(8) Sun, H.-L.; Wang, et al. Coord. Chem. Rev. 2010, 254, 1081–1100.(9) G. Nénert, et al., Dalton Transactions 44 (31), 14130-14138

Keywords: 1-D magnetic materials , X-ray diffraction, neutron diffraction, interchain coupling

MS24-O5 Synthesis and Characterization of Asymmetric Tetranuclear Nickel Chains without Disordered Ligand Phenomenon in Crystallography

 ${\rm Lien-Hung\ Tsou^1,Marc\ Sigrist^2,Ming-Hsi\ Chiang^2,Er-Chien\ Horng^1,Chun-hsien\ Chen^1,Gene-Hsiang\ Lee^1,Shie-Ming\ Peng^{1,2}}$

1. Department of Chemistry, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, Taiwan (R.O.C.)

2. Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, Taiwan (R.O.C.)

email: d01223123@ntu.edu.tw

ligand, 2-(2-(5-phenylpyridyl)amino)-1,8-naphthyridine (Hphpyany), was synthesized by the reaction of 2-chloro-1,8-naphthyridine 2-amino-5-phenylpyridine in the presence of potassium tert-butoxide under palladium(0)-catalyzed condition. linear tetranickel metal complexes, Ine tetraincer metal complexes, [Ni₄(phpyany)₄(Cl)₅](CF₅SO₅) 1, [Ni₄(phpyany)₄(Cl)₅](BF₂), 2, [Ni₄(phpyany)₄(NCS)₂](ClO₄) 3 and [Ni₄(phpyany)₄(NCS)₅](CF₅SO₃), 4 were synthesized and have been crystallographically characterized. All of the complexes consist of four phpyany ligands, wrapped around a linear tetranickel core, in the same orientation. The remarkably short Ni-Ni distances (ca. 2.33 Å) for 1 and 3 indicate partial metal-metal bonding, which can be viewed as both complexes containing one mixed-valence that the N_1^{7+} complexes exhibit antiferromagnetic interactions $J = -42 \text{ cm}^{-1}$ for 1 and -46 cm^{-1} for 3) between the N_1^{7+} and the N_2^{7+} and the N_2^{7+} and the N_2^{7+} mixt, while the N_2^{7+} complexes 2 and 4 exhibit antiferromagnetic interactions $(J = -33 \text{ cm}^{-1} \text{ for } 2 \text{ and } -35 \text{ cm}^{-1} \text{ for } 4)$ between the two terminal Ni²⁺ ions. The results of the cyclic voltammetry terminal N1⁻¹ tons. The results of the cyclic voluntingly indicate the presence two reversible redox couples at $E_{\perp}^{(1)} = 0.07 \text{ V}$, $E_{\perp}^{(2)} = -0.80 \text{ V}$ for 1, and at $E_{\perp}^{(1)} = 0.12 \text{ V}$, $E_{\parallel}^{(2)} = -0.74 \text{ V}$ for 3. The products of the oxidation process $E_{\perp}^{(1)}$ of 1 and 3 are the corresponding oxidized species 2 and 4, respectively. The value of conductance is $9.39 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G_0$ and the value of resistance is $13.7 \pm 0.030 \times 10^{-4} G$ (± 4.4) M Ω for 4 were measured by means of the STM break-junction. This represents the first conductance measurement of a linear tetranickel chain.

Figure 1. Crystallographic disordered ligand on C and C' (left bottom) and schematic diagram for complexes $1,\,2,\,3$ and 4 (right bottom).

Keywords: Metal-metal interactions I, Nitrogen ligands, Electrochemistry, Magnetic properties, Single molecular conductance