Synthesis of a family of Pt-Ag clusters: Ligands, solvents, unit cells and crystal quality

Milagros Tomás, Irene Ara, M. Angeles García-Monforte, Rocío González and L. R. Falvello

University of Zaragoza - CSIC, Department of Inorganic Chemistry, Institute for Chemical Synthesis and Homogeneous Catalysis, Aragón Materials Science Institute, Pedro Cerbuna 12, 50009 Zaragoza, Spain <u>milagros@unizar.es</u>

The characteristic coordination indices of Pt^{II} and Pt^{IV} are combined with novel (OH) bridging systems to form a mixed-oxidation-state Pt cluster with a structurally unprecedented M₄(OH)₄ core. The anion in (NBu₄)₂[Pt^{IV}Pt^{II}₃(C₆Cl₅)₈(µ₂-OH)₂(µ₃-OH)₂] (1) has two (µ₃-OH) and two (µ₂-OH) units that bridge platinum atoms in different oxidation states. The geometry at the core of the cluster is described as a distorted halfhexagram. Compound (1) can host full-shell d¹⁰ or s² Lewis-acid metals, which are held in place by Pt→M dative bonds. The syntheses of several solids, some of them with unbridged Pt→Ag bonds, without disrupting the fundamental core geometry of the anion (1), accredits the host potential of (1). Interesting relationships arise among ligands, solvents, unit cells and crystal quality. The role of weak C—Cl…Ag interactions in stabilizing these compounds is also described.