FOUNDATIONS
ADVANCES

Received 16 July 2018
Accepted 16 July 2018

Keywords: X-ray scattering; attenuation correction factors; secondary scattering


# Calculation of absorption and secondary scattering of X-rays by spherical amorphous materials in an asymmetric transmission geometry. Corrigendum 

J. C. Bendert,* M. E. Blodgett and K. F. Kelton

Department of Physics, Washington University, St Louis, Missouri 63130-4899, USA. *Correspondence e-mail: jbendert@physics.wustl.edu

A revised version of Table 2 of Bendert et al. [Acta Cryst. (2013). A69, 131-139] is provided.

The expressions for $A_{i}$ for $i=3$ and 4 reported in Table 2 of Bendert et al. (2013) should be negative. The correct values are given in the table shown below.

Table 2
Coefficients for small-angle expansion of the off-axis spherical absorption.
${ }^{i} \quad A_{i}$
$0 \quad+1$
$1+\cos (\phi) \mu r_{\mathrm{s}} x_{\mathrm{s}}$
$2 \quad \frac{+\mu r_{\mathrm{s}}}{6\left(x_{\mathrm{s}}{ }^{2}-1\right)}\left[2 \mu r_{\mathrm{s}} \cos (\phi)^{2} x_{\mathrm{s}}^{4}-x_{\mathrm{s}}{ }^{2}\left(1-x_{\mathrm{s}}{ }^{2}\right)^{1 / 2}\right.$
$-2 \mu r_{\mathrm{s}} \cos (\phi)^{2} x_{\mathrm{s}}^{2}+\left(1-x_{\mathrm{s}}^{2}\right)^{1 / 2}$
$\left.-2 x_{\mathrm{s}}^{2} \cos (\phi)^{2}\left(1-x_{\mathrm{s}}^{2}\right)^{1 / 2}\right]$
$3 \quad \frac{-x_{\mathrm{s}} \cos (\phi) \mu r_{\mathrm{s}}}{6\left(x_{\mathrm{s}}{ }^{2}-1\right)}\left[2 \mu r_{\mathrm{s}} \cos (\phi)^{2} x_{\mathrm{s}}^{2}\left(1-x_{\mathrm{s}}{ }^{2}\right)^{1 / 2}+x_{\mathrm{s}}^{2}-1\right]$
$4 \quad \frac{-\mu r_{\mathrm{s}}}{360\left(x_{\mathrm{s}}{ }^{2}-1\right)}\left[8\left(\mu r_{\mathrm{s}}\right)^{3} x_{\mathrm{s}}{ }^{6} \cos (\phi)^{4}+40 \mu r_{\mathrm{s}} x_{\mathrm{s}}{ }^{4} \cos (\phi)^{4}\right.$

$$
\begin{aligned}
& -14 \mu r_{\mathrm{s}} x_{\mathrm{s}}^{4}+32\left(\mu r_{\mathrm{s}}\right)^{2} x_{\mathrm{s}}^{4} \cos (\phi)^{4}\left(1-x_{\mathrm{s}}^{2}\right)^{1 / 2} \\
& -8\left(\mu r_{\mathrm{s}}\right)^{3} x_{\mathrm{s}}^{4} \cos (\phi)^{4} \\
& -32\left(\mu r_{\mathrm{s}}^{2}\right)^{4} x_{\mathrm{s}}^{4} \cos (\phi)^{2}\left(1-x_{\mathrm{s}}^{2}\right)^{1 / 2} \\
& +44 \mu r_{\mathrm{s}} x_{\mathrm{s}}^{4} \cos (\phi)^{2}-11\left(1-x_{\mathrm{s}}^{2}\right)^{1 / 2} x_{\mathrm{s}}^{2} \\
& -4 x^{2} \cos (\phi)^{2}\left(1-x_{\mathrm{s}}^{2}\right)^{1 / 2}-44 \mu r_{\mathrm{s}} x_{\mathrm{s}}^{2} \cos (\phi)^{2} \\
& +32\left(\mu r_{\mathrm{s}}\right)^{2} x_{\mathrm{s}}^{2} \cos (\phi)^{2}\left(1-x_{\mathrm{s}}^{2}\right)^{1 / 2} \\
& \left.+11\left(1-x_{\mathrm{s}}^{2}\right)^{1 / 2}-14 \mu r_{\mathrm{s}}+28 \mu r_{\mathrm{s}} x_{\mathrm{s}}^{2}\right]
\end{aligned}
$$

$5 \quad \frac{+\mu r_{\mathrm{s}} x_{\mathrm{s}} \cos (\phi)}{360\left(x_{\mathrm{s}}{ }^{2}-1\right)}\left[8\left(\mu r_{s}\right)^{3} x_{s}{ }^{4} \cos (\phi)^{4}\left(1-x_{s}{ }^{2}\right)^{1 / 2}\right.$

$$
+16\left(\mu r_{s}\right)^{2} x_{s}^{4}-40\left(\mu r_{s}\right)^{2} x_{s}^{4} \cos (\phi)^{4}
$$

$$
+8\left(\mu r_{s}\right)^{3} x_{s}{ }^{4} \cos (\phi)^{2}\left(1-x_{s}^{2}\right)^{1 / 2}
$$

$$
+24\left(\mu r_{s}\right)^{2} x_{s}^{4} \cos (\phi)^{2}+3 x_{s}^{2}
$$

$$
-6 \mu r_{s} x_{s}^{2}\left(1-x_{s}^{2}\right)^{1 / 2}-3+16\left(\mu r_{s}\right)^{2}
$$

$$
-8\left(\mu r_{s}\right)^{3} x_{s}^{2} \cos (\phi)^{2}\left(1-x_{s}^{2}\right)^{1 / 2}
$$

$$
+6 \mu r_{s}\left(1-x_{s}^{2}\right)^{1 / 2}-32\left(\mu r_{s}\right)^{2} x_{s}^{2}
$$

$$
+36 \mu r_{s} x_{s}^{2} \cos (\phi)^{2}\left(1-x_{s}^{2}\right)^{1 / 2}
$$

$$
\left.-24\left(\mu r_{s}\right)^{2} x_{s}^{2} \cos (\phi)^{2}\right]
$$

## References

Bendert, J. C., Blodgett, M. E. \& Kelton, K. F. (2013). Acta Cryst. A69, 131-139.

