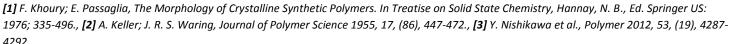
## **Poster Presentation**


## **PF.P01**

## Three-Dimensional Analyses of Morphology of Polymer Spherulites by X-ray Computerized Tomography

T. Nguyen-Dung<sup>1,2</sup>, Y. Nishikawa<sup>3</sup>, M. Hashimoto<sup>3</sup>, M. Tosaka<sup>4</sup>, S. Sasaki<sup>1,5</sup>, S. Sakurai<sup>1,5</sup>

<sup>1</sup>Kyoto Institute of Technology, Department of Biobased Materials Science, Kyoto, Japan, <sup>2</sup>Kyoto Institute of Technology, Venture Laboratory, Kyoto, Japan, <sup>3</sup>Kyoto Institute of Technology, Department of Macromolecular Science and Engineering, Kyoto, Japan, <sup>4</sup>Kyoto University, Institute for Chemical Research, Kyoto, Japan,  ${}^{5}$ Kyoto Institute of Technology, Center for Fiber and Textile Science, Kyoto, Japan

We report 3-dimensional structural analyses of huge spherulites of poly(oxyethylene) (PEG) by the X-ray computerized tomographic (CT) observation in blends of PEG and amorphous poly(lactide). The formation of the huge spherulites is characteristic of PEG and its direct observation by the X-ray CT is reported here for the first time. Slit-shaped cracks were clearly observed by the X-ray CT. Not only the straight cracks but also curved ones were found and it seemed that they overall formed a set of spokes. Furthermore, the scanning electron microscopic observation revealed that the cracks were parallel to bundles of lamellar crystallites. From those observations, we conclude that a set of radial cracks observed under the X-ray CT is a signature of a huge spherulite. Several aspects of an axialite structure are presented and a good agreement with the intuitively proposed structural model is obtained.



4292



**Keywords:** X-ray Computerized Tomography, Spherulite, Poly(oxyethylene)