancement

factor is equal to the number of repeating objects, which even

in a small macromolecular crystal is large enough to make

such diffraction measurable. The diffraction pattern in this

case consists of Bragg peaks which have a width that is

inversely proportional to the side-length of the crystal and

which are, in general, spaced at intervals that are not fine

enough to satisfy the Nyquist–Shannon criterion of the unit-

cell contents. Thus the Bragg reflections of a crystal are said to

‘under-sample’ the molecular diffraction of the unit cell. This

is the well known ‘phase problem’ and the reason that the

phases of the Bragg peaks cannot be readily determined from

the diffraction alone. It is the central problem that every

crystallographic phasing method must overcome.

We see therefore that the phase problem in crystallography

stems from the under-sampled diffraction intensities by the

Bragg reflections and can more rightly be considered as an

intensity problem (Thibault & Elser, 2010); many experi-

mental and computational strategies have been employed to

increase the measurable information from macromolecular

crystals in order to solve the structure. These methods either

require specific properties of the sample, such as the presence

of heavy atoms, or partial chemical models to gain this infor-

mation – see for example Rupp (2009) for a description of

these methods in the present context. They also depend upon

the measurement of high-resolution diffraction to ensure a

large number of measurements compared with fitting para-

meters in the model. Obtaining well diffracting crystals to give

the necessary high resolution is one of the largest bottlenecks

in the structure determination pipeline. Macromolecules in

crystals are usually only tenuously connected to each other,

leaving large voids throughout the crystal that are filled with

solvent. The fraction of the volume of this solvent often can

exceed 50% (Chruszcz et al., 2008), in which case the Bragg

reflections actually do over-sample the molecular transform

(even though they under-sample the unit-cell diffraction). For

this condition, it becomes possible to apply IPAs to directly

phase the diffraction without any need of a model, high-

resolution data or specific structural characteristics (Millane &

Stroud, 1997; Lo et al., 2016; He & Su, 2015), although Liu et

al. suggest that a solvent fraction of at least 65% is required in

practice (Liu et al., 2012).

More recently, it was found that translational disorder in

crystals of the membrane protein complex photosystem II

(PSII) gives rise to continuous diffraction that can be phased

using an IPA (Ayyer et al., 2016). Random and independent

displacements of rigid units (the PSII dimer) from lattice sites

disrupt the formation of Bragg peaks at high resolutions, and

instead give rise to the incoherent sum of the single-molecule

(continuous) diffraction from the rigid objects. This presents

an opportunity to greatly increase the information content of

the measured diffraction to allow direct imaging (that is, ab

initio phasing), but also raises a challenge in how to best utilize

both the Bragg and continuous diffraction. In our previous

work (Ayyer et al., 2016) these two types of diffraction were

treated separately, with the continuous diffraction used to

extend the resolution of a map that was initially refined from

the Bragg data. Here we present an IPA that uses both types of

diffraction on equal footing to recover an image of the rigid

object in a translationally disordered crystal. The method

generalizes iterative phasing of crystal diffraction data and

combines ideas from the field of coherent diffractive imaging

with analysis concepts such as those used in molecular repla-

cement. We require that the contribution to the diffuse scatter

from other types of disorder in the crystal (except for uncor-

related random atomic displacements and solvent disorder) is

absent, or at least insignificant, compared with the uncorre-

lated rigid-body translations of the molecule/s. It should also

be noted that we do not provide, nor are we aware of, any

definitive prior test for establishing when these conditions are

satisfied.1

2. Diffraction model of the crystal

We consider the mathematical description of a crystal that is

generated from a single rigid unit [with density �rigidðxÞ at

position x]. This rigid unit may be what is generally thought of

as the asymmetric unit of the crystal, or it may be a particular

molecular complex. We consider for now that there is only one

repeating rigid unit, but more generally there could be several

types, such as two domains of a molecule. The unit-cell density

can be generated from the single rigid unit along with the

crystal symmetry and the unit-cell dimensions via rotation and

translation operations �unit cellðxÞ ¼
PM�1

m¼0 �rigidðRm � x� tmÞ,

where the sum is over the M symmetry-related copies of

�rigidðxÞ in the unit cell. Here Rm is the rotation matrix for the

mth copy and tm is the translation vector.

In a perfect crystal without any translational disorder, each

rigid unit of each unit cell within the crystal is located at the

ideal lattice sites Rm � an � tm, where an are the lattice points

that define the entire crystal consisting of N unit cells. In a

crystal with translational disorder each rigid unit (m) of each

unit cell (n) is displaced from its ideal location by an amount

�n;m. We consider displacements drawn from a normal

distribution such that h�n;mi ¼ 0 and h�2
n;mi ¼ �

2. The crystal

density �crystalðxÞ can be generated by a convolution of the

disordered lattice of N points with each of the M rigid units:

�crystalðxÞ ¼
PM�1

m¼0

PN�1

n¼0

�rigidðRm � x� tmÞ � �ðx� an ��m;nÞ:

ð1Þ

It can be shown, for example see Ayyer et al. (2016), that the

diffraction intensities of such a crystal are given by
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1 Recent work from Chapman et al. provides a statistical model for the
continuous diffraction intensities. Under the assumptions listed above, it
becomes possible to predict (for example) the number of rigid units in the
crystal. Therefore, their model could in principle be adapted as a prior test for
translational disorder (Chapman et al., 2017).



IðqÞ ¼ N½1� expð�4�2�2q2
Þ�
PM�1

m¼0

jFrigidðRm � qÞj
2

� �

þ expð�4�2�2q2
Þ
PN�1

n;k¼0

exp½2�iðan � akÞ � q�

�
PM�1

m¼0

FrigidðRm � qÞ expð2�iq � tmÞ

����
����

2

ð2Þ

where q (reciprocal to x) is given in terms of the wavelength �
and the angle between the incoming and outgoing rays � such

that jqj ¼ 2 sinð�=2Þ=�, FrigidðqÞ is the molecular transform of

the rigid unit [equal to the Fourier transform of �rigidðxÞ] and

we assume that the crystal is coherently illuminated.

Measurements of the intensity are made at samples qi (for

pixel i) by a pixellated detector placed far from the crystal.

The second term in equation (2) is the usual formulation for

the Bragg peak intensities, formed by the square of the

coherent sum of the scattering from each of the M rigid units

in their respective mean positions and orientations in the unit

cell. These Bragg peak intensities are modulated by the

Debye–Waller factor expð�4�2�2q2Þ, which decreases from 1

to 0 as the scattering angle increases. The Debye–Waller factor

arises because the Bragg peaks only give information about

the average structure of the unit cell. In this case the average

structure is blurry in real space due to the random displace-

ments, and the effect of this blurring is to diminish the strength

of the Bragg peaks at high resolution (or scattering angle)

according to this factor. The first term of equation (2) is the

incoherent sum of the square modulus of the scattered light

from each of the rigid units. The incoherent sum is similar to

twinning in crystallography, except that here the sum is over

the possible orientations of the rigid unit rather than the

possible orientations of the crystal. It is modulated by the

complementary Debye–Waller factor, which increases from 0

to 1 with increasing scattering angle. We note that distribu-

tions of the translations �n;m could be considered other than

Gaussian, in which case the factors multiplying the two terms

in equation (2) take on different forms as given by the

correlation of �n;m. Other forms of disorder may additionally

occur in the crystal, for example random and independent

displacements of atoms in all molecules that will give rise to

another Debye–Waller factor that modulates the entire

diffraction pattern.

At first glance it may appear that the ratio of the continuous

to the Bragg peak diffraction intensities [arising from the first

and second terms in equation (2), respectively] scales with the

number of unit cells in the crystal. However it is � (rather than

N) that determines the relative strength of the diffuse scatter

to the Bragg reflections in each resolution shell and as a whole.

Although the Bragg peak heights scale as N2, the solid angle is

inversely related to crystal size, giving a signal of integrated

counts that scales as N. In today’s detectors, the width of the

Bragg peak will be less than the angular extent of a single

pixel. In this regime IðqÞ=N is independent of crystal size,

within measurable limits, and the prefactor to the unit-cell

transform can be safely approximated by

XN�1

n¼0

XN�1

k¼0

exp½2�iðan � akÞ � q� ’ N
XN

n¼�N

�ðq� bnÞ;

where bn is the reciprocal-lattice vector with index n. Thus

both terms scale linearly with N and are indeed quite

comparable in terms of the number of scattered contributing

photons (Chapman et al., 2017).

In Fig. 1 we show the simulated diffraction from a potato

multicystatin crystal with translational disorder [PDB (Protein

Data Bank) model 2w9q, Nissen et al., 2009]. The space group

is P212121, which is the most common for protein crystals

(RCSB, 2018) [it occurs in roughly one-third of all monomeric

proteins (Wukovitz & Yeates, 1995)]. Each unit cell in the

crystal has four symmetry-related copies of the rigid unit. The

crystal is simulated with a disorder length of � = 0.6 Å and a
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Figure 1
Model of a P212121 crystal exhibiting translational disorder of the rigid-unit locations and its diffraction. Left: ribbon diagram of a unit cell containing
four rigid units (the potato multicystatin monomers), where we show the rigid-body translations for one of the rigid units to the left and right as a
transparent underlay, corresponding to one standard deviation (� ¼ 0:6 Å). Right: central section through the diffraction volume of the crystal in the
plane [hk0].



crystal size 100 unit cells wide, with a volume of approximately

255� 545� 791 nm. We should note that in fact such crystals

are unlikely to be cubic in shape. In this case the Bragg

reflections are around three orders of magnitude more intense

than the continuous diffraction intensity per pixel for small

scattering angles corresponding to the first few Bragg reflec-

tions (the colour scale in Fig. 1 has been truncated to show

the continuous diffraction). At larger scattering angles the

situation is reversed, such that the Bragg reflection intensities

are negligible when compared with that of the continuous

diffraction. The diffraction data are shown as a slice through

the diffraction volume, intersecting the origin Iðqx; qy; 0Þ, and

the pixel sampling is chosen so that the Bragg reflections are

centred on every second pixel along each dimension. This data

set thus contains eight times the number of data points that

would normally be stored in a list of Bragg peak intensities at

the same resolution.

In this example we consider the simplest case, in which the

rotation and translation operators that relate each of the rigid

units to each other {Rm; tm} form the space group of the

crystal. That is, the rigid units are related by the global crys-

tallographic symmetry and not just by local (or pseudo-)

symmetries. With respect to the information content of the

Bragg reflections, this represents a worst-case scenario, in

which the Bragg reflections and the continuous diffraction

follow the point-group symmetry of the crystal with inversion

symmetry (by Friedel’s law), in this case yielding the space

group Pmmm. Consequently there are eight equivalent

intensity values for most reciprocal vectors, excluding special

values of q such as the origin. Any additional local pseudo-

symmetries will only increase the information content,

although the corresponding symmetry operations {Rm; tm}

would need to be known (or determined) in order to benefit

from this additional information. For the rest of this article, we

will present the general form of this algorithm, applicable

when the rigid units are related by crystallographic or pseudo-

symmetries. However, in the former case it is possible to make

use of the crystal symmetry to more efficiently calculate each

update in the iterative algorithm.

In Appendix A we describe the noise model used to simu-

late the diffraction intensities. There we also describe how �
may be determined directly from the crystal diffraction prior

to phasing and how the number of rigid units in the crystal can

be evaluated by examination of the distribution of continuous

diffraction intensities and its deviation from ideal Wilson

statistics. It is necessary to have good estimates of these

parameters in order to relate the Bragg and continuous

diffraction intensities as needed to recover the structure from

the diffraction, as described in the following section. However,

it is likely that the algorithm could be modified to iteratively

refine initial estimates for these values.

3. Iterative projection algorithm

Having described the observable quantities, namely the

diffraction intensities IðqÞ, in terms of the quantity of interest

which is the rigid-unit density �rigidðxÞ, we now turn to the task

of recovering �rigidðxÞ from IðqÞ for a crystal with translational

disorder. We assume that all quantities in equation (2) (except

of course for Frigid) have been determined. This includes the

disorder parameter �, the internal symmetry of the unit cell

(the R’s and t’s) and additionally the unit-cell parameters as

well as the solvent fraction of the crystal. We cast this problem

in the form of a phase problem in coherent diffractive imaging

(CDI), which requires that we formulate projection operators

responsible for enforcing the known constraints on the solu-

tion which are described below in Sections 4 and 5. We also

describe the conditions that must be satisfied for a unique

solution to exist in Section 6 and, finally, we verify that the

rigid-unit density can be reconstructed from the simulated

noisy diffraction intensity in Section 7.

The phase problem in CDI is commonly formulated as a set

intersection problem in Euclidean space. For example,

consider the problem of retrieving the structure of a single

finite object from its diffraction intensities I. We can represent

any 3D image as a point  in a vector space with a dimen-

sionality equal to the number of voxels in the image. The value

of each coordinate of  is given by the density of the object at

the corresponding voxel. We can then define the set of all

objects that are consistent with the given diffraction intensities

(the data constraint set D) and the set of objects that are

contained within a given finite volume (the real-space or

support constraint set S). The solutions are given by the points

 that form the intersection of the two constraint sets D \ S,

since these represent 3D images that are simultaneously

consistent with the measured diffraction and the support

constraint. The possible solutions can be related by trivial

operations (Bruck & Sodin, 1979; Hayes et al., 1980; Bates,

1982) such as inversion and translation. The projection

operator PS maps a given point  onto a point, in the set S,

that is nearest to  , and similarly for D. For example,

 p ¼ PD �  (the ‘�’ here simply connects the operator PD to

the operand  ) makes the smallest change to  necessary for

 p to be a member of the set D consistent with the measured

data. Many algorithms, such as the error-reduction (ER),

hybrid input–output (HIO) or difference-map (DM), repeat-

edly apply both of these projection operators to find the

intersection points (Fienup, 1978; Bauschke et al., 2002; Elser,

2003). For this work, we employ a combination of the ER and

DM algorithms. The ER algorithm is simplest; it applies first

the real-space projection followed by the data projection

operator and is guaranteed to reduce the distance between the

current guess ( ) and the two constraint sets (S and D) after

each update but is prone to slow convergence or stagnation at

points far from the global solution. The DM algorithm

employs a somewhat more complex update rule that is

designed to avoid stagnation and improve convergence speed

but is more computationally expensive per update cycle, due

to the increased number of projection operations required per

iteration.

Before continuing, for notational convenience, let us first

vectorize functions of r and q so that, say, f ðqÞ can be repre-

sented as a vector f such that fi ¼ f ðqiÞ and all equations

relating bold quantities should be understood as element-wise

28 Andrew J. Morgan et al. � Phasing of disordered crystals Acta Cryst. (2019). A75, 25–40
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relations. For example a = bc is equivalent to aðqÞ =

bðqÞ � cðqÞ for all q. Note that we have used simple juxta-

position, rather than ‘�’, to represent element-wise multi-

plication in order to avoid confusion with the vector cross-

product operator. In the above example, the support projec-

tion PS is carried out by setting all elements of

w ¼  ðrÞ outside the support region S to zero, so that

wp ¼ PS � w ¼ Sw, where S (not to be confused with the set

S) is 1 inside the support region and 0 outside.

4. Data projection

For the data projection PD, we now employ a useful property

of projection operators, which is that they may be defined in

real or reciprocal space. This is because the Euclidean

distances between vectors are preserved under a Fourier

transform (Parseval’s theorem). In this example, where

diffraction is measured from a single finite object, the

diffraction intensities of our object I ¼ IðqÞ are equal to the

square modulus of the Fourier transform of the object density

which in turn is equal to the sum of the squares of its real and

imaginary components jŵwj2 ¼ ŵw2
r þ ŵw2

i , where ŵw is the Fourier

transform of w. At every voxel in reciprocal space we wish to

make the smallest change to the independent variables ŵwr and

ŵwi such that ŵw2
r þ ŵw2

i ¼ I. This equation describes the

constraint surface at each q value as a circle of radius I1=2 and

the projection operator simply scales ŵw while keeping the ratio

ŵwr=ŵwi fixed: ŵwp ¼ PD � ŵw ¼ ŵwI1=2=jŵwj.
Let us return to the case of a crystal with translational

disorder. In this case it is not immediately clear how these

projection operators should be defined. To see this, let us

group the prefactors to Frigid in equation (2) into the diffuse

weighting terms D and the Bragg weighting terms B:

DðqÞ ¼ N½1� expð�4�2�2q2Þ� and

BðqÞ ¼ expð�4�2�2q2
Þ
PN�1

n¼0

PN�1

k¼0

exp½2�iðan � akÞ � q� ð3Þ

so that equation (2) can now be written:

IðqÞ ¼ DðqÞ
PM�1

m¼0

jFrigidðRm � qÞj
2

þ BðqÞ
PM�1

m¼0

FrigidðRm � qÞ expð2�iq � tmÞ

����
����

2

: ð4Þ

Consider the influence of Frigid on I in our P212121 crystal.

Here M ¼ 4 and so, by equation (4), each q-space voxel gains

contributions from four different Fourier components of �rigid

from each of the four orientations of �rigid. Conversely, each

Fourier component of �rigid will influence the intensity

observed in the four symmetry-related q-space voxels.

Therefore, in order to determine the projection operation for

a single Fourier component of �rigid, four coupled non-linear

equations must be solved.

One way to decouple the effect of the symmetry-related

values of Frigid on the observed intensity is to expand the state

vector to include each occurrence of FrigidðRm � qÞ in equation

(4) as an independent mode:

ŵw ¼ fF0; . . . ;FM�1g ð5Þ

where

FmðqÞ ¼ FrigidðRm � qÞ expð2�iq � tmÞ: ð6Þ

Inserting equation (6) into equation (4) yields

I ¼ D
PM�1

m¼0

jFmj
2
þ B

PM�1

m¼0

Fm

����
����

2

¼ D
PM�1

m¼0

Fr
mð Þ

2
þ Fi

m

� �2
h i

þ B
PM�1

m¼0

Fr
m

� �2

þ
PM�1

m¼0

Fi
m

� �2
" #

ð7Þ

where, in the second line, we have expanded Fm in terms of its

real and imaginary components (Fr
m and Fi

m, respectively) in

order to better illustrate the number of independent variables.

Consider first when there is no crystal disorder and

measurements are only taken at the Bragg peaks. Millane &

Lo (2013) have examined this case, where D ¼ 0. They set the

coherent sum over the reciprocal rigid units equal to the unit-

cell transform U ¼
PM�1

m¼0 Fm. The constraint surface is now a

circle in 2D space (for every voxel in reciprocal space) and the

data projection must rescale U by the ratio I1=2=jUj. With this

construction, the real-space projection enforces any known

internal symmetries of the unit cell. Indeed, these projections

can be used to phase Bragg reflections using the principles of

CDI for crystals of high solvent content (He & Su, 2015).

At the other extreme, when B ¼ 0, and the set of M rotation

operators Rm form a group, Elser & Millane (2008) have

shown that the constraint surface forms a ð2M � 1Þ-sphere in

2M-dimensional space of radius ðI=DÞ1=2, one dimension for

each of the real and imaginary components of Fm and again

for each voxel in reciprocal space. The data projection

then rescales each of the rotated Frigid’s by the ratio

ðI=D
PM�1

m¼0 jFmj
2
Þ

1=2. As a physical realization of this case,

Elser and Millane were motivated by diffraction of laser-

aligned molecules which can exist in equal populations aligned

parallel and antiparallel to an alignment axis with completely

random intermolecule translations (�!1).

In general, however, D> 0 and B> 0, which is a departure

from the above cases in two ways. First, the intensity depends

on a mixture of coherent and incoherent additions over the

Fm. Second, the contribution to the intensity from the

coherent and incoherent summations of Fm has weighting

factors that can vary with q. Chen et al. (2016) formulated

projection operators to account for mixtures of coherent and

incoherent additions, arising in the context of diffraction of

finite crystals. However, this formulation can only incorporate

constant (non-q-dependent) values for D and B. In the second

case, we have a more fundamental departure from previous

work in this field, where most phase problems rely on data

projection operators that project a point onto a hyper-sphere

or a hyper-cylinder. In the present case, however, equation (7)

describes a 2M-dimensional hyper-ellipsoid for arbitrary D

and B. For a crystal composed of a single rigid-unit type, this

2M-hyper-ellipsoid can be reduced to a 2D ellipse (in general,

the dimension of the ellipse is twice the number of rigid-unit
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types). Nevertheless, the projection cannot be described in

terms of simple operations (such as rescaling). In the following

section (4.1) we derive the data projection operator PD and

show that it satisfies the requirements as a distance-minimizing

mapping of  ̂ onto the set D. This involves the use of a simple

algorithm for projecting a point onto an ellipse surface, for

which we have written a Python implementation of the

procedure described by Eberly (2011).

4.1. Data projection: derivation

Given the state vector  ̂ , the data projection PD is an

operator that minimizes the Euclidean distance:P
jPD � ŵw� ŵwj2 ð8Þ

such that equation (7) is satisfied by PD � ŵw (the sum is over

each element of ŵw).

Currently, equation (7) describes a multi-dimensional

ellipse; this we know simply because it is a quadratic equation

constraining each of the values in our state vector  ̂ (or

equivalently the set of Fm’s). One way to simplify equation (7)

is to rotate our basis vectors so that they are aligned to the

principal axes of the ellipse. Fortunately, this rotation matrix is

somewhat trivial to construct in the present case. Consider the

second term in equation (7), which involves the coherent sum

over all m components of Fm, suggesting that we might find a

rotation matrix such that this coherent sum is represented by a

single component in the new basis. Indeed, Rnm ¼

1=M1=2 expð�2�inm=MÞ is sufficient for this task and Rnm � fm

is nothing but a discrete Fourier transform with an easily

constructed inverse R�1
nm ¼ 1=M1=2 expð2�inm=MÞ.

So, let us rotate our state vector from ŵw ¼ fF0; . . . ;FM�1g to

ŵw0 ¼ fF̂F0; . . . ; F̂FM�1g, where F̂Fn is the Fourier transform of Fm

over m (not q!), so that

F̂Fn ¼
1

M1=2

XM�1

m¼0

Fm exp �2�i
nm

M

	 

: ð9Þ

With this transformation F̂F0 ¼ ð1=M1=2Þ
P

m Fm andP
n jF̂Fnj

2
¼
P

m jFmj
2. Equation (7) becomes

D
PM�1

n¼0

jF̂Fnj
2
þMBjF̂F0j

2
¼ I;

ðDþMBÞjF̂F0j
2
þD

PM�1

n¼1

jF̂Fnj
2
¼ I: ð10Þ

Note that F̂F0 ¼ð1=M1=2Þ
PM�1

m¼0 Fm is nothing but the coherent

sum over each rigid unit in the unit cell (the unit-cell

transform of the crystal) scaled by 1=M1=2. The transform from

F to F̂F is unitary on our state vector and so distances between

vectors in this space are preserved. As a consequenceP
jP̂PD � ŵw� ŵwj2 ¼

P
jP̂PD � ŵw

0 � ŵw0j2. That is, we are free to

rotate our state vector from ŵw to ŵw0, apply the data projection

to obtain ŵw0P ¼ P̂PD � ŵw
0 and then rotate back to get the

projected state vector ŵwP in our original basis.

With the substitutions e0 = ½I=ðDþMBÞ�1=2 and e1 = ðI=DÞ1=2

we can recast equation (10) in the form of a 2M-dimensional

hyper-ellipsoid (one dimension for each of the real and

imaginary components of F̂Fn):

jF̂F0j
2

e2
0

þ

PM�1
n¼0 jF̂Fnj

2

e2
1

¼ 1: ð11Þ

Here all of the hyper-ellipsoid semi-axes (at a particular voxel)

are one of e0 or e1, suggesting a high degree of symmetry,

which we will now make use of. First we note that the phases of

F̂Fn are not present in the equation for the hyper-ellipsoid (we

remind the reader that these are not the phases of the scat-

tering amplitudes which we are trying to solve for). Therefore,

a change in these phases represents a motion in ŵw0 that is

parallel to the surface of the hyper-ellipsoid. Since the vector

P̂PD �  ̂ 
0 �  ̂ 0 that projects  ̂ 0 onto the constraint surface must

be orthogonal to the constraint surface, this vector must also

be independent of these phases. We can therefore keep the

phases of F̂Fn constant in our projection and factor them out of

equation (11). The same is also true for any relative change in

jF̂Fnj (for n> 0) that keeps the total (
PM�1

n¼1 jF̂Fnj
2) constant.

Therefore we can make the substitution:

x2
� jF̂F0j

2 and y2
�
PM�1

n¼1

jF̂Fnj
2

ð12Þ

so that equation (11) reduces to the equation for a 2D ellipse:

x2

e2
0

þ
y2

e2
1

¼ 1: ð13Þ

Thus the data projection for the state vector  ̂ maps to the

problem of projecting any 2D vector (x; y) to the closest point

on the surface of the ellipse ðxp; ypÞ ¼ P̂Pellipseðe0; e1Þ � ðx; yÞ.

Although we can find no closed-form solution for this

projection, the points (xp; yp) can be obtained by assessing

candidates from the roots of a fourth-order polynomial

equation (Hart, 1994). In an excellent review by Eberly

(2011), this method is compared to numerical solutions based

on root finding. He finds that the bisection method applied to

a parametrized form of the ellipse equation provides the most

reliable results, and can be generalized to any number of

dimensions. We provide Python code that projects a point

onto an ellipse surface following the suggestions of Eberly.2

While this may be the first time that a physical diffraction

model has motivated the use of an ellipse projection, Borwein

et al. (2018) have developed an algorithm for projecting a

point onto a 2D ellipse for the purpose of analysing the

dynamics of an iterative algorithm called the Douglas–

Rachford method. They employ an algorithm based on

Newton’s method (a root-finding algorithm), an approach that

Eberly had earlier rejected in favour of the bisection search

(because it is more numerically stable). Shortly before this

work, Elser (2017), also in the context of phase retrieval,

developed algorithms for projecting a point onto constraint

surfaces that can be described by the matrix equation

XY ¼ C, where C is the constraint matrix and X, Y contain

the state variables. While this constraint equation cannot be

used to describe an ellipse, the iterative scheme employed by

Elser to solve for these other projections is applicable in the

present case. We have tested the algorithms from both Elser
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and Eberly (though we do not claim to have done so defini-

tively) and found that they are roughly equivalent in speed

and robustness. However, we favour the approach described

by Eberly because it is well documented.

As an example, consider an ellipse with e0=e1 ¼ 4, as shown

to the left in Fig. 2. The black line is the set of all points (x; y)

that are consistent with the measured intensity at a given q.

Starting at a given point (shown in green), the data projection

finds the closest point on the ellipse (shown as the blue vector)

where ðxp; ypÞ ¼ P̂Pellipseðe0; e1Þ � ðx; yÞ. For an initial point ðx; yÞ

along the major axis of the ellipse in the interval jxj< f"
(shown in grey), where f and " are the focus [ðe2

0 � e2
1Þ

1=2] and

eccentricity (f=e0) of the ellipse, respectively, the projection

operation has two possible outcomes ðxp;	ypÞ (as shown in

lighter blue). In this case our algorithm arbitrarily chooses to

project upwards to ðxp; ypÞ. If y ¼ 0 and jxj 
 f" then x is

projected to the right- or left-most point of the ellipse, i.e.

xp ¼ e0 for x 
 f" and xp ¼ �e0 for x � �f".
In contrast to this data projection, consider conventional

phase retrieval with a single coherent mode  ; here the data

projection is given by P̂PD �  ̂ ¼  ̂ � ðI=IfÞ
1=2 where If is the

forward model for the measured intensity, given the current

state vector (usually If ¼ j ̂ j
2). This is a simple rescaling of the

state vector by the ratio of the square root of the intensity with

the forward model of the intensity and is illustrated by the red

dashed lines in Fig. 2. This is not the closest point on the

constraint set to  ̂ , and hence is not a projection operator, and

therefore an iterative algorithm based upon this will not

possess the standard convergence properties.

In Fig. 2 (middle) we show the special case where e1=e0 ¼ 1

and the ellipse reduces to a circle. In the unlikely case where

this applies, the data projection reduces to a rescaling of the

model intensity and the elliptical projection is identical to the

conventional projection. When e1 !1 (right) or e0 !1

(not shown) the data projection rescales x (right) or y (not

shown) with two solutions along the axis.

Having projected ðx; yÞ onto the ellipse, the data projection

then simply maps the points ðxp; ypÞ back into our original

basis. This is achieved by rescaling F̂F0 by the ratio xp=x and

each of the F̂Fn by yp=y, for n> 0, and then computing the

discrete inverse Fourier transform over n.

In Table 1 we summarize the procedure for performing the

data projection on each of the Fourier space modes Fm.

5. Real-space projection and support update

PS is more straightforward to construct; it makes the smallest

change to a given estimate for the rigid-unit densities at a

given iterate such that the mapped projection is consistent

with our prior knowledge of the crystal. We must ensure that

the rigid units are all identical copies of themselves (in

different orientations), that they are arranged according to the

symmetry of the crystal, that their densities do not overlap,

and that they each have a given number of volume elements

that deviate from the solvent density level, consistent with the

solvent fraction of the crystal.

In the following section (5.1) we derive PS and show that PS
also satisfies the requirements as a projection operator. To

summarize: the M estimates for the rigid units are averaged

within the volume known to occupy the rigid unit, that is the

‘support volume’, after first overlaying them by applying the

inverse of the rotation and translation operations for each.

This averaged rigid unit is then replicated and placed back into

the unit cell according to the symmetry of the crystal. These M

copies of the rigid unit are then propagated back to reciprocal

space by a Fourier transform.

Additionally, if the support volume is not known, then it can

be periodically updated based on the current estimate of the

rigid-unit density in a manner similar to that of Marchesini’s

‘shrink-wrap’ algorithm (Marchesini et al., 2003). In the

current case of the potato multicystatin crystal, an estimate for

the support was updated by keeping the highest density values

for the averaged rigid unit, within a loose support region, such

that the total number of elements is equal to a given number

(the voxel number support) consistent with the solvent frac-

tion of the crystal. This support volume is then convolved with

a Gaussian kernel and the voxel number support is applied

once again to this function. For this first step we have found

that it was necessary to apply the additional (very loose)
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Figure 2
Elliptical data projection of the diffuse and unit-cell amplitudes onto the
data constraint surface with e0=e1 ¼ 4; the red dashed line illustrates the
projected path taken by a simple rescaling and the black dashed line the
shortest path to the constraint surface. Spherical projection onto a circle
with e0=e1 ¼ 1. Line projection onto a line along the axis with e0=e1 ¼ 0.

Table 1
Data projection operation.

The superscript ‘p’ signifies a projected quantity, D and B can be determined
from the data and are defined in equation (3), and P̂Pellipseðe0; e1Þ � ðx; yÞ is
calculated numerically.

Step 1 F̂Fn ¼
1

M1=2

XM�1

m¼0

Fm exp �2�i
nm

M

	 


Step 2 x ¼ jF̂F0j y ¼
XM�1

n¼1

jF̂Fnj
2

 !1=2

Step 3 e0 ¼ ½I=ðDþMBÞ�1=2 e1 ¼ ðI=DÞ1=2

Step 4 ðxp; ypÞ ¼ P̂Pellipseðe0; e1Þ � ðx; yÞ

Step 5 F̂F
p

0 ¼ F̂F0

xp

x
F̂F

p

n ¼ F̂Fn

yp

y
for n> 0

Step 6 Fp
m ¼

1

M1=2

XM�1

n¼0

F̂F
p

n exp 2�i
nm

M

	 




support on the rigid-unit density. This region is indicated by

the black dashed line in Fig. 5 (bottom left) and is equal to

40% of the unit-cell volume. Without this additional constraint

it was commonly observed that the support would become

fragmented, even with an aggressive smoothing parameter.

The Gaussian smoothing kernel has a standard deviation of

0.5 Å.

5.1. Real-space projection and support update: derivation

Let us now formulate the constraints listed in the previous

section mathematically: we wish to find PS such that

ŵwp
¼ PS � ŵw ¼ fF

p
0; . . . ;F

p
M�1g ð14Þ

where

Fp
mðqÞ ¼ F

p
rigidðRm � qÞ expð2�iq � tmÞ; ð15Þ

ensuring that the rigid-unit densities are identical and

arranged according to the crystal symmetry. We also require

that

�p
rigidðrÞ ¼ SðrÞ � �p

rigidðrÞ ð16Þ

where �p
rigid ¼ F

�1
ðF

p
rigidÞ and SðrÞ is the support of the rigid

unit with a given volume, ensuring that the rigid units have a

fixed number of voxels. Note that equation (16) defines a

constraint that must be enforced by the projection operation

and is not (as is often the case) the projection operation itself,

which we will derive shortly. So, to satisfy equation (16) we

require that

" ¼
P
jPS �  �  j

2
ð17Þ

is minimized for any  , ensuring that PS is a distance-

minimizing projection in Euclidean space. Note that in

equations (14)–(16) we have used the superscript ‘p’ to

represent projected quantities. In addition we demand that

there is no spatial overlap between the symmetry-related

copies of the rigid unit in the crystal. To reiterate, the goal here

is to find PS , which is defined by the projected modes Fp
m,

which in turn are given by F
p
rigid (related by a Fourier transform

to q
p
rigid). This can be achieved by minimizing equation (17)

with respect to PS.

First, let us assume that the support region SðrÞ is known.

We can express the error in equation (17) in terms of the

deviation between the real-space rigid units inside this support

region. Expanding equation (17) in terms of the unit-cell

modes yields

" ¼
P
j p �  j2

¼
P
m

P
q

jFp
mðqÞ � FmðqÞj

2
� �

¼
P
m

P
q

jF
p
rigidðRm � qÞ expð2�iq � tmÞ � FmðqÞj

2
h i

: ð18Þ

As the distance between vectors is preserved under a unitary

transformation of the vectors, we are free to apply the

following transformations:

" ¼
P
m

P
q

F
p
rigidðqÞ � FmðR

�1
m � qÞ expð�2�iq � tmÞj

2
h i

¼
P
m

P
r2S

j�p
rigidðrÞ � �m½R

�1
m � ðrþ tmÞ�j

2
n o

: ð19Þ

In this first step we have applied the inverse of the rotation

and translation operators defined by the space group of the

crystal to each of the unit-cell modes. This serves to bring each

estimate of the reciprocal rigid unit into register. In the

following step we propagate each mode to real space via an

inverse Fourier transform where the sum over r is confined to

the real-space volume of the rigid unit such that
P

r2S ¼P
r SðrÞ ¼ V.

It can be shown that

�p
rigidðrÞ ¼ SðrÞ �

1

M

X
m

�m½R
�1
m � ðrþ tmÞ� ð20Þ

minimizes the Euclidean distance (") in equation (19)

(Bricogne, 1974). �rigid in equation (20) now satisfies two

constraints, the internal symmetry of the unit cell and the

support constraint, and is thus at an intersection of these two

sets. Because the two projections, multiplication by SðrÞ and

the average over m, commute they form a single projection

operation onto the set formed by their intersection.

We can now simply Fourier transform �p
rigidðrÞ to obtain

F
p
rigidðqÞ. The projected modes are then given by application of

equation (15). These operations are illustrated as a flow

diagram in Fig. 3, where we have used a 2D crystal of ducks

with the space group p2=m. This is the same toy model as

illustrated in Fig. 4.

Now we describe our procedure for updating the support

region SðrÞ, given an estimate for the rigid-unit density �rigidðrÞ.

This procedure consists of four steps. First, �rigidðrÞ is multi-

plied by a very loose support SlooseðrÞ. This region may be

much bigger than the rigid unit itself and may also contain

parts of the unit cell which are occupied by the symmetry-

related copies of the rigid unit. We found that this step is

necessary to avoid fragmentation of the support to different

regions of the field of view, despite the aforementioned

smoothing procedure. Second, within the loose support

region, we apply a voxel number projection which enforces the

solvent fraction of the crystal. Third, this support volume is

then smoothed with a Gaussian kernal. This step, which is

employed in a similar way in Marchesini’s ‘shrink-wrap’

algorithm (Marchesini et al., 2003), biases low-resolution

features in �rigidðrÞ and helps to remove small isolated regions

from the resulting support envelope. Finally, the voxel number

support is applied (once again) to the smoothed support

volume.

In both cases the voxel number support, first posited (in the

context of CDI) by Elser (2003), has been modified to include

collision avoidance between rigid units in the crystal:

(1) For all r, assign Sno overlapðrÞ ¼ 1

if j�rigidðrÞj ¼ maxfj�p
rigidðr0Þj; . . . ; j�p

rigidðrMÞjg

and SlooseðrÞ ¼ 1,

otherwise assign Sno overlapðrÞ ¼ 0.
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(2) Within the no overlap volume [SoverlapðrÞ] keep only the

V most intense values of �p
rigidðrÞ by setting:

SðriÞ ¼ 1 for i<V

where the set fjSno overlapðriÞ�
p
rigidðriÞj

2
gi is sorted from highest

to lowest value,

where rm ¼ Rm � r� tm.

This last operation is, of itself, a projection operator (Elser,

2003) but does not commute with the averaging projection and

so the procedure outlined here for updating SðrÞ cannot join

equation (20) as a single projection and should therefore be

applied periodically outside the projection algorithm.

And so, with the above procedure for finding the support

volume and equation (20) for the rigid unit, we can map the

unit-cell modes onto the closest set of modes that are

consistent with a single rigid unit.

6. Uniqueness of the solution

In phase retrieval the constraint ratio (�) is defined by the

ratio of linearly independent equations to unknown quantities

in the phase problem3 (Elser & Millane, 2008). If �< 1 then

the phase problem is certainly under-determined and there is

no unique solution. For � 
 1, a given solution may be unique

and in some cases it can be shown that multiple solutions are

pathologically rare (Bates, 1984). Thus � 
 1 is a necessary

but not sufficient condition for a unique solution. A single

isolated object has � 
 4, where the lower bound corresponds

to an object with a convex and centrosymmetric support, while

non-convex supports have a higher constraint ratio and are

easier to solve (Fienup, 1987).

In the following section (6.1) we derive expressions for the

constraint ratio when phasing from Bragg reflections (�crystal

corresponding to D ¼ 0), continuous diffraction (�continuous for

B ¼ 0) and from their sum (�total when

B> 0 and D> 0). We find that for the ten

most common crystal space groups released

in the PDB, representing approximately

77% of all structures in the PDB (RCSB,

2018), �total 
 1, suggesting that ab initio

phasing is almost always possible in principle

for crystals that possess purely translational

disorder.

These results are summarized in Table 2

where we provide the lower bound of these

constraint ratios for a few crystal space

groups, including the ten most common

space groups listed in the PDB (RCSB,

2018). These lower bounds correspond to

the case of zero solvent fraction. Most

proteins have a significant volume of solvent

which, if known or determined, will

increase �.

6.1. Uniqueness of the solution: derivation

The Fourier transform of diffraction intensities of any

object (including a crystal or single particle) is equal to the

autocorrelation function of that object. Thus, the information

content of a diffraction pattern can be quantified by the area

and symmetry of the non-zero regions of the autocorrelation

function. In phase retrieval the constraint ratio (�) defines

the ratio of independent equations to unknown quantities in

the phase problem. For a single isolated object � =

VðASÞ=½2VðSÞ�, where AS is the support of the autocorrelation

of the object support, that is, the region outside of which A is

known to be zero, VðASÞ=2 is half the volume of the AS and

VðSÞ is the number of unknown elements (voxels) in the object

support (S) (Elser & Millane, 2008). The factor of one-half

arises because the autocorrelation of the object is equal to the

inverse Fourier transform of the real-valued diffraction

intensities and thus has Hermitian symmetry, AðxÞ = A�ð�xÞ =R
g�ðx0Þgðxþ x0Þ dx0 = F�1

jGðqÞj2 where F is the Fourier

transform operator and g� is the complex conjugate of g. If the

object function is complex valued, then the number of

unknowns is twice the support volume 2VðSÞ, but in that case

A is also complex, yielding twice the number of equations and

so � is unchanged. A convex and centrosymmetric object

(such as a cuboid) has VðASÞ ¼ 8VðSÞ and yields the lowest

constraint ratio with � ¼ 4, while non-convex supports have a

higher constraint ratio and are easier to solve (Fienup, 1987).

Since the continuous diffraction is the incoherent sum of the

transforms of the rigid units in each of their orientations of the

crystal [see equation (2)], the inverse Fourier transform of the

continuous diffraction is the sum of the autocorrelations of

each of these rigid units. By way of illustration, consider a

single unit cell in a 2D crystal with plane group pm as shown in

Fig. 4(a). The unit cell consists of two rigid units (here ducks)

which randomly displace independently of each other. The

dimensions of the unit cell are indicated by the black rectangle

and the single mirror plane is indicated by the horizontal thick
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Figure 3
Flow diagram illustrating the real-space projection operation for a 2D crystal. The crystal has
the space group p2=m and the unit cell consists of two ducks separated by a mirror plane cut
horizontally across the middle of the array. Also illustrated is the procedure for updating the
real-space support region, which is not part of the projection operation.

3 By ‘linearly independent equations’ we mean here the number of equations
relating the unknown quantities to the known quantities that are not linearly
related by known constraints or symmetries of the system.



line. The regions occupied by the two symmetry-related ducks

we write as �S
0 and �S

1 where �S is the support area of � and the

subscript is used to index the rigid unit in the unit cell (0 for

blue and 1 for red). In Fig. 4(b) we display two regions, each

corresponding to the support area of the autocorrelation of

one of the ducks (the colouring indicates which is which). The

rigid outline bounds the union of the two regions which is

given by AS
0 [ AS

1 ¼ [mAS
m. Here inversion symmetry at the

origin (shown as a white circle) has generated a second mirror

plane perpendicular to the first and so the unique area of

[mAS
m is confined to one-fourth of the total (rather than one-

half as above). In this case the constraint ratio is therefore less

than that given by diffraction from a single object by a factor 2,

such that � ¼ Vð[mAS
mÞ=½4VðSÞ�. For the general case, the

constraint ratio from symmetry-averaged diffraction data has

been examined in the work of Elser & Millane (2008). They

find that when the set of M orientations (Rm) form a closed set

(they form a group), then the constraint ratio is given by

�continuous ¼
Vð[mAS

mÞ

PiVðSÞ
ð21Þ

where Pi is the number of symmetry operators in the space

group (including the identity operator) generated by inversion

through the origin and the set of rotation operators Rm (this is

equal to the number of symmetry operators in the Patterson

group). Thus Pi is always greater than or equal to 2. In the

worst case, the support of the object is centrosymmetric and

invariant to a rotation under any of the rotation operations, in

which case the autocorrelation functions all overlap and

Vð[mAS
mÞ ¼ VðAS

0Þ ¼ 8VðSÞ, so that �continuous = 8VðSÞ=PiVðSÞ

= 8=Pi. That is, the constraint ratio is reduced by a factor equal

to the number of point-group operations (excluding inversion

symmetry) with respect to the single-particle case. For the

simulation shown in Fig. 1 the space group is P212121, this

has a Patterson group Pmmm which has eight symmetry

operations including inversion through the origin, yielding

�continuous ¼ 2:64. If the support were (say) a sphere, then

�continuous ¼ 1, in which case phase retrieval is generally not

considered to be possible in the absence of other prior

constraints [that is, beyond a knowledge of S or VðSÞ].

As seen in equation (2), the Bragg peak intensities are given

by the modulus square of the Fourier transform of the unit

cell. That is, it is the coherent addition of all rigid units,

arranged and oriented in the unit cell. Thus, the autocorrela-

tion of the unit cell contains autocorrelations of the two rigid

units (as is the case for the continuous diffraction) in addition

to cross-correlation terms that arise from the quadratic

expansion of the autocorrelation in terms of the two rigid

units: AðUÞ = Að�0 þ �1Þ = Að�0Þ + Að�1Þ + Cð�0; �1Þ +

Cð�1; �0Þ, where Cð�0; �1ÞðxÞ =
R
��0ðx

0Þ�1ðxþ x0Þ dx0. The

autocorrelation support of the unit cell (bold outline)

including the cross-correlation supports (yellow region) and

the two autocorrelation support regions [red and blue as in

(b)] are shown in Fig. 4(c). This function has the same

symmetry axes as those in (b) and has a larger support that

also extends beyond the region of the unit cell itself. The

inverse Fourier transform of Bragg peaks from a perfect

crystal is equal to the autocorrelation of the entire (perfect)

crystal, which has the same periodicity in real space as the

crystal. Therefore, the autocorrelation of the single unit cell

shown in Fig. 4(c) overlaps with the neighbouring cells, giving

rise to an aliasing. This aliased autocorrelation function is

called the Patterson function of the crystal. This aliasing is

illustrated in Fig. 4(d). To guide the eye, regions that are

related to those within the unit-cell area by translation

symmetry are shown in grey. We write the autocorrelation

function, aliased by the reciprocal lattice [LðqÞ] and

bounded by the unit-cell support [USðxÞ], as AðgÞðxÞ =

USðxÞF�1½LðqÞjGðqÞj2�, the aliased autocorrelation support for

the mth rigid unit as A
S
m and the aliased cross-correlation

support for rigid units m and n as CS
mn. As the Patterson map

possesses the same symmetry as the autocorrelations in

Fig. 4(b) and the number of unknowns are also the same, the

expression for the constraint ratio is given by equation (21)

but with the substitution AS
m !A

S
:

�crystal ¼
VðA

S
Þ

PiVðSÞ
: ð22Þ

This derivation follows closely that of Millane & Arnal (2015).

There they also consider the case when only the solvent

content [and consequently VðSÞ] is known rather than the

support itself. They find that when the volume, and not the

envelope, of the rigid unit is used to constrain the phase

problem, then the constraint ratio remains unchanged,

although the speed of convergence is much reduced due to the

large multiplicity of supports with equal volume. Consider the

extreme case where the space group of the crystal and the rigid

object support are unknown; then the number of unknowns is

equal to the volume of the unit cell VðSÞ ¼ VðUSÞ, Pi is given

by the identity operator and the point-group symmetry of

the Patterson map so that Pi ¼ 2, m ¼ 1 and VðA
S
Þ is also

equal to VðUSÞ. This gives �crystal ¼ VðUSÞ=2VðUSÞ ¼ 1=2 [as
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Table 2
The constraint ratio for ab initio phase retrieval from symmetry summed
diffraction (�continuous), Bragg reflections (�crystal) and from their sum
(�total).

The lower limit corresponds to cases where there is no solvent content, the
rigid-unit support is centrosymmetric and convex, the Bragg reflections are
point like and there are no known local pseudo-symmetries in the crystal or
other prior constraints. In the last column we also list the estimated percentage
of the total number of PDB entries for that space group.

Space group �continuous (
) �crystal (
) �total (
) % of PDB

Fig. 1 (tight support) = 1.9 = 0.7 = 2.6 NA
P212121 1 1/2 3/2 23.3
P1211 2 1/2 5/2 16.7
C121 1 1/2 3/2 9.8
C2221 1/2 1/2 1 5.1
P21212 1 1/2 3/2 5.1
P1 4 1/2 9/2 4.0
P43212 1/2 1/2 1 3.9
P41212 1/2 1/2 1 3.2
P3221 2/3 1/2 7/6 3.2
P3121 2/3 1/2 7/6 3.0
P1 8 1 9 0.02



discovered by Sayre (1952)] and is a factor of eight less than

the worst case for single-molecule imaging. For a P212121

crystal and with no support volume, VðA
S
Þ ¼ VðUSÞ, Pi ¼ 8

and VðSÞ ¼ VðUSÞ=4 (since the four rigid units must fit within

the unit cell) once again give �crystal ¼ 1=2. In both cases

�crystal < 1 and so phase retrieval from Bragg reflections alone

and without knowledge of the solvent content is not feasible

without other constraints. In general, the number of symmetry

operations in the Patterson symmetry is equal to one or two

times the number of symmetry operations in the crystal, so

�crystal 
 1=2 for crystals without inversion symmetry in the

crystal point group and �crystal 
 1 for crystals that already

possess inversion symmetry in the corresponding point group

(i.e. the Patterson map possesses the same number of

symmetry operators as the crystal itself).

The constraint ratio will increase when a tight support for

the rigid unit is known, which is possible when the solvent

content of the crystal is not negligible, or when some of the Rm

are not members of a closed group (i.e. there are rigid units

related by local pseudo-symmetry), by increasing VðA
S
Þ. This

is illustrated in part by the constraint ratio for the simulation

shown in Fig. 1 (again with a tight support) where �crystal

increases from 1 to 1.38 due to the solvent fraction.

Finally, we now consider the case where the diffraction is

given by the weighted addition of the Bragg reflections and

the continuous diffraction. For large crystals illuminated by

coherent radiation the Bragg peaks are effectively point like,

while the continuous diffraction produces smooth diffraction

features (sometimes called speckles) which are band limited

due to the finite extent of the autocorrelation function. Thus, if

the crystal diffraction is sufficiently sampled then the contin-

uous diffraction for points on the reciprocal lattice can be

determined by Fourier interpolation of the neighbouring

values. The continuous diffraction and the Bragg reflections

are then separable and can be demodulated by the known

weighting factors, although in practice measurement error will

prevent perfect separation. One can also think of this process

in autocorrelation space: the inverse Fourier transform of the

diffraction will yield the autocorrela-

tion of the rigid units located in the

centre of the array plus the Patterson

map which repeats on the crystal

lattice. Because of the oversampling at

least two periods of the Patterson map

will be contained within the bounds of

the array in each direction and so the

central region of the Patterson map

can be determined by neighbouring

cells and thus subtracted from the

global function to give the auto-

correlation due to the continuous

diffraction alone.

One might think that in such a

case the constraint ratio is then given

by the sum �crystal þ�continuous since

they share a common denominator.

However, not all points within the

Patterson map are linearly independent from those in the

symmetry summed autocorrelation. One can see in Fig. 4(d)

that there is a region near the origin of the Patterson map

wherein the aliased autocorrelation of the rigid units does not

overlap the set of cross-correlation terms, given by the

unwieldy expression ð[nm;n6¼mC
S
nmÞ

C
\ ð[mA

S
mÞ (the superscript

‘C’ denotes the complement of a set). All points that lie in this

region of the Patterson map can be generated by the symmetry

summed autocorrelation functions. This can be achieved by

subsampling the symmetry summed autocorrelation A [as

shown in Fig. 4(b)] in Fourier space on the reciprocal lattice to

form A [the aliased symmetry summed autocorrelation shown

near the centre in (d)]. Therefore, we must exclude this region

from the Patterson map before adding the region occupied

by the symmetry summed autocorrelations. This is easily

achieved by confining the Patterson map to the regions where

the cross-correlation terms are non-zero. This region is shown

in Fig. 4(e) and is just the region occupied by the aliased cross-

correlation terms ð[nm;n6¼mC
S
nmÞ:

�total ¼
Vð[mAS

mÞ þ Vð[nm;n 6¼mC
S
nmÞ

PiVðSÞ
: ð23Þ

For a tightly packed crystal, the rigid units will be in close

contact and thus the aliased cross-correlation regions will fully

overlap the aliased autocorrelation regions in the Patterson

map. In that case Vð[nm;n6¼mC
S
nmÞ ¼ VðUSÞ ¼ PCVðSÞ, where

PC is the number of symmetry operations in the crystal space

group. In this case no region of the Patterson map can be

generated from the symmetry summed autocorrelation and so

there is no redundancy in the information provided by the

Bragg reflections and the continuous diffraction, leading to

�total ¼ �continuous þ�crystal. In the worst case, for a convex and

centrosymmetric support, Vð[mAS
mÞ ¼ VðAS

0Þ ¼ 8VðSÞ. Thus

the total constraint ratio always satisfies �total 
 ð8þ PCÞ=Pi.

As we have mentioned previously Pi ¼ (1 or 2) �PC and so

�total 
 ð8þ PCÞ=PC or �total 
 ð8þ PCÞ=ð2PCÞ, depending

on the space group of the crystal.
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Figure 4
(a) A unit cell with two identical rigid units (ducks) related by a mirror line (horizontal line); the
border indicates the unit-cell dimensions in the pm crystal. (b) The symmetry summed
autocorrelation region of the two ducks shown in (a) (solid line) with space group p2=m, with
regions corresponding to the two autocorrelation functions coloured to match the corresponding
duck. Inversion symmetry through the origin (white circle) has generated a second mirror line
(vertical line). (c) The full un-aliased autocorrelation of the unit cell, with the cross-correlation terms
between the two ducks coloured in yellow. (d) The Patterson map of the crystal inside the unit-cell
area (coloured) and outside the unit cell (in grey). (e) The Patterson map of the crystal confined to the
unit-cell area and excluding the region occupied only by the aliased autocorrelation of the two ducks.



7. Simulation results

Now that we have defined the crystal diffraction model,

determined the required projection operators and that a

unique solution may exist, we now demonstrate that our IPA is

capable of solving for the electron density of a potato multi-

cystatin crystal from simulated noisy diffraction.

In the absence of noise, with a fixed tight support volume

and with no error in the input � value (or form of B and D) the

electron density of the potato multicystatin monomer, whose

model is shown in Fig. 1 (left), can be retrieved to within

numerical precision. From a random start this typically occurs

within the first 100 iterations of the DM algorithm. However,

when the diffraction is noisy and the shape and position of the

rigid unit are not given to the algorithm but instead only a

loose support and the crystal solvent fraction are provided,

then many more iterations are required for convergence (6000

in this case).

In Fig. 5 we compare the rigid unit reconstructed from

three simulated data sets. The three data sets are derived

from the full 3D merged diffraction data as shown in

Fig. 1: the contribution from the Bragg reflections alone

IB ¼ Bj
PM�1

m¼0 Fmj
2 (left), the diffuse scatter alone

ID ¼ D
PM�1

m¼0 jFmj
2 (middle column) and the full combined

data set I ¼ IB þ ID (right column) equal to the incoherent

addition of the first two data sets. The total number of photons

used to simulate the noisy diffraction intensities are 9:7� 108,

2:4� 107 and their sum 109, respectively. The number of

photons was chosen such that the signal level drops to nearly

zero at the highest diffraction angles covered by the detector.

This was done to test the behaviour of the algorithm across a

broad range of signal-to-noise levels. In each case the resulting

rigid unit is the average of 50 independent reconstructions,

starting with density values drawn from a uniform random

number in the range 0 to 1 within the loose support volume

(the outline of this volume is the black dashed line in the

bottom left). The overall scale of the initial estimate is irre-

levant here; after the first application of the data projection

operator the scale is set by the diffraction intensities. But the

random initialization helps to provide an unbiased solution

and to avoid pathologies that might arise during the recon-

struction from other simpler starting values (e.g. all zeros).
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Figure 5
Rigid-unit reconstructions from the Bragg reflection intensities (left), the diffuse scatter (middle) and the full diffraction intensity including the sum of
both the Bragg reflections as well as the diffuse scatter (right). Top row: noisy diffraction intensities used for the reconstructions, in the (100) plane shown
with the same log-scale colour map. Middle row: the corresponding reconstructions of the rigid unit shown as one-level contour plots overlaid on the
potato multicystatin monomer model (for visual reference). These images were made using the UCSF Chimera software package (Pettersen et al., 2004).
Bottom: one-level contour plot of the ground-truth density (left). The real part of the FSC of each of the three reconstructions with the ground truth, as a
function of the full period resolution (right).



The reconstruction algorithm is also the same in all three cases

except that the weighting parameters for the Bragg and

continuous diffraction have been set to zero where appro-

priate; see equation (3) for the definition of these weighting

factors and Table 3 for more detailed parameters. These

reconstructions are not molecular replacement solutions, and

there is no model at all. That is, we are presenting (simulated)

experimental phasing with no knowledge about chemistry.

The reconstructed rigid units corresponding to each of these

diffraction intensities are shown in the middle row as single-

level contour plots overlaid on top of the atomic model (again

this model is not used for the reconstruction) for the potato

multicystatin monomer, serving as a visual aid to the recon-

struction quality. The contour level is set to an electron-

density value of 0.2 e Å�3. The initial support was generated

by thresholding the random initial guess until the specified

number of volume elements for the rigid unit was obtained

(the voxel number support projection). Subsequent updates to

the support followed the recipe described in Section 5.1,

maintaining the correct solvent fraction at every iteration.

The constraint ratio from the Bragg diffraction is 0.7 (as

listed in Table 2) and so, being less than 1, we could not expect

to reconstruct the rigid unit without the use of additional

constraints. On the other hand, the constraint ratio of the

continuous diffraction is 1.9, indicating that it should be

possible to retrieve a unique solution and one can see this is

borne out by the fidelity of the two reconstructions shown in

Fig. 5. One can also see that although the reconstruction from

the Bragg reflections alone has clearly failed, the reconstruc-

tion quality marginally improves when they are added to the

continuous diffraction, consistent with the increase in the

constraint ratio from 1.9 to 2.6. Although an increase in

reconstruction quality is desirable, we suggest that the main

benefit to the global reconstruction approach may be the fact

that the Bragg and continuous diffraction need not be treated

separately. Separating these components is otherwise a feat

that could prove difficult due to the very large deviations in

intensity between the Bragg and continuous diffraction at low

scattering angles.

In order to quantitatively compare the reconstructions, we

calculate the fidelity error which is a measure of the agreement

with the ground truth, where 0 corresponds to perfect agree-

ment and 1 to very poor agreement. In the present case the

fidelity errors are 0.78, 0.44 and 0.26, respectively. Another

measure of the reconstruction fidelity is the Fourier shell

correlation (FSC) (Frank, 2006) which we plot in Fig. 5

(bottom right) for each of the three reconstructions. This

shows a consistent increase in the FSC for the global recon-

struction for most resolution shells (at high scattering angles

the reconstruction is dominated by noise). Global recon-

structions performed without noise added to the diffraction

intensities are able to reach agreement with the ground truth

to 1 part in 104. Both the fidelity error and the FSC are defined

in Appendix D [equations (26) and (27)].

8. Discussion and conclusion

Having shown that model-free phasing of diffraction from

crystals with translational disorder is possible, we now

consider some aspects of the application of this method to

experimental data. Because Bragg peaks often yield very

bright and sharp peaks on the detector, any underlying

background can usually be estimated (and thus subtracted

from the data) by examining the detected signal in the

immediate neighbourhood of the diffraction spot. This is not

true however for the continuous diffraction. In general, this

method places higher demands on data collection and esti-

mation of the background, for example due to the crystal

solvent, ice formation or from the carrying medium of the

crystal such as a liquid jet, aerosol or sample holder. Chapman

et. al. have recently suggested a method to estimate this

background (Chapman et al., 2017). Standard crystallographic

methods for structure retrieval are also fairly robust with

regard to missing diffraction intensity measurements. For

instance, when calculating the R-free metric, some reflections

are excluded when fitting the molecular model to the

diffraction data (Brünger, 1992). However, in model-free

phasing, missing data regions can lead to unconstrained modes

in the reconstruction (Thibault et al., 2006) which can be a

problem, particularly near the origin where a beamstop is

often placed. For these reasons, we expect that a combination

of our proposed method with model fitting and refinement

may often be the more robust approach, particularly for

structures where prior information is available.

In this work we have assumed that the translational

disorder is isotropic, with the displacements following a

normal distribution. However, this is not required for the

reconstruction algorithm and this procedure could likely be

modified to account for alternative models for the rigid body’s

translational motion. Indeed, all that is required is that the

diffraction is partitioned into a coherent and incoherent sum

over the rigid-unit transforms. The elliptical projection

remains valid for arbitrary weighting functions.

However, for some crystals, translational disorder will not

be the only significant contribution to the continuous

diffraction. Other rigid-body motions of the rigid unit may be

dominant or at least significant, and need to be accounted for

to obtain an accurate description of the crystal diffraction.

Extending the current work to account for these effects will
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Table 3
Simulation and reconstruction parameters used in Fig. 5.

3D dimensions are given as x, y, z values.

Parameters Values

N 1003

� 0.6 Å
Diffraction grid 128, 128, 128
Real-space domain 51, 109, 158 (Å)
Space group P212121

Iteration sequence 6 � (500 DM then 500 ER)
DM: � 0.8
Support update frequency 20 iterations
Support smoothing parameter 0.5 Å
Voxels (volume of rigid unit) 46658 (111 nm3)



greatly increase the number of potential structures that could

be solved by our method and is a matter of ongoing research.

We hope that this work will soon lead to model-free phasing

of crystals with unknown structures, particularly for those

without a good reference. To that end, we have included code

that, although not intended as a general application, should at

least aid in the reproduction of our results and accelerate real-

world applications for the work presented here.4

APPENDIX A
Noise model

In simulating the diffraction intensities of the disordered

crystal we have included the effect of photon-counting

statistics from a flat 2D detector in the far-field of the crystal.

We have assumed that the diffraction intensities are obtained

in a serial collection scheme, for example at a synchrotron or a

free-electron laser facility, by merging many 2D diffraction

images from all orientations of the crystal. The mean value of

IðqÞ is then equal to the total number of photons detected at

this point in q-space (within a given binning radius or voxel

size) divided by the number of times this voxel was intersected

by a detector pixel, which is proportional to the inverse of the

scattering angle 1=q (if the crystal orientations were evenly

sampled). This scaling rule applies for resolution shells that

fall fully within the 2D extent of the detector and does not

account for detector gaps or corners. The decrease in the solid

angle for pixels at higher diffraction angles has no effect on

this scaling, as this simply spreads the photon counts for

elements of IðqÞ across more pixels. To simulate this process

we therefore scaled the calculated IðqÞ by 1=q, normalized this

function to the total number of collected photons (which at

this point represents a map of the total number of photons

collected at each q-space bin), applied Poisson counting

statistics and rescaled by q. In this way the calculated

diffraction intensities more accurately reflected the increase in

noise at higher resolution. For the simulation shown in Fig. 1

the total photon count is 109.

APPENDIX B
Estimation of the disorder length

In Fig. 6 we show the radial profile of the scattering intensities

both on and off the reciprocal-lattice sites. For large crystals

with sharp diffraction peaks, the scattering intensity for points

off the reciprocal lattice is dominated by the continuous

diffraction of the crystal, while points on the reciprocal lattice

have contributions from both the first and second terms in

equation (2). In both cases the average intensity in a given

q-shell is proportional to the intensity of the computed

diffraction of the rigid unit. For the reciprocal-lattice points,

this is because the summation over several Bragg reflections

tends to cancel the interference terms between each rigid unit

in the unit cell. This is commonly assumed to be true, for

example, when evaluating the so-called ‘B factor’ from a

Wilson plot. This suggests that � can be estimated indepen-

dently of FrigidðqÞ by evaluating the ratio of the radial profiles

for the on-Bragg and inter-Bragg intensities as shown in Fig. 6

(black circles). Here we make the assumption that on-Bragg

intensities include contributions from both terms in equation

(2) while the inter-Bragg intensities depend only on the first

term. Starting from equation (2) this ratio rðqÞ can be

approximated by

rðqÞ ’
1

1� expð�4�2�2q2Þ
; ð24Þ

if the radial average of the normalized reciprocal-lattice

function, given by

LðqÞ ¼
1

N

XN�1

n¼0

XN�1

k¼0

exp½2�iðan � akÞ � q�

* +
qi

where qi lie on the reciprocal-lattice points, is known, then rðqÞ

is better approximated by

rðqÞ ’
½LðqÞ � 1� expð�4�2�2q2Þ þ 1

1� expð�4�2�2q2Þ
: ð25Þ

For our simulation, a least-squares fit of equation (25) to the

ratio rðqÞ (determined from the noisy diffraction data)

provides a good estimate for the disorder length (� ¼ 0:62 Å

versus 0.6 Å). The curve fit to rðqÞ is shown as the blue line in

Fig. 6. Because � is determined from the ratio of diffraction

intensities at equal diffraction angles, they are invariant to

other factors that might scale the radial intensity such as the

q-dependent falloff in the scattering intensity due to the

atomic form factors or uncorrelated atomic disorder in the

crystal.
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Figure 6
Top: radial profile of the scattering intensity on and off the reciprocal
lattice, labelled ‘Bragg + diffuse’ and ‘diffuse’, respectively. Bottom: ratio
of the on-Bragg to continuous diffraction shown on the top (black circles)
and the model fit to this profile (blue line).4 https://github.com/andyofmelbourne/crappy_crystals.



Note that this fitting procedure assumes that the transla-

tional disorder is isotropic, with the displacements following a

normal distribution. However this is not required for the

reconstruction algorithm and this fitting procedure could

likely be modified to account for alternative models for the

rigid-body motion.

APPENDIX C
Estimation of the number of rigid units

The distribution of Bragg peak intensities arising from

macromolecular crystals inside a given resolution shell has

long been known to follow a particular distribution, described

by Wilson statistics. The continuous diffraction intensities

arising from a single orientation of the rigid unit will follow

this same distribution. However the distribution of the sum of

diffraction intensities from different orientations of the rigid

unit is equal to the convolution of the distributions of those

intensities alone. The distribution of the continuous diffrac-

tion intensities in this context has been studied extensively in

recent work by Chapman et al. (2017). There they show that a

modified form of Wilson statistics can be used not only to

estimate q-dependent background levels in individual

diffraction frames, but also to identify the number of inde-

pendent rigid units, that is unique types of rigid units, in the

crystal as a whole.

APPENDIX D
Metrics

As it is the Bragg reflections that encode the rigid unit’s

position relative to the crystal symmetry axes, the recon-

struction from the continuous diffraction alone (which lacks

this information) will be shifted with respect to its true loca-

tion. To account for this, our fidelity metric has been mini-

mized with respect to a shift in real space of the retrieved rigid

unit (�0rigid) relative to the ground truth (�rigid), so that our

fidelity metric can be written as

"fid ¼
min�r

P
r j�
0
rigidðr��rÞ � �rigidðrÞj

2
� �1=2

P
r j�rigidðrÞj

2
� �1=2

: ð26Þ

Also, as any one of the rigid units may be retrieved (without

loss of generality), "fid was calculated against each of the rigid

units in the unit cell and the minimum value was chosen.

Another measure of the reconstruction fidelity is the

FSC (Frank, 2006), which measures the normalized cross-

correlation coefficient between the ground truth and recon-

structed volumes for each resolution shell in Fourier (or

reciprocal) space. This is shown in Fig. 5 (bottom), where we

plot the real part of

FSCðqÞ ¼

P
jqij¼q F�ðqiÞ � F

0ðqiÞP
jqij¼q jFðqiÞj

2
�
P
jqij¼q jF

0ðqiÞj
2

h i1=2
ð27Þ

where F and F 0 are one of the Fm (chosen above) for the

ground truth and the reconstruction, respectively.
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