Poster Presentation

MS95.P04

Symmetry Groups Associated with Tilings of a Flat Torus

M. Loyola¹, M. De Las Peñas¹, G. Estrada¹, E. Santoso¹

Ateneo de Manila University, Mathematics Department, Quezon City, Philippines

A flat torus E^2/Λ is the quotient of the Euclidean plane E^2 with a full rank lattice Λ generated by two linearly independent vectors v_1 and v_2 . A motif-transitive tiling T of the plane whose symmetry group G contains translations with vectors v_1 and v_2 induces a tiling T^* of the flat torus. Using a sequence of injective maps, we realize T^* as a tiling T^* of a round torus (the surface of a doughnut) in the Euclidean space E^3 . This realization is obtained by embedding T^* into the Clifford torus $S^1 \times S^1 \subseteq E^4$ and then stereographically projecting its image to E^3 . We then associate two groups of isometries with the tiling T^* — the symmetry group T^* of T^* itself and the symmetry group T^* of its Euclidean realization T^* . This work provides a method to compute for T^* using results from the theory of space forms, abstract polytopes, and transformation geometry. Furthermore, we present results on the color symmetry properties of the toroidal tiling T^* in relation with the color symmetry properties of the planar tiling T^* and use these geometric structures to model carbon nanotori and their structural analogs.

[1] M. Senechal, Discrete Comput. Geom., 1988, 3, 55-72, [2] P. McMullen, E. Schulte, Abstract Regular Polytopes, 2002, 6, 148-151, [3] M. L. A. N. De Las Peñas, M. L. Loyola, A. M. Basilio et al, Acta Cryst., 2014, A70, 12–23

Figure. (a) A 4^4 tiling \mathbb{T} of the plane \mathbb{E}^2 with translation vectors \mathbf{x} , \mathbf{y} and orthogonal vectors $\mathbf{v}_1 = 3\mathbf{x}$, $\mathbf{v}_2 = 6\mathbf{y}$ generating a lattice Λ . (b) Geometric realization of the tiling \mathbb{T}^* of the flat torus \mathbb{E}^2/Λ as a tiling $\overline{\mathbb{T}}$ of a round torus. (c) A toroidal polyhedron obtained from $\overline{\mathbb{T}}$ in (b) by replacing the edges of the tiling with straight segments.

Keywords: Flat Torus, Tiling, Nanotorus