High-Pressure and High Temperature Behavior of Datolite

Carla Slebodnick, a Jing Zhao, b Claire M. Morton, c Nancy L. Ross*,b

^aDepartment of Chemistry, Virginia Tech, Blacksburg, VA, 24061; ^bGeosciences Department, Virginia Tech, Blacksburg, VA, 24061; ^cBlacksburg High School, Blacksburg, VA, 24060.

The mineral datolite, CaBSiO₄(OH), crystallizes in the monoclinic space group $P2_1/c$ with $a \sim 4.83$, $b \sim 7.61$, $c \sim 9.63$ Å, $\beta \sim 90.15^{\circ}$, and V ~ 354 Å³. Datolite forms layers of corner sharing SiO₄ and BO₃(OH) tetrahedra parallel to (001) with Ca sitting between layers. Earlier studies explored the low-temperature (100-300 K) behavior of datolite. This study extends the studies into the high-temperature (300-750 K) and high pressure (0-7.5 GPa) regimes. No phase changes are observed at these temperatures and pressures. The 3rd order Birch-Murnaghan equation of state fit to the P-V data gives a bulk modulus, K=90.8(7) GPa and dK/dP=5.7(2). The axial responses to temperature and pressure and structural changes as a function of pressure will be presented.

¹R Rinaldi, GD Gatta and RJ Angel. *American Mineralogist*, **2010**, *95*, 1413-21, DOI: 10.2138/am.2010.3536.